Leakage-Resilient Spatial Encryption

Michel Abdalla 1, 2, 3 Jill-Jênn Vie 2
1 CASCADE - Construction and Analysis of Systems for Confidentiality and Authenticity of Data and Entities
DI-ENS - Département d'informatique de l'École normale supérieure, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR 8548
Abstract : Spatial encryption is a generic public-key cryptosystem where vectors play the role of public keys and secret keys are associated to affine spaces. Any secret key associated to a space can decrypt all ciphertexts encrypted for vectors in that space, and the delegation relation is defined by subspace inclusion. Though several constructions of spatial encryption schemes have been proposed in the literature, none of them are known to remain secure in the leakage-resilient setting, in which the adversary may be capable of learning limited additional information about the master secret key and other secret keys in the system. In this paper, we propose the first spatial encryption scheme achieving leakage resilience in the standard model, based on existing static assumptions over bilinear groups of composite order. Our new scheme is based on the leakageresilient HIBE scheme by Lewko, Rouselakis, and Waters in TCC 2011 and can be seen as a generalization of Moriyama-Doi spatial encryption scheme to the leakage-resilient setting.
Type de document :
Communication dans un congrès
Alejandro Hevia and Gregory Neven. LATINCRYPT 2012, Oct 2012, Santiago, Chile. Springer, 7533, pp.78-99, 2012, Lecture Notes in Computer Science. 〈10.1007/978-3-642-33481-8_5〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00915816
Contributeur : Michel Abdalla <>
Soumis le : lundi 9 décembre 2013 - 13:15:46
Dernière modification le : vendredi 25 mai 2018 - 12:02:05

Identifiants

Collections

Citation

Michel Abdalla, Jill-Jênn Vie. Leakage-Resilient Spatial Encryption. Alejandro Hevia and Gregory Neven. LATINCRYPT 2012, Oct 2012, Santiago, Chile. Springer, 7533, pp.78-99, 2012, Lecture Notes in Computer Science. 〈10.1007/978-3-642-33481-8_5〉. 〈hal-00915816〉

Partager

Métriques

Consultations de la notice

280