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Abstract

SMT solvers are efficient tools to decide the satisfiability of ground formulas, including

a number of built-in theories such as congruence, linear arithmetic, arrays, and bit-vectors.

Adding a theory to that list requires delving into the implementation details of a given SMT

solver, and is done mainly by the developers of the solver itself.

For many useful theories, one can alternatively provide a first-order axiomatization.

However, in the presence of quantifiers, SMT solvers are incomplete and exhibit unpre-

dictable behavior. Consequently, this approach can not provide us with a complete and

terminating treatment of the theory of interest.

In this paper, we propose a framework to solve this problem, based on the notion of in-

stantiation patterns, also known as triggers. Triggers are annotations that suggest instances

which are more likely to be useful in proof search. They are implemented in all SMT solvers

that handle first-order logic and are included in the SMT-LIB format.

In our framework, the user provides a theory axiomatization with triggers, along with

a proof of completeness and termination properties of this axiomatization, and obtains a

sound, complete, and terminating solver for her theory in return. We describe and prove a

corresponding extension of the traditional Abstract DPLL Modulo Theory framework.

Implementing this mechanism in a given SMT solver requires a one-time development

effort. We believe that this effort is not greater than that of adding a single decision proce-

dure to the same SMT solver. We have implemented the proposed extension in the Alt-Ergo

prover and we discuss some implementation details in the paper.

To show that our framework can handle complex theories, we prove completeness and

termination of a feature-rich axiomatization of doubly-linked lists. Our tests show that our

approach results in a better performance of the solver on goals that stem from the verifica-

tion of programs manipulating doubly-linked lists.

1 Introduction

It is often the case that SAT problems refer to elements to which a special meaning is associated,

such as linear arithmetic, arrays, bit-vectors, etc. SMT solvers are efficient tools for deciding

satisfiability of formulas modulo background theories describing the meaning of those elements.

In addition, they usually are decision procedures for the satisfiability of quantifier-free formulas

in the theories they support. Unfortunately for the user, her SMT solver of choice may not sup-

port her theory of interest and, of course, many theories can be designed that are not supported
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by any solver. Adding a background theory to an SMT solver is a complex and time-consuming

task that requires internal knowledge of the solver and often access to its source code.

For many useful theories, one can alternatively provide a first-order axiomatization to the

SMT solver, provided it handles quantifiers. To give some examples, Simplify [6], CVC3 [8],

CVC4 [1], Z3 [18], and Alt-Ergo [4] support first-order logic. Of course, any automated prover

is at best semi-complete on first-order problems and even semi-completeness is unattainable

when non-trivial background theories, like arithmetic, are involved. To improve the chances of

finding a proof, most SMT solvers give the user some control over instantiation of quantified

formulas, by allowing to annotate quantifiers with so-called instantiation patterns also known

as triggers.

The basic idea behind triggers is that the solver maintains a set of “known” terms (which

usually are simply the terms occurring in assumed facts) and for instantiation to take place,

a known term must match the pattern. It has been demonstrated that by careful restriction of

instance generation in a first-order theory—in a way that can be expressed via instantiation

patterns—one can both preserve completeness and ensure termination, thus obtaining a decision

procedure for the theory. The most prominent example is the decision procedure for the theory

of functional arrays by Greg Nelson [19], which we will consider in greater detail below. More

recently, the same work has been done for specification of more complex data-structures [14, 5].

Unfortunately, the user cannot hope to prove that a given first-order SMT solver is complete

and terminating on a particular set of axioms with triggers for her theory of interest. Triggers

are not and were never meant to change the satisfiability of a first-order formula. Instantiation

patterns are rather considered as hints to what instances are more likely to be useful, and an

SMT solver can base its decisions on the triggers given by the user as well as on the triggers that

it infers itself using some heuristic. In pursuit of completeness, a solver has the right to use any

instantiation strategy it deems useful, and it may even ignore the triggers altogether.

And yet if we want our axiomatization to give us a decision procedure, we must be able to

control instantiation of axioms in a precise and reliable manner.

Contribution. In this paper, we propose a framework to add a new background theory to an

SMT solver by providing a first-order axiomatization with triggers. In order to restrict instan-

tiation in a deterministic way, we give a formal semantics to formulas with triggers, which

promotes triggers to the status of guards, forbidding all instances but the ones described by the

pattern.

We then consider the well-known Abstract DPLL Modulo Theory framework [20], a stan-

dard theoretic model of modern SMT solvers. We describe a variation of this framework that

handles first-order formulas with triggers. We show that for any axiomatization that meets three

conditions of soundness, completeness, and termination, a compliant SMT solver behaves as a

decision procedure for this axiomatization.

More precisely, consider an SMT solver which effectively decides quantifier-free problems

in some background theory T . In the simplest case, T can be the theory of equality and un-

interpreted function symbols (EUF). It can also be the theory of linear arithmetic, bit vectors,

associative arrays, or any combination of the above. A user of that prover wants to extend T with

some new theory—for example, that of mutable container data structures—and obtain a decision
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procedure for the ground problems in this extended theory which we denote T ′. To this purpose,

the user writes down a set of first-order axioms with triggers and proves that this axiomatiza-

tion is a sound, complete, and terminating representation of T ′ in T . Since the three conditions

are formulated in purely logical terms, no specific knowledge of inner prover mechanisms is re-

quired to do that proof. Now, provided that the solver implements our extension of DPLL(T )—or

any other method that treats axioms with triggers in accordance with our semantics—the solver

is guaranteed to decide any quantifier-free problem in T ′ in a finite amount of time.

The method described in this paper is not intended to extend ground SMT solvers to first-

order logic. Neither do we strive to give some ultimate semantics for triggers, on which all

first-order SMT solvers should converge. Our restrictive and rigorous treatment of quantifiers

and triggers should be only applied to the axioms of the theory we wish to decide, and not to

first-order formulas coming with a particular problem. Indeed, while we must restrict instanti-

ation in the former case to guarantee termination, we would gain nothing by applying the same

restrictions to ordinary first-order formulas. On the contrary, we are likely to prevent the solver

from finding proofs which otherwise would be discovered, and, moreover, the additional checks

needed to implement the restrictions will hinder the solver’s performance.

We have implemented our extension of DPLL(T ) in the first-order SMT solver Alt-Ergo. In

our case-study—a sound, complete, and terminating theory of imperative doubly-linked lists—

our implementation, in addition to give us a decision procedure for that theory, turns out to be

more efficient than the generic handling of first-order formulas in Alt-Ergo on our axiomatiza-

tion. This improvement is mostly due to the fact that our procedure favors instantiation over

decision, which is generally a bad strategy for potentially non-terminating axiomatizations.

Related Work. Proving that a solver always terminates on a given first-order axiomatiza-

tion of a theory in order to obtain a decision procedure has been done by Lynch et al. for a

paramodulation-based procedure [12, 13]. The authors introduce Schematic Saturation as a

means to over-approximate the inferences that paramodulation can generate while solving the

satisfiability problem for a certain theory.

In SMT solvers, the idea that a set of first-order formulas can be saturated with a finite set of

ground instances has been explored previously. For example, decision procedures for universally

quantified properties of functional programs can be designed using local model reasoning [11].

In the same way, Ge and de Moura [9] describe fragments of first-order logic that can be decided

modulo theory by saturation. Both of these works define a restricted class of universally quan-

tified formulas that can be finitely instantiated. We do not impose such restrictions a priori but

rather require dedicated proofs of completeness and termination.

As for triggers, they are a commonly used heuristic in SMT solvers that handle quantifiers.

User manuals of such solvers usually explain how they should be used to achieve the best per-

formance. Triggers can be automatically computed by the solvers but it is commonly agreed

that user guidance is useful in this domain [15]. A lot of work has also been done on defining

an efficient mechanism for finding the instances allowed by a trigger. These techniques, called

E-matching, are described for Simplify [6, 19], Z3 [16], and CVC3 [8]. Other heuristics for

generating instances include model-based quantifier instantiation [9] and saturation processes

close to the superposition calculus [17].
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Triggers can also be used in semi-complete first-order theorem provers to guide the proof

search and improve the prover’s efficiency. This is done, for example, in the Princess [21]

prover that combines a complete calculus for first-order logic with a decision procedure for

linear arithmetic.

Overview. We start the technical development in Section 2 by introducing a formal semantics

for first-order logic with a notation for triggers that restrict instantiation. Using this semantics,

we define, independently from a specific solver’s implementation but modulo its background

theory, three properties of a set of first-order axioms with triggers—namely, soundness, com-

pleteness, and termination—that are required for a solver to behave as a decision procedure for

this axiomatization.

In Section 3, we extend the well-known Abstract DPLL Modulo Theory framework [20]

to handle such axiomatizations. We show that our version of DPLL can effectively decide the

satisfiability of ground formulas in an extension of the solver’s background theory, whenever

this extension is defined by a sound, complete, and terminating axiomatization.

In Section 4, we give a fairly exhaustive axiomatization for imperative doubly-linked lists

as an example. We provide completeness and termination proofs of this axiomatization in our

framework, which means that any solver implementing the extension of DPLL presented in the

previous section is complete and terminating for that theory.

Finally, we present in Section 5 an implementation of our framework inside the first-order

SMT solver Alt-Ergo. We use it to show that, for our example theory of doubly-linked lists,

not only we obtain completeness and termination, but the overall performance of the prover for

typical proof obligations has been improved.

2 First-Order Logic with Triggers

In first-order SMT solvers, triggers are used to favor instantiation of universally quantified for-

mulas with “known” terms that have a given form. Intuitively, a term is said to be known when

it appears in a ground fact assumed by the solver. Here is an example of a formula with a trigger

in SMT-LIB [2] notation:

(forall ((x Int)) (! (= (f x) c) :pattern ((g x))))

The bang symbol under the universal quantifier marks an annotated sub-formula and the trig-

ger (g x) appears after the keyword :pattern. The commonly agreed meaning of the above

formula can be stated as follows:

Assume (= (f t) c) for all terms t of type Int such that (g t) is known.

The concept of triggers can be extended to literals. If an axiom can only deduce new facts

when instantiated with terms having a given property P, it may be unnecessary to instantiate

it with a term t without knowing a priori that P(t) is true. In other words, we can restrict

instantiation not just by the shape of known terms but also by what is known about them. For

example, in the theory of extensional arrays, it is enough to apply the extensionality axiom on

arrays that are known to be different [10].
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In this section, we extend first-order logic with constructions for triggers. We define what

it means for a formula with triggers to be true in a context of a given set of known facts and

terms. Finally, we introduce the properties of soundness, completeness, and termination for sets

of first-order formulas with triggers.

2.1 Syntax and semantics

We work in classical untyped first-order logic and assume the standard notation for first-order

formulas and terms. We denote formulas with letters ϕ and ψ , literals with l, terms with s and

t, and substitutions with σ and µ . Other notational conventions will be introduced in the course

of the text.

We introduce two new kinds of formulas. A formula ϕ under a trigger l is written [l]ϕ . It can

be read if the literal l is true and all its sub-terms are known then assume ϕ . A dual construct

for [l]ϕ , which we call a witness, is written 〈l〉ϕ . It can be read assume that the literal l is true

and all its sub-terms are known and assume ϕ . Notice that neither triggers nor witnesses are

required to be tied to a quantifier.

To simplify the presentation, we work with formulas in negative normal form (NNF). Thus

the extended syntax of formulas, literals, and atoms can be summarized as follows:

ϕ ::= l | ϕ1∨ϕ2 | ϕ1∧ϕ2 | ∀x.ϕ | ∃x.ϕ | [l]ϕ | 〈l〉ϕ

l ::= A | ¬A

A ::= ⊤ | t1 ≈ t2 | . . .

The dots in the definition of atoms stand for other forms of predicates specific to background

theories, e.g. comparison for linear arithmetic. Negation of non-atomic formulas is defined in a

usual way. On the new constructs, ¬〈l〉ϕ is [l]¬ϕ and ¬[l]ϕ is 〈l〉¬ϕ .

We write [t]ϕ for [t ≈ t]ϕ , 〈t〉ϕ for 〈t ≈ t〉ϕ , ⊥ for ¬⊤, t1 6≈ t2 for ¬(t1 ≈ t2), ϕ1→ ϕ2 for

¬ϕ1∨ϕ2, and ϕ1↔ ϕ2 for (ϕ1→ ϕ2)∧ (ϕ2→ ϕ1). If there are several triggers or witnesses in

a row, we write [l1, . . . , ln]ϕ for [l1] . . . [ln]ϕ and 〈l1, . . . , ln〉ϕ for 〈l1〉 . . .〈ln〉ϕ .

We say that a formula is closed if it has no free variables, and that a term, literal, or formula

is ground if it has no free variables and no quantifiers. We use the symbol T to denote the set

of all terms that occur in a term, a literal, or a set of terms or literals.

Example 2.1. Here is an axiomatization for the theory of non-extensional arrays as defined by

Greg Nelson [19]. This axiomatization uses two function symbols, one, named get, to model

access in an array and another, named set, to model update of an array. It contains two axioms

that describe how an array is modified by an update. The first one states that an access to the

updated index returns the updated element and the second one, given with two different triggers,

states that an access to any other index returns the element that was previously stored at this

index.

Warray =







∀a, i, e.[set(a, i,e)] (get(set(a, i,e), i)≈ e)
∀a, i, j, e.[get(set(a, i,e), j)] (i 6≈ j→ get(set(a, i,e), j)≈ get(a, j))
∀a, i, j, e.[set(a, i,e), get(a, j)] (i 6≈ j→ get(set(a, i,e), j)≈ get(a, j))
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The trigger of the first axiom expresses that it need only be instantiated with three terms a,

i, and e if the term set(a, i,e) appears in the problem. For the second axiom, there are two

different cases where it should be instantiated: if get(set(a, i,e), j) appears in the problem or

if both set(a, i,e) and get(a, j) appear in the problem. These two cases allow the equality

get(set(a, i,e), j)≈ get(a, j) to be rewritten both ways.

A first-order formula with triggers must be evaluated in the context of a particular set of

assumed facts and known terms. This evaluation is made modulo some background theory T ,

which we assume to be fixed for the rest of this paper. In the simplest case, T can be the theory

of equality and non-interpreted function symbols (EUF). We write �T for the usual implication

in T and we call a closed first-order formula (without triggers and witnesses) T -satisfiable if it

has a model in T . We assume that the signature of T contains at least one constant symbol to

allow constructing the Herbrand universe and can be extended at will with uninterpreted function

symbols to allow skolemization.

Definition 2.1 (World). We call world a T -satisfiable set of ground literals. A world L is inhab-

ited if there is at least one term occurring in it, i.e. T (L) is non-empty. A world L is complete if

for any ground literal l in the signature of T , either l ∈ L or ¬l ∈ L.

The key intuition about worlds is that a ground literal l can only be evaluated in a world L

if every term t in T (l) is known in the world modulo T , that is to say there is t ′ ∈ T (L) such

that L �T t ≈ t ′. If, on the contrary, some term occurring in l is unknown in L, we “refuse” to

evaluate the literal, that is neither l nor ¬l is true in L. To express this constraint easily, we use

a unary predicate symbol known which we assume to be new and not to appear anywhere else

in the problem. To say that a term t is known in L modulo T , we write L∪
∧

s∈T (L) known(s) �T

known(t). We abbreviate the conjunction
∧

t∈S known(t) as known(S), where S is any set of

ground terms.

Definition 2.2 (Truth value). Given a world L and a closed formula ϕ , we define what it means

for ϕ to be true in L, written L ⊲T ϕ , as follows:

L ⊲T l L �T l and L∪ known(T (L)) �T known(T (l))

L ⊲T ϕ1∨ϕ2 L ⊲T ϕ1 or L ⊲T ϕ2

L ⊲T ϕ1∧ϕ2 L ⊲T ϕ1 and L ⊲T ϕ2

L ⊲T ∀x.ϕ for every term t in T (L), L ⊲T ϕ[x← t]

L ⊲T ∃x.ϕ there is a term t in T (L) such that L ⊲T ϕ[x← t]

L ⊲T [l]ϕ if L ⊲T l then L ⊲T ϕ

L ⊲T 〈l〉ϕ L ⊲T l and L ⊲T ϕ

We say that a closed formula ϕ is false in L whenever L ⊲T ¬ϕ . We call ϕ feasible if there exists

a world in which ϕ is true.

As we have noted, a formula that contains a term unknown in a world may be neither true

nor false in that world. On the other hand, is it is impossible for a formula to be both true and
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false in the same world. In other words, there is no closed formula ϕ and world L such that

L ⊲T ϕ and L ⊲T ¬ϕ . This is easily proved by induction on the structure of ϕ .

According to the rules, a formula with a witness 〈l〉ϕ is handled just as the conjunction l∧ϕ .

Yet, a formula with a trigger [l]ϕ is not the same as the disjunction ¬l ∨ϕ . Indeed, consider a

literal l that contains a term unknown in L, so that neither l nor ¬l is true in L. Then we have

L ⊲T [l]⊥ but not L ⊲T ¬l ∨⊥. However, if L is a complete world, then any ground literal is

either true or false in L, and we can replace all triggers with implications.

Definition 2.3 (Model). A world L is said to be a model of a closed formula ϕ whenever L is

complete and L ⊲T ϕ . We call ϕ satisfiable if it has a model.

Let us establish the relation between the traditional first-order logic and our extension. Let

ϕ be a closed formula and ϕ ′ be ϕ where all triggers are replaced with implications and all

witnesses with conjunctions. As noted above, in any complete world L, L ⊲T ϕ if and only if

L ⊲T ϕ ′. It is also easy to see that L ⊲T ϕ ′ if and only if L �T ϕ ′. Indeed, since every ground

term is known in a complete world, the truth value of quantified formulas and ground literals in

our logic coincides with that in the usual first-order logic. Thus, L is a model of ϕ if and only if

it is a Herbrand model of ϕ ′ in T . Consequently, ϕ is satisfiable in the sense of Definition 2.3 if

and only if ϕ ′ is T -satisfiable, which justifies our reuse of the term.

For ground literals or conjunctions thereof the properties of feasibility, satisfiability, and T -

satisfiability are all equivalent. A non-literal formula, however, can be true in some world yet

have no model. For example, the formula [a]a 6≈ a (which is an abbreviation for [a ≈ a]a 6≈ a)

is true in any world where a is unknown, but is false in any complete world.

Feasibility does not imply the existence of a model even in the case where the formula in

question contains no triggers or witnesses. Assume T to be the theory of linear arithmetic. Then

the formula ∃y.∀x.x ≤ y is true in the world {0 ≤ 0}. Indeed, this world “knows” only one

distinct term modulo T and there is no possible instantiation to refute ∀x.x ≤ 0. Of course, the

formula ∃y.∀x.x≤ y has no model, since the only complete world for T is, by definition, the set

of all ground literal facts of linear arithmetic.

It is thus all the more remarkable that the following implication holds in the background

theory EUF (equality with uninterpreted functions):

Theorem 2.1. Let ϕ be a closed first-order formula without triggers and witnesses. Let L be an

inhabited world such that L ⊲EUF ϕ . Then ϕ is satisfiable in first-order logic with equality (and

therefore has a model in the sense of Definition 2.3).

Proof. We define an encoding J K that explicitly restricts instantiation of first-order formulas in

negative normal form to known terms. It uses the predicate symbol known to represent the set of

known terms:

Jϕ1∧ϕ2K , Jϕ1K∧ Jϕ2K Jϕ1∨ϕ2K , Jϕ1K∨ Jϕ2K

J∀x.ϕK , ∀x.known(x)→ JϕK J∃x.ϕK , ∃x.known(x)∧ JϕK

JlK , known(T (l))∧ l

Lemma 2.1. Let ϕ be a closed first-order formula without triggers and witnesses. If ϕ is feasi-

ble, then JϕK satisfiable.
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Proof. There is a satisfiable set of ground literals L such that L ⊲ ϕ . Let us consider the set

of literals L′ = L∪ known(T (L))∪ {¬known(t) | L∪ known(T (L)) 2 known(t)}. Since the

predicate symbol known is fresh and we work in EUF, L′ is satisfiable. We show by structural

induction that, for every formula ϕ such that L ⊲ ϕ , we have L′ � JϕK.

• l: We have L � l and, by construction of L′, L′ � l.

• ϕ1∨ϕ2: Either L ⊲ ϕ1 or L ⊲ ϕ2. By induction hypothesis, L′ � Jϕ1K or L′ � Jϕ2K. Thus,

L′ � Jϕ1K∨ Jϕ2K = Jϕ1∨ϕ2K.

• ϕ1∧ϕ2: Both L ⊲ ϕ1 and L ⊲ ϕ2. By induction hypothesis, L′ � Jϕ1K and L′ � Jϕ2K. Thus,

L′ � Jϕ1K∧ Jϕ2K = Jϕ1∧ϕ2K.

• ∀x.ϕ: Let t be a term. If L∪ known(T (L)) � known(t) then there is t ′ ∈ T (L) such that

L � t ≈ t ′. By definition of ⊲, we have L ⊲ ϕ[x← t ′] and hence L′ � Jϕ[x← t ′]K by

induction hypothesis. Therefore L′ � ∀x.known(x)→ JϕK.

• ∃x.ϕ: There is a term t in T (L) such that L ⊲ ϕ[x← t]. By construction of L′, L′ �

known(t). Furthermore, by induction hypothesis, L′ � Jϕ[x← t]K. As a consequence,

L′ � ∃x.known(x)∧ JϕK.

Thanks to this encoding, we can reformulate our theorem:

Lemma 2.2. Let ϕ be a closed first-order formula without triggers and witnesses. Let L be a

Herbrand model of JϕK such that at least for one ground term ω , L � known(ω). Then ϕ is

satisfiable.

Proof. We can assume that for every non-constant term t, L contains an equality t ≈ c, where c

is a constant (such equalities can always be added to a model if needed). We can also assume

that ω is a constant.

We define a set of literals L1 = {l | known does not occur in l and L � JlK} and another

L2 = L1 ∪{t ≈ ω | L1 ∪ known(T (L1)) 2 known(t) and, for every proper subterm t ′ of t, L1 ∪
known(T (L1)) � known(t ′)}. We show that:

(i) L2 is satisfiable,

(ii) for every ground term t, there is t ′ ∈T (L1) such that L2 � t ≈ t ′, and

(iii) L2 � ϕ .

Proof of (i): Since L is satisfiable, so is L1. In EUF, for every set of literals L and every

pair of terms t1 and t2, if L � t1 6≈ t2 then L∪ known(T (L)) � known(t1)∧ known(t2). Thus,

adding an equality between a known term and an unknown term to a set of literals cannot lead to

inconsistency. Let t1 and t2 be two terms such that L1 2 t1 ≈ t2, L1∪known(T (L1)) 2 known(ti),
and, for every proper subterm t ′ of t1 or t2, L1 ∪ known(T (L1)) � known(t ′). Since t1 cannot

be equal modulo L1 to a subterm of t2, we have L1∪{t1 ≈ ω}∪ known(T (L1))∪ known(t1) 2
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known(t2). Thus, no matter the order in which the equalities are added to L1, they always involve

a previously unknown term. As a consequence, L2 is satisfiable.

Proof of (ii): We show that, for every ground term t, there is t ′ ∈ T (L1) such that L2 � t ≈ t ′

by structural induction over t. We write t as f (t1 . . . tn) where n can be zero for constants. By

induction hypothesis, for every i in 1..n, there is t ′i ∈ T (L1) such that L2 � ti ≈ t ′i . If L1 ∪
known(T (L1)) � known(t), L2 ∪ known(T (L2)) � known(t). Otherwise, consider f (t ′1 . . . t

′
n).

By construction, L2 � f (t ′1 . . . t
′
n)≈ t. If there is t ′ ∈T (L1) such that L1 � f (t ′1 . . . t

′
n)≈ t ′, then the

proof is over. Otherwise, L1∪ known(T (L1)) 2 known( f (t ′1 . . . t
′
n)) and, for every i in 1..n, L1∪

known(T (L1))� known(t ′i). By construction of L2, f (t ′1 . . . t
′
n)≈ω ∈ L2. Since L2 � f (t ′1 . . . t

′
n)≈

t, we have L2 � t ≈ ω which concludes the proof.

Proof of (iii): We show that, for every ground formula ψ without triggers and witnesses such

that L � JψK, L2 � ψ by structural induction over ψ .

• L � JlK. By definition of L1, l ∈ L1 and L2 � l.

• L � Jψ1∧ψ2K = Jψ1K∧ Jψ2K. By induction hypothesis, L2 � ψ1∧ψ2.

• L � Jψ1 ∨ψ2K = Jψ1K∨ Jψ2K. Since L is a model, L � Jψ1K or L � Jψ2K. By induction

hypothesis, L2 � ψ1 or L2 � ψ2. Thus L2 � ψ1∨ψ2.

• L� J∀x.ψK= ∀x.known(x)→ JψK. Let t be a ground term. By (ii), there is t ′ ∈T (L1) such

that L2 � t ≈ t ′. By construction of L1, L � known(T (t ′)). We then have L � JψK[x← t ′]
and, by immediate induction over ψ , L � Jψ[x← t ′]K. By induction hypothesis, we have

L2 � ψ[x← t ′]. Therefore, L2 � ψ[x← t] and L2 � ∀x.ψ .

• L � J∃x.ψK = ∃x.known(x)∧ JψK. Since every ground term is equal to a constant in L,

there is a constant c ∈ T (L) such that L � known(c) and L � JψK[x← c]. By immediate

induction over ψ , L � Jψ[x← c]K. By induction hypothesis, L2 � ψ[x← c] and L2 � ∃x.ψ .

2.2 Soundness, completeness, and termination

Whenever a user wants to extend the solver’s background theory T and provides for that purpose

a set of axioms with triggers, she must prove that this axiomatization is an adequate representa-

tion of the extended theory T ′ modulo T .

Definition 2.4 (Soundness). An axiomatization W is sound with respect to T ′ if, for every T ′-

satisfiable set of ground literals L, W ∪L is satisfiable.

Definition 2.5 (Completeness). An axiomatization W is complete with respect to T ′ if, for every

set of ground literals L such that W ∪L is feasible, L is T ′-satisfiable.
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Quite often, T ′ is the theory defined by the same set of axioms W where all triggers and

witnesses are erased. More precisely, we start with a usual first-order axiomatization of the

theory of interest, and then annotate axioms with triggers and witnesses in order to restrict

instantiation and guarantee the termination of proof search. In this case, to prove soundness, we

must show that the added witnesses do not allow us to deduce statements beyond the initial set of

first-order axioms. As for completeness, we must show that the added triggers and the restricted

semantics of quantifiers do not prevent us from proving every ground statement deducible in the

initial axiomatization.

Example 2.2. The proof that the set of axioms Warray shown in Example 2.1 is complete modulo

EUF closely resembles the proof by Greg Nelson in [19]. We do not give this proof here but

show that simpler or more “intuitive” variants of that axiomatization are incomplete.

• Let W 1
array be Warray where the trigger in the first axiom is replaced with get(set(a, i,e), i).

Consider the set of ground literals L1 = {set(a, i,e1) ≈ set(a, i,e2), e1 6≈ e2}. It is unsat-

isfiable in the theory of arrays since get(set(a, i,e1), i) ≈ e1 and get(set(a, i,e2), i) ≈ e2.

Still, W 1
array∪L1 is true in L1, since we have no term in L1 to match the trigger.

• Let W 2
array be Warray without the second axiom. Consider the set of ground literals L2 =

{get(set(a, i1,e), j) 6≈ get(set(a, i2,e), j), i1 6≈ j, i2 6≈ j}. It is unsatisfiable in the the-

ory of arrays since get(set(a, i1,e), j)≈ get(a, j) and get(set(a, i2,e), j)≈ get(a, j). Still,

W 2
array∪L2 is true in L2∪{get(set(a, i1,e), i1)≈ e, get(set(a, i2,e), i2)≈ e}.

• Let W 3
array be Warray without the third axiom. Consider the set of ground literals L3 =

{set(a1, i,e) ≈ set(a2, i,e), i 6≈ j, get(a1, j) 6≈ get(a2, j)}. It is unsatisfiable in the theory

of arrays since get(set(a1, i,e), j) ≈ get(a1, j) and get(set(a2, i,e), j) ≈ get(a2, j). Yet

W 3
array∪L3 is true in L3∪{get(set(a1, i,e), i)≈ e, get(set(a2, i,e), i)≈ e}.

Once it has been established that a given set of axioms with triggers is sound and complete

for our theory, we must show the solver equipped with this axiomatization terminates on any

ground satisfiability problem. We call such axiomatizations terminating and the rest of this

section is dedicated to the definition of this property.

There can be no single “true” definition of a terminating axiomatization. Different variations

of the solver algorithm may terminate on different classes of problems, which may be more or

less difficult to describe and to reason about. We should rather strive for a “good” definition,

which, on one hand, leaves room for an efficient implementation, and on the other hand, is

simple enough to make it feasible to prove that a given set of axioms is terminating.

Below we present what we consider a reasonably good definition. It serves as the basis for

the DPLL-based procedure described in Section 3. In Section 4, we prove that a non-trivial ax-

iomatization of imperative doubly-linked lists is terminating according to this definition. Finally,

in Section 5.2, we discuss possible variations of the termination property and their implications

for the solver algorithm.

To bring ourselves closer to the implementation, we start by eliminating the existential quan-

tifiers and converting axioms into a clausal form.
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The Skolemization transformation, denoted SKO, traverses a formula in top-down order and

replaces existential quantifiers with witnesses of Skolem terms as follows:

SKO(∃x.ϕ) , 〈c(y)〉SKO(ϕ[x← c(y)]),

where y is the set of free variables of ∃x.ϕ and c is a fresh function symbol. Skolemization

preserves feasibility and satisfiability, as can be proved by straightforward induction over ϕ .

We construct a world for SKO(ϕ) by giving the Skolem terms the same interpretation as for

the corresponding ground terms in the original world for ϕ . In the opposite sense, if SKO(ϕ)
is feasible, then ϕ is true in the same world. The use of the witness is crucial here. Indeed,

SKO(∃x.[x]⊥) is 〈c〉[c]⊥ which preserves infeasibility, whereas the formula [c]⊥ is true in any

world where c is unknown.

Skolemization may not preserve the soundness and completeness of a set of axioms. For

example, if T ′ is the theory ∃x.P(x), then the skolemized axiom 〈c〉P(c) is not a sound represen-

tation of T ′. Indeed, the ground literal ¬P(c) is T ′-satisfiable, but the union 〈c〉P(c)∪¬P(c) has

no model. This does not present a problem for us: the soundness and completeness theorems in

Section 3 do not require skolemized axiomatizations.

We say that a formula is a pseudo-literal if it is a literal l, a trigger [l]C, a witness 〈l〉C, or a

universally quantified formula ∀x.C, where C is a disjunction of pseudo-literals, called pseudo-

clause. In what follows, we treat pseudo-clauses (and other kinds of clauses) as disjunctive sets,

that is, we ignore the order of their elements and suppose that there are no duplicates. It is

easy to check that every set of skolemized formulas can be transformed to an equivalent set of

pseudo-clauses. In particular, [l](ϕ1∧ϕ2) (respectively, 〈l〉(ϕ1∧ϕ2)) is equivalent to [l]ϕ1∧ [l]ϕ2

(respectively, 〈l〉ϕ1∧〈l〉ϕ2).

Before we pass to definition of the termination property, let us give some informal explana-

tion of it. To reason about termination, we need an abstract representation of the evolution of

the solver’s state. It is convenient to see this evolution as a game where we choose universal

formulas to instantiate and our adversary decides how to interpret the result of instantiation, that

is, what new facts we can assume. Whenever we arrive at a set of facts that is inconsistent or

saturated so that no new instantiations can be made, the game terminates and we win. If, on the

other hand, whatever instantiations we do, the adversary can find new universal formulas for us

to instantiate, the game continues indefinitely. An axiomatization is terminating if we have a

winning strategy for it. In other words, no matter what partial model we explore, there is a se-

quence of instantiations—which our solver will eventually make due to fairness—leading either

to a contradiction or to a saturated partial model.

The adversary’s moves are represented by so-called truth assignments. Intuitively, given a

current set of assumed facts, a truth assignment is any set of further facts that the solver may

assume using only propositional reasoning, without instantiation. Once this completion is done,

we may choose an assumed universal formula and a known term to perform instantiation, allow-

ing for the next stage of completion and so on. A tree that inspects all possible truth assignments

for certain instantiation choices (i.e. all possible adversary’s responses to a particular strategy of

ours) is called instantiation tree. An axiomatization is terminating if for any ground satisfiability

problem we can construct a finite instantiation tree.

To avoid applying substitutions, we use closures. A closure is a pair ϕ ·σ made of a pseudo-
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literal ϕ and a substitution σ mapping every free variable of ϕ to a ground term. We write ϕσ

for the application of σ to ϕ , and ∅ for the empty substitution. If two substitutions σ and σ ′

have the same domain D, we write σ ≈̇σ ′ for the formula
∧

x∈D xσ ≈ xσ ′. If C is a pseudo-

clause, we write C ·σ for the disjunctive set of closures {ϕ ·σ ′ | ϕ ∈ C and σ ′ is σ restricted

to the free variables of ϕ}. Such disjunctive sets of closures are called theory clauses, as they

come from the axiomatization of our theory of interest.

Given a set of theory clauses V, we define ⌊V⌋ , {lσ | l ·σ is a unit clause in V}. Infor-

mally speaking, this operation provides us with the facts that are readily available, without us

needing to eliminate triggers or witnesses, to instantiate a variable, or to decide which part of a

disjunction to assume.

Definition 2.6 (Truth assignment). A truth assignment of a set of theory clauses V is any set A

that can be constructed starting from V by exhaustive application of the following rules:

• if (ϕ1∨. . .∨ϕn) ·σ ∈ A then add any subset of the closures ϕ1 ·σ , . . . ,ϕn ·σ to A,

• if [l]C ·σ ∈ A and ⌊A⌋⊲T lσ then add C ·σ to A,

• if 〈l〉C ·σ ∈ A, then add l ·σ and C ·σ to A.

We say that a truth assignment A is T -satisfiable if the set of literals ⌊A⌋ is T -satisfiable. A T -

satisfiable truth assignment A is said to be final if every possible instantiation is redundant in A,

that is for every closure ∀x.C ·σ in A and every term t ∈ T (⌊A⌋), there is a ground substitution

σ ′ such that C ·σ ′ ∈ A and ⌊A⌋ �T (σ ∪ [x 7→ t]) ≈̇σ ′. In what follows, we write T (A) for

T (⌊A⌋) and A �T l for ⌊A⌋ �T l.

Since truth assignment only decomposes formulas and introduction of new terms is not al-

lowed, any finite set of theory clauses has a finite number of possible truth assignments.

Notice that while we require the solver to eliminate triggers and witnesses eagerly, it is

permitted to postpone the decision over disjunctions. Such postponing corresponds to adding no

closures at all in the first case of the definition above. In this way, the solver is not urged to make

choices which it will have to backtrack later, and can instead wait until subsequent instantiations

reduce the choice space.

Definition 2.7 (Instantiation tree). An instantiation tree of a set of pseudo-clauses W is any tree

where the root is labeled by W ·∅, every node is labeled by a set of theory clauses, and every

edge is labeled by a non-final truth assignment such that:

• a node labeled by V has leaving edges labeled by all T -satisfiable non-final truth assign-

ments of V,

• an edge labeled by A leads to a node labeled by A∪C · (σ ∪ [x 7→ t]), where ∀x.C ·σ ∈ A

and t ∈T (A).

Definition 2.8 (Termination). A set of pseudo-clauses W is terminating if, for every finite set of

ground literals L, W ∪L admits a finite instantiation tree.
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The process of truth assignment leaves the solver a choice over what parts of a disjunction to

assume. It may seem that assuming more formulas will always bring us more known terms and

more universal sub-formulas to instantiate, so that it is sufficient to only consider the maximal

truth assignments in an instantiation tree. However, this is not true: an assumed formula might

be an equality that, instead of expanding the set of known terms, reduces it. Thus it may happen

that an infinite branch in an instantiation tree passes through non-maximal truth assignments.

Example 2.3. The proof of termination of the theory of arrays described in Examples 2.1 and 2.2

is straightforward. It suffices to demonstrate that the axioms of Warray cannot create new terms.

Indeed, let L be a set of ground literals and A a truth assignment of Warray ∪ L. Assume that

there are three terms a, i, and e in T (⌊A⌋) such that ⌊A⌋ ⊲T set(a, i,e). Then, for every term

t in T (get(set(a, i,e), i) ≈ e), ⌊A⌋ ∪ {get(set(a, i,e), i) ≈ e} ∪ known(T (⌊A⌋)) �T known(t).
Indeed, since ⌊A⌋⊲T set(a, i,e), it must be the case for set(a, i,e) and all it subterms, and, since

get(set(a, i,e), i)≈ e, it is also the case for get(set(a, i,e), i). Thus, no instance of the first axiom

can lead to the creation of new known terms. The same reasoning can be done for the second

and the third axiom. Therefore, every instantiation tree of Warray∪L is finite.

Example 2.4. Let us look at a more interesting proof of termination. Consider the following

axiomatization. We want to model conversion between two domains E and e such that every

element of e can be converted to an element of E but there may be elements of E that cannot be

converted to e. The axiomatization contains five function symbols. If validE(x) (resp. valide(x))
returns t then x is an element of E (resp. an element of e). The conversion function convE→e(x)
(resp. conve→E(x)) may return either an element of e (resp. an element of E) or some unspecified

“invalid” value, if x is not fit for conversion. If x is an element of E, the function unfitE→e(x)
returns t when x cannot be converted to e.

Wconv =















∀x.[validE(x)≈ t] valide(convE→e(x))≈ t∨unfitE→e(x)≈ t

∀x.[valide(x)≈ t] validE(conve→E(x))≈ t

∀x.[validE(x)≈ t, valide(convE→e(x))≈ t] conve→E(convE→e(x))≈ x

∀x.[valide(x)≈ t, conve→E(x)] convE→e(conve→E(x))≈ x















We show that axiomatization Wconv is terminating. Let L be a finite set of literals. We show how

a finite instantiation tree can be constructed for Wconv ∪L. For any truth assignment A, add an

instance of one of the two first axioms with a term of L if there is one that is not redundant in

A. If there are no more of them, add an instance of one of the two last axioms of Wconv if there

is one that is not redundant in A. The repeated application of these two steps can only construct

finite trees. Indeed, the first one constructs at most two instances per term of L. The second step

never adds new terms to A. Indeed, for the last axiom of Wconv for example, once the triggers are

removed, the only new term is convE→e(conve→E(t)) which is equal to t. As a consequence, it

constructs at most two instances per term present after the last time the first step was applied.

If neither the first nor the second step can be applied on a satisfiable truth assignment A,

every non-redundant instance of the first two axioms in A can only produce new terms of the

form unfitE→e(t) with t already in T (A). For example, assume that there is a non-redundant

instance of the first axiom with a term t such that A �T validE(t) ≈ t. By construction of

A, t can not occur in L, otherwise, the instance has been already produced with the first step.

As a consequence, validE(t) ≈ t was deduced using the second axiom and there is t ′ ∈ T (A)
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such that A �T valide(t
′) ≈ t and A �T t ≈ conve→E(t

′). Therefore, the last axiom of Wconv has

been instantiated with t ′ with the second step and A �T convE→e(conve→E(t
′)) ≈ t ′ and thus

A �T valide(convE→e(t)). Consequently, the result of an instance of the first axiom with t can

only produce new terms of the form unfitE→e(t) with t already in T (A). Since such terms cannot

trigger new instances, we conclude the construction of the instantiation tree by making all non-

redundant instances of the four axioms with terms in A, and there is only a finite number of

them.

3 Extension of DPLL(T ) to the Logic with Triggers

In this section, we introduce an extension of abstract DPLL modulo theories [20] that handles

formulas with triggers and witnesses. We show that if a set of axioms is sound and complete

with respect to a theory T ′ which extends the solver’s background theory T , then our procedure

is sound and complete on any ground satisfiability problem in T ′. Moreover, we show that under

certain fairness restrictions on derivations, our procedure terminates on any ground satisfiability

problem if the axiomatization is terminating.

3.1 Preliminaries

We describe a solver that takes a set of first-order axioms with triggers and witnesses, denoted

Ax, and a set of ground clauses, denoted G. Before starting the DPLL procedure, we skolemize

and clausify the axioms in Ax, producing a set of pseudo-clauses W , as described in Section 2.2.

Then we convert W into a set of theory clauses (disjunctions of closures) by coupling it with the

empty substitution: W ·∅. We run the procedure on W ·∅ and G, with one of the three possible

outcomes:

• the solver returns Unsat, meaning that the union Ax∪G is unsatisfiable—therefore, if Ax

is sound with respect to T ′, set G is T ′-unsatisfiable;

• the solver returns Sat, meaning that there exists a ground formula G′ such that G′ �T G

and the union Ax∪G′ is feasible—therefore, if Ax is complete with respect to T ′, then G′

is T ′-satisfiable, and consequently, G is T ′-satisfiable;

• the solver runs indefinitely—if W is terminating, this cannot happen.

When we don’t have the soundness and completeness properties for Ax, the union Ax∪G may be

both feasible (true in some world) and unsatisfiable (false in every complete world). In this case,

the solver is nondeterministic. For example, let Ax be the single axiom [a]⊥ and G the single

clause a ≈ a∨⊤. Then the solver may drop ⊤ from G, learn constant a, remove the trigger

and let the contradiction out, producing Unsat. Alternatively, the solver may discard the whole

clause G as redundant and return Sat: the union Ax∪G is true in the empty world.

Note the slightly complicated explanation of the Sat case: instead of finding a world directly

for Ax∪G, the solver only ensures the feasibility of Ax joined with some ground antecedent

of G modulo T , which is not at all guaranteed to contain the same terms and to behave the

same as G with respect to the ⊲T relation. This is an important feature of our approach: the
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input problem G is considered modulo theory T and the solver is free to make simplifications as

long as they are permitted by T , without regard to known and unknown terms. In that way, we

stay consistent with the traditional semantics of DPLL. On the other hand, axiomatization Ax is

treated according to the semantics in Section 2.1.

To maintain this distinction, the solver works with two distinct kinds of clauses. The clauses

coming from Ax are theory clauses: disjunctions of closures that accumulate ground substitu-

tions into free variables. The clauses coming from G are the usual disjunctions of ground literals;

we call them user clauses to distinguish them from the clauses of the first kind. The empty clause

⊥ is considered to be a user clause. A super-clause is either a theory clause or a user clause.

Besides the current set of clauses (which can be modified by learning and forgetting), DPLL-

based procedures maintain a set of currently assumed facts. In our procedure, these facts, which

we collectively call super-literals, may be of three different kinds:

• a literal l;

• a closure ϕ ·σ ;

• an anti-closure ¬(ϕ ·σ).

The latter kind appears when we backtrack a decision step over a closure. We extend the T

operation (set of subterms) to closures and anti-closures as follows:

T (l ·σ) , T (lσ)

T (ϕ ·σ) , T (σ) if ϕ is not a literal

T (¬(ϕ ·σ)) , ∅

Non-literal closures ϕ ·σ , where ϕ is a formula under a trigger, a witness, or a universal quan-

tifier, are treated as opaque boxes so that the only terms we can learn from them are the ones

brought by substitution σ . An anti-closure ¬(ϕ ·σ) does not give us any new terms at all (and

thus should not be confused with (¬ϕ) ·σ ). Indeed, if the solver at some moment decides to

assume a given closure and later reverts this decision, it should not retain the terms learned from

that closure.

Given a set of super-literals M, we define LIT(M) to be the set of literals in M, and CLO(M)
to be the set of closures in M. Given a set of super-clauses F , we define LIT(F) to be the set of

unit user clauses in F , and CLO(F) to be the set of unit theory clauses in F .

To model the trigger mechanism, we need a way to protect a super-clause so that its elements

are not available until a certain condition is fulfilled. We define a guarded clause as a pair H→C,

where the guard H is a conjunctive set of closures and C is a super-clause. If M is a set of super-

literals and F a set of guarded clauses, we define the set of available super-clauses to be the set

of super-clauses of F whose guard is directly in M:

AVB(F,M) , LIT(M)∪CLO(M)∪{C | H→C ∈ F and H ⊆M}

Any more complex reasoning on guards is left to DPLL. We also use the set of guards of F ,

defined as GRD(F) , {H | H→C ∈ F}.
We now extend Definitions 2.2 and 2.3 onto super-literals and guarded clauses.
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Definition 3.1 (Truth value). Given a world L, we define what it means for a super-literal, a

super-clause, a guard, or a guarded clause to be true is L, written L ◮T F , as follows:

L ◮T l L �T l

L ◮T ϕ ·σ L∪ known(T (L)) �T known(T (σ)) and L ⊲T ϕσ

L ◮T ¬(ϕ ·σ) if L∪ known(T (L)) �T known(T (σ)) then L 6⊲T ϕσ

L ◮T C C is a user clause and L �T C

L ◮T C C is a theory clause and for some ϕ ·σ ∈C, L ◮T ϕ ·σ

L ◮T H H is a guard and for each ϕ ·σ ∈ H, L ◮T ϕ ·σ

L ◮T H→C if L ◮T H then L ◮T C

We say that a super-literal is false in L when its negation is true in L. We call a super-literal,

a super-clause, a guard, or a guarded clause feasible if there exists a world in which it is true.

We call a super-literal, a super-clause, a guard, or a guarded clause satisfiable if there exists a

complete world—which we then call its model—in which it is true.

On normal literals (not closures) and user clauses, ◮T coincides with �T : a user clause C is

true in a world L if and only if it is true in every model of L. On closures and theory clauses,

◮T refers to ⊲T : a theory clause is true in L if and only if one of its closures is true in L. By

a slight abuse of terminology, we reuse the terms of Definitions 2.2 and 2.3, even though they

have different meanings for ordinary literals; in this section, we follow Definition 3.1.

We define a version of implication that treats closures as opaque “atoms” whose arguments

are given by the accumulated substitution. This is the implication used in the DPLL solver, the

semantics of closures being taken care of by specific additional rules.

Definition 3.2. We define an encoding J K of super-literals and guarded clauses into literals and

clauses. In the rules below, Pϕ is a fresh predicate symbol that we associate to every pseudo-

literal ϕ . The arity of Pϕ is the number of free variables in ϕ .

JlK , l

Jl ·σK , lσ

Jϕ ·σK , Pϕ(vars(ϕ))σ if ϕ is not a literal

J¬(ϕ ·σ)K , ¬Jϕ ·σK

Je1∨·· ·∨ emK , Je1K∨·· ·∨ JemK

J(g1∧·· ·∧gn)→ (e1∨·· ·∨ em)K , ¬Jg1K∨·· ·∨¬JgnK∨ Je1K∨·· ·∨ JemK

Let S be a conjunctive set of super-literals and/or guarded clauses. Let E be a super-literal, a

super-clause, or a guarded clause. We define S �⋆
T E to be JSK �T JEK.

It is easy to see that �⋆
T is a conservative extension of the usual first-order implication �T

onto super-literals and guarded clauses.

Lemma 3.1. Let S be a conjunctive set of super-literals and/or guarded clauses and let E be a

super-literal, a super-clause, or a guarded clause such that S �⋆
T E. Then every model of S is a

model of E.
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Proof. Let L be a model of S. We define L′ = L∪{JeK | e is a super-literal such that L ◮T e}.
The set L′ is satisfiable and complete. Indeed, for every closure ϕ ·σ and every substitution σ ′

such that L �T σ ≈̇σ ′, L ◮T ϕ ·σ if and only if L 6◮T ¬(ϕ ·σ
′) and L ◮T ¬ϕ ·σ if and only if

L 6◮T ϕ ·σ ′.
We show that L′ �T JSK. Since L ◮T S, for every super-literal e in S, JeK∈ L′. Let H→C be a

guarded clause of S. If L 6◮T H then there is e∈H such that L ◮T ¬e. By construction, J¬eK∈ L′

and L′ �T JH→CK. Otherwise, there is e ∈C such that L ◮T e, JeK ∈ L′ and L′ �T JH→CK.

Since S �⋆
T E, L′ is a model of JEK. Thus, if E is a super-literal then JEK ∈ L′ and, by

construction of L′, L ◮T E. If E is a guarded clause (g1∧ ·· · ∧gn)→ (e1∨ ·· · ∨ em) then there

is e ∈ {¬g1 . . .¬gn,e1 . . .em} such that L ◮T e and therefore either L 6◮T g1 ∧ ·· · ∧ gn or L ◮T

e1∨·· ·∨ em. The case where E is a super-clause is handled in the same way.

We also need a weaker version of implication that preserves feasibility as well as satisfia-

bility. We want this implication to be as close as possible to the usual implication �T on user

clauses while remaining computable by a working solver on theory clauses:

Definition 3.3. Let F be a set of super-clauses and C a super-clause. We write F ⊢⋆T C if and

only if one of the following conditions holds:

• C is a unit user clause and LIT(F)∪⌊CLO(F)⌋ �T C;

• C is a non-unit user clause and {C′ |C′ is a user clause of F}∪⌊CLO(F)⌋ �T C;

• C is a theory clause D · σ and there is l ∈ D such that F ∪ known(T (CLO(F))) ⊢⋆T
known(T (lσ)) and F ⊢⋆T lσ ;

• C is a theory clause D ·σ and there is a theory clause C′ ·σ ′ ∈ F such that C′ ⊆ D, F ⊢⋆T
σ |Dom(σ ′) ≈̇σ ′, and F ∪ known(T (CLO(F))) ⊢⋆T known(T (σ |Dom(σ ′))).

Remark that ⊢⋆T does not coincide with implication modulo T on unit user clauses. Indeed,

⊢⋆T is used in particular to decide that a clause is unnecessary for the proof and therefore can be

forgotten or not generated. In the definition of truth assignment, we state that the solver should

assume unit clauses eagerly while it is allowed to postpone deciding on the literals of non-unit

clauses. Thus, even if a set of non-unit clauses implies a unit clause C, the solver cannot be

allowed to forget C without compromising termination. For example, the set of axioms F =
{c≈ c, f (c)≈ f (c), f (c)≈ c,∀x[ f (c)≈ c]. f (x)≈ x,∀x. f (x)≈ f (x)} is terminating (every term

introduced by the last axiom can be equated to an already known term by the previous one). Still,

consider the set G= { f (c)≈ c, f (c)≈ c∨c 6≈ c}. We have F \{ f (c)≈ c}·∅∪G⊢⋆T f (c)≈ c ·∅,

and thus f (c) ≈ c can be removed from F . We have f (c) ≈ c∨ c 6≈ c �T f (c) ≈ c. Assume we

can remove f (c) ≈ c from G. Then, the solver can produce an infinite number of terms from

F \ { f (c) ≈ c}. It may never choose to deduce f (c) ≈ c from f (c) ≈ c∨ c 6≈ c which would

allow all these terms to collapse.

In the last two cases of Definition 3.3, known terms are only provided by the closures (that

is, unit theory clauses) of F and not by the user clauses. Indeed, as we said earlier, we treat

user clauses according to the usual first-order semantics, where a literal may be replaced by an

equivalent one regardless of its subterms.

17



Lemma 3.2. Let C be a super-clause and F be a set of super-clauses such that F ⊢⋆T C. For

every world L such that L ◮ F, L ◮C.

Proof. We have four cases to consider. Assume that C is a unit user clause and LIT(F)∪
⌊CLO(F)⌋ �T C. Since L ◮ F , L �T LIT(F) and L �T ⌊CLO(F)⌋. As a consequence, L �T C.

The case where C is a non-unit user clause is handled in the same way.

Otherwise, C is a theory clause D ·σ . Assume that there is l ∈ D such that F ⊢⋆T lσ and

F ∪ known(T (CLO(F))) ⊢⋆T known(T (lσ)). Since L ◮ F , L �T LIT(F)∪⌊CLO(F)⌋ and L∪
known(T (L)) �T known(T (CLO(F))). As a consequence, L ◮ l ·σ |vars(l) and L ◮C.

Otherwise, there is a theory clause C′ ·σ ′ ∈ F such that C′ ⊆ D, F ⊢⋆T σ |Dom(σ ′) ≈̇σ ′, and

F ∪ known(T (CLO(F))) ⊢⋆T known(T (σ |Dom(σ ′))). Since L ◮ F , L �T σ |Dom(σ ′) ≈̇σ ′ and L∪
known(T (L)) �T known(T (σ |Dom(σ ′))), as per the previous case. Furthermore, there is an

element ϕ ·σ ′|vars(ϕ) of C′ ·σ ′ such that L ◮ ϕ ·σ ′|vars(ϕ) and thus L ⊲ ϕσ ′. Since every term

substituted by σ into a free variable of ϕ is known from L, and since σ and σ ′ substitute the

same terms modulo L and T into every free variable of ϕ , we have L ⊲ ϕσ . As a consequence,

L ◮ ϕ ·σ |vars(ϕ) and L ◮C.

Lemma 3.3. Let C be a super-clause and F be a set of super-clauses such that F ⊢⋆T C. We have

F �⋆
T C.

Proof. Let L be a model of JFK. We have four cases to consider. Assume that C is a unit user

clause and LIT(F)∪⌊CLO(F)⌋ �T C. Since L �T JFK, L �T LIT(F) and L �T ⌊CLO(F)⌋. As a

consequence, L �T C. The case where C is a non-unit user clause is handled similarly.

Otherwise, C is a theory clause D ·σ . Assume that there is l ∈ D such that F ⊢⋆T lσ and

F ∪ known(T (CLO(F))) ⊢⋆T known(T (lσ)). Since L �T JFK, L �T LIT(F)∪⌊CLO(F)⌋. As a

consequence, L �T lσ and L �T JCK.

Otherwise, there is a theory clause C′ ·σ ′ ∈ F such that C′ ⊆ D, F ⊢⋆T σ |Dom(σ ′) ≈̇σ ′, and

F ∪known(T (CLO(F))) ⊢⋆T known(T (σ |Dom(σ ′))). Since L �T JFK, L �T σ |Dom(σ ′) ≈̇σ ′ as per

the previous case. Since L �T JC′ ·σ ′K, we have L �T JC′ ·σK. Thus, L �T JD ·σK.

Lemma 3.4. Let C be a super-clause and F1 and F2 be two sets of super-clauses. If F1 ⊢
⋆
T F2

and F2 ⊢
⋆
T C, then F1 ⊢

⋆
T C.

Proof. Assume that C is a unit user clause l and LIT(F2)∪⌊CLO(F2)⌋ �T C. Since F1 ⊢
⋆
T F2,

we have F1 ⊢
⋆
T LIT(F2) and F1 ⊢

⋆
T ⌊CLO(F2)⌋. By definition of ⊢⋆T on user clauses, LIT(F1)∪

⌊CLO(F1)⌋ �T LIT(F2)∪⌊CLO(F2)⌋. Thus, F1 ⊢
⋆
T C. The case where C is a non-unit user clause

is handled in the same way, except that instead of LIT(F1) and LIT(F2) we consider the sets of

all user clauses in F1 and F2, respectively.

Otherwise, C is a theory clause D ·σ . Assume that there is l ∈ D such that F2 ⊢
⋆
T lσ and

F2 ∪ known(T (CLO(F2))) ⊢
⋆
T known(T (lσ)). Like in the previous case, F1 ⊢

⋆
T lσ . Since

F1 ⊢
⋆
T F2, F1 ∪ known(T (CLO(F1))) ⊢

⋆
T known(T (ϕ ·σ)) for every closure ϕ ·σ ∈ CLO(F2).

As a consequence, LIT(F1) ∪ ⌊CLO(F1)⌋ ∪ known(T (CLO(F1))) �T LIT(F2) ∪ ⌊CLO(F2)⌋ ∪
known(T (CLO(F2))) and F1 ⊢

⋆
T C.

Otherwise, there is a theory clause C′ · σ ′ ∈ F2 such that C′ ⊆ D, F2 ⊢
⋆
T σ |Dom(σ ′) ≈̇ σ ′,

and F2 ∪ known(T (CLO(F2))) ⊢
⋆
T known(T (σ |Dom(σ ′))). Like in the previous case, F1 ⊢

⋆
T

σ |Dom(σ ′) ≈̇σ ′ and F1∪ known(T (CLO(F1))) ⊢
⋆
T known(T (σ |Dom(σ ′))).
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Assume that there is a literal l ∈ C′ such that F1 ⊢
⋆
T lσ ′ and F1 ∪ known(T (CLO(F1))) ⊢

⋆
T

known(T (lσ ′)). Since F1 ⊢
⋆
T σ |Dom(σ ′) ≈̇ σ ′, F1 ⊢

⋆
T lσ . With F1 ∪ known(T (CLO(F1))) ⊢

⋆
T

known(T (σ |Dom(σ ′))), we deduce F1 ∪ known(T (CLO(F1))) ⊢
⋆
T known(T (lσ)). Therefore,

F1 ⊢
⋆
T C.

Otherwise, there is a theory clause C′′ ·σ ′′ ∈ F1 such that C′′ ⊆ C′, F1 ⊢
⋆
T σ ′|Dom(σ ′′) ≈̇σ ′′,

and F1∪known(T (CLO(F1))) ⊢
⋆
T known(T (σ ′|Dom(σ ′′))). Since F1 ⊢

⋆
T σ |Dom(σ ′) ≈̇σ ′, we have

F1 ⊢
⋆
T σ |Dom(σ ′′) ≈̇σ ′′. Hence, F1 ⊢

⋆
T C.

Given a set of super-literals M, we write M ⊢⋆T C as an abbreviation for LIT(M)∪CLO(M)⊢⋆T
C. In other words, we treat literals and closures in M as unit user clauses and theory clauses,

respectively, and we ignore the anti-closures. According to this definition, M ⊢⋆T ⊥ whenever

the set LIT(M)∪⌊CLO(M)⌋ is T -unsatisfiable.

In our algorithm, we use terms coming from the user clauses to instantiate universally quan-

tified formulas and to unfold triggers. To make these terms usable for the ⊢⋆T relation, we need

to convert the literals in the set of assumed facts to closures, as follows. Given a set of super-

literals M, we define ⌈M⌉ to be M ∪ {l ·∅ | l ∈ LIT(M)}. Thus, for every term t ∈ T (M),
t ∈T (CLO(⌈M⌉)).

Lemma 3.5. Let M be a set of super-literals and e a super-literal. If ⌈M⌉ ⊢⋆T e then M �⋆
T e.

Proof. If L is a model of JMK then L is also a model of J⌈M⌉K.

3.2 Description of DPLL(T )

The method introduced below adapts the principles of abstract DPLL modulo theories (follow-

ing [20]) to super-literals and guarded clauses. The rules are given in Figures 1 and 2. They

attempt to construct a model of a set of guarded clauses F . The partial model is represented as a

set of super-literals M that are assumed to be true. We call state of the procedure the pair M ‖ F

and we say that a super-literal e is defined in M if either e or ¬e is in M.

The elements of an available clause can be given an arbitrary truth value using the rule

Decide. Super-literals of M whose truth value was chosen arbitrarily are labeled with a letter

d and called decision super-literals. If every element of a clause is false but one, the remaining

element has to be true for the clause to be verified. It can be propagated using UnitPropagate.

If every element of an available clause is false then the corresponding guarded clause is called

a conflict clause. If there is a conflict clause in F and there is no arbitrary choice in M, then a

special state, named fail, can be reached through Fail. It means that no model could be found

for F . The rule Restart can be used to restart the search from scratch. If there is a super-literal

e that appears in available clauses or guards of F whose negation leads to a contradiction in M,

it can be propagated using T-Propagate.

The set of guarded clauses F can be modified during the search using T-Learn and T-Forget.

Unlike the classical DPLL, we impose different conditions on the clauses that can be learned and

the clauses that can be forgotten. We allow to learn any clause H → C if F,H �⋆
T C, and thus

every model of JFK is also a model of JH →CK. However, we are more restrictive with respect

to what clauses can be forgotten. Namely, we require that for a guarded clause H → C to be

forgotten, AVB(F,H) ⊢⋆T C. We show below that this distinction is necessary for termination.
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UnitPropagate:

M ‖ F,H→C∨ e =⇒ Me ‖ F,H→C∨ e if

{

H ∧¬C ⊆M

e is undefined in M

Decide:

M ‖ F =⇒ Med ‖ F if

{

e or ¬e occurs in AVB(F,M)
e is undefined in M

Fail:

M ‖ F,H→C =⇒ fail if

{

H ∧¬C ⊆M

M contains no decision literals

Restart:

M ‖ F =⇒ ∅ ‖ F

T-Propagate:

M ‖ F =⇒ Me ‖ F if







e /∈M and either:

M �⋆
T e and e or ¬e occurs in AVB(F,M), or

⌈M⌉ ⊢⋆T e and e occurs in GRD(F)
T-Learn:

M ‖ F =⇒ M ‖ F,H→C if







every atom of H occurs in GRD(F)∪⌈M⌉
every atom of C occurs in AVB(F,H)∪LIT(M)
F,H �⋆

T C

T-Forget:

M ‖ F,H→C =⇒ M ‖ F if

{

each closure of C defined in M occurs in AVB(F,H)
AVB(F,H) ⊢⋆T C

T-Backjump:

MedN ‖ F =⇒ Me′ ‖ F if























there is H→C ∈ F such that H ∧¬C ⊆MedN

there is D⊆M such that:

F,D �⋆
T e′,

e′ is undefined in M, and

e′ or ¬e′ occurs in AVB(F,M)∪LIT(MedN)

Figure 1: Transition rules of Abstract DPLL Modulo Theories on guarded clauses

Instantiate:

M ‖ F =⇒ M ‖ F,(∀x.C ·σ)∧ x≈ x · [x 7→ t]→C · (σ ∪ [x 7→ t]) if







∀x.C ·σ is in M

t ∈T (M)
AVB(F,M) 6⊢⋆T C · (σ ∪ [x 7→ t])

Witness-Unfold:

M ‖ F =⇒ M ‖ F, 〈l〉C ·σ → l ·σ ,〈l〉C ·σ →C ·σ if
{

〈l〉C ·σ is in M

Trigger-Unfold:

M ‖ F =⇒ M ‖ F, [l]C ·σ ∧ l ·σ →C ·σ if

{

[l]C ·σ is in M

⌈M⌉ ⊢⋆T l ·σ

Figure 2: Additional transition rules for Abstract DPLL Modulo Theories on guarded clauses
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Finally, if every element of an available clause of F is false and there is at least a decision

literal in M, the rule T-Backjump can be applied. It allows to remove one or several decisions

of M as long as there is a new element that can be added to M. An element can be added to M if

it is implied by M and F .

Specific rules are needed to retrieve information from closures. They are described in Fig. 2.

The formulas added by these rules to the set of guarded clauses F are tautologies in the semantics

of formulas with triggers. The rule Instantiate creates a new instance of a universally quan-

tified formula of M with a sub-term of M. The rule Witness-Unfold handles a witness 〈l〉C as

a conjunction l ∧C. The rule Trigger-Unfold uses the guard mechanism to protect elements

of trigger so that they cannot be decided upon or propagated until the guard is unfolded. An

application of one of these three rules is said to be redundant in F , if the added guarded clauses

are redundant in F , and a guarded clause H→C is said to be redundant in F if AVB(F,H) ⊢⋆T C.

We finally define when a solver implementing DPLL is allowed to deduce the satisfiability

or unsatisfiability of a set of ground clauses G modulo an extension of the background theory T

described as an axiomatization W :

Property 3.1. The solver can return Unsat on G if ∅ ‖W ·∅∪G =⇒⋆ ‖ fail.

Property 3.2. The solver can return Sat on G if ∅ ‖W ·∅∪G =⇒⋆ M ‖ F where:

(i) M ⊢⋆T AVB(F,M),

(ii) M 6⊢⋆T ⊥, and

(iii) if H → C can be added by Instantiate, Witness-Unfold, or Trigger-Unfold then

AVB(F,M) ⊢⋆T C.

Remark 3.1. When there are no closures involved, the calculus above coincides with classical

abstract DPLL modulo theories as long as unit clauses are only forgotten if they are implied

by unit clauses. As a consequence, the changes in abstract DPLL can be implemented as an

extension outside an existing DPLL implementation.

Remark 3.2. The relation �⋆
T on guarded clauses cannot be computed inside the solver, but it

is not needed to implement DPLL. Indeed, like in classical abstract DPLL(T ), conflict analysis

allows to deduce enough applications of T-Backjump and T-Learn to ensure progress. This is

explained below in Lemma 3.11 and Corollary 3.2.

Remark 3.3. In classical abstract DPLL modulo theories, conflict driven lemmas, namely for-

mulas allowing to deduce the added element e′ in M after an application MedN ‖ F =⇒Me′ ‖
F of T-Backjump, can be added to F using T-Learn. In our framework, this is not the

case. This restriction can be removed by allowing to deduce guarded clauses H → C such

that F,H �⋆
T C where C may contain super-literals of all three kinds: literals, closures, and anti-

closures. With this modification, if there is D ⊆ M such that F,D �⋆
T e′ and e′ or ¬e′ occurs

in AVB(F,M)∪LIT(MedN), CLO(M)→ {¬e | e is an anti-closure or a literal of D}∨ e′ can be

added to F using T-Learn.
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3.3 Termination Related Constraints

In this section, we motivate the constraints on T-Propagate, T-Backjump, T-Learn, T-Forget,

and Instantiate using examples. These constraints are closely related to the definition of ter-

mination in Section 2.2. They aim at forbidding:

• The addition into M of a super-literal that should be protected by a trigger. It requires

keeping track of guards that should be protecting a new clause when learning it. This idea

motivates the constraints on T-Propagate, T-Backjump, and T-Learn.

• The loss of a unit clause that is implied by non-unit clauses. In the definition of the

termination property, we only require that an element of a unit clause is added to truth

assignments. Indeed, we do not want to ask for an application of Decide if there is another

rule, for example, Instantiate, that can be applied. This motivates the constraints on

T-Forget.

• The generation of an instance that is redundant as far as truth assignments are concerned.

Indeed, the construction of instantiation trees stops as soon as a final truth assignment is

reached. This motivates the constraints on Instantiate.

In the rule T-Propagate, we only allow e∈ GRD(F) to be added to M if ⌈M⌉ ⊢⋆T e. Indeed,

a trigger [l]C ·σ is supposed to protect elements of C until l is true in M and all its sub-terms are

known in M. This is exactly what we get by requesting ⌈M⌉ ⊢⋆T lσ , namely LIT(M)∪{l′σ ′ | l′ ·
σ ′ ∈ M} �T lσ and LIT(M)∪ {l′σ ′ | l′ ·σ ′ ∈ M} ∪ known(T (M)) �T known(T (lσ)). Only

requesting that M �⋆
T lσ would not have been enough. For example, consider the axiomatization

W1 = {∀x.[ f (x)]p( f (x)) ≈ ⊤}. We can easily check that W1 is terminating. Indeed, every sub-

term of the form f (t ′) of every truth assignment of [ f (x)]p( f (x)) ≈ ⊤· [x 7→ t]∪L ·∅ is either

a sub-term of L or a sub-term of t. Still, M �⋆
T ( f (x)≈ f (x)) · [x 7→ t] for every term t ∈ T (M).

As a consequence, for any term t in M, p( f (x))≈⊤· [x 7→ t] and then p( f (x))≈⊤· [x 7→ f (t)],
p( f (x))≈⊤· [x 7→ f ( f (t))]... can be added to M.

In the rule T-Backjump, we require that e′ or ¬e′ occurs in AVB(F,M) ∪ LIT(MedN).
Assume that e′ or ¬e′ is allowed to appear in MedN and consider the axiomatization W2 =
{∀y.[p(y) ≈ ⊤]∀x. f (x,y) ≈ x, ∀y.[p(y) ≈ ⊤]∀x. f (x,y) ≈ f (x,y), c ≈ c}. This axiomatization

is terminating because as long as we have some p(t) ≈ ⊤ to generate new terms f (t ′, t) us-

ing the second axiom, we can also use the first axiom to collapse them to t ′. Assume we

launch the solver on a set of user clauses G2 = {p(a) ≈ ⊤, p(a) 6≈ ⊤ ∨ p(b) ≈ ⊤, p(c) ≈
⊤∨ a ≈ a, p(a) 6≈ ⊤∨ a ≈ c}. We can add p(a) ≈ ⊤ to M using UnitPropagate. We in-

stantiate the first formula of W2 with a ∈ T (M) and apply T-Propagate, UnitPropagate,

and Trigger-Unfold so that (∀x. f (x,y) ≈ f (x,y)) · [y 7→ a] is in M. Then we can make a bad

choice and decide p(b) 6≈ ⊤. We now add p(c)≈⊤ to M using Decide, instantiate the first for-

mula of W2 with c ∈T (M) and apply T-Propagate, UnitPropagate, and Trigger-Unfold

so that (∀x. f (x,y) ≈ f (x,y)) · [y 7→ c] is in M. Since we have a conflict clause in M, we

can use T-Backjump but, instead of adding p(b) ≈ ⊤, we make another bad choice and add

(∀x. f (x,y)≈ f (x,y)) · [y 7→ c]. Indeed, since (∀x. f (x,y)≈ f (x,y)) · [y 7→ a]∈M and G2 �T a≈ c,

G2 ∪M �⋆
T (∀x. f (x,y) ≈ f (x,y)) · [y 7→ c]. Because of this closure, we can produce an infinite
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number of terms f (t,c), f ( f (t,c),c) . . . Since we do not have M �T p(c) ≈ ⊤, they are not all

equal to t in M. Indeed, we are not bound to add a≈ c to M until there is nothing else to do even

if it is implied by G2.

In the rule T-Learn, for a new guarded clause H → C to be learned, every atom of C

must occur in AVB(F,H)∪LIT(M). Even asking that AVB(F,H) ⊢⋆T C is not enough to prevent

elements that are protected by a trigger in F from occurring in C without their trigger. When

they are in C, they can be added to M, through Decide for example, and prevent the solver

from terminating. The following example closely resembles the previous one. Assume that

closures of C are allowed to occur in M and consider the axiomatization W2 and the set of

user clauses G2 from the previous paragraph. We can add p(a) ≈ ⊤ and p(c) ≈ ⊤ to M using

UnitPropagate and Decide. We instantiate the first formula of W2 with a and c ∈ T (M) and

apply T-Propagate, UnitPropagate, and Trigger-Unfold so that ([p(y)≈⊤]∀x. f (x,y)≈
f (x,y)) · [y 7→ a]∧(p(y)≈⊤) · [y 7→ a]→ (∀x. f (x,y)≈ f (x,y)) · [y 7→ a] is in F and (∀x. f (x,y)≈
f (x,y)) · [y 7→ c] is in M. If the condition of T-Learn were relaxed, the guarded clause ([p(y)≈
⊤]∀x. f (x,y) ≈ f (x,y)) · [y 7→ a]∧ (p(y) ≈ ⊤) · [y 7→ a]→ (∀x. f (x,y) ≈ f (x,y)) · [y 7→ c] could

be added to F using T-Learn. Indeed, G3 ∪ {c ≈ c ·∅, (∀x. f (x,y) ≈ f (x,y)) · [y 7→ a]} ⊆
AVB(F,{([p(y)≈⊤]∀x. f (x,y)≈ f (x,y)) · [y 7→ a], (p(y)≈⊤) · [y 7→ a]}) and, since G3 �T a≈ c,

G3 ∪{c ≈ c ·∅, (∀x. f (x,y) ≈ f (x,y)) · [y 7→ a]} ⊢⋆T (∀x. f (x,y) ≈ f (x,y)) · [y 7→ c]. Now, we

remove everything from M using Restart. Using T-Propagate and UnitPropagate, we

can add p(a) ≈ ⊤, ([p(y) ≈ ⊤]∀x. f (x,y) ≈ f (x,y)) · [y 7→ a], (p(y) ≈ ⊤) · [y 7→ a] and finally

(∀x. f (x,y)≈ f (x,y)) · [y 7→ c] to M. Because of this closure, we can produce an infinite number

of terms f (t,c), f ( f (t,c),c) . . . Since we do not have p(c)≈⊤, they are not all equal to t in M.

Indeed, we are not bound to add a≈ c to M until there is nothing else to do even if it is implied

by G3.

In the rule T-Forget, we forbid the deletion of a guarded clause H → C ∈ F if, after the

deletion, there is a closure defined in M that no longer appears in AVB(F,H). This is needed

so that we have a progress property in spite of the additional constraints on T-Backjump and

T-Learn. For example, assume F contains a redundant guarded clause H→C such that H ⊆M

and there is a tautology ϕ ·σ ∈C such that ϕ ·σ does not appear in F \{H→C}. The anti-closure

¬(ϕ ·σ) can be added to M using Decide. If H→C is then erased from F with T-Forget, the

rule T-Backjump can no longer be applied to revert ϕ ·σ .

We also require that AVB(F,H) ⊢⋆T C. Assume that we can forget H→C as soon as we have

F,H �⋆
T C. Consider the axiomatization W4 = {[p(a)≈⊤]∀x. f (x,a)≈ x, [p(c)≈⊤]∀x. f (x,c)≈

f (x,c), a≈ c, a≈ a,c≈ c}. Like W2, W4 is terminating. We launch the solver on the set of user

clauses G4 = {p(a)≈⊤, p(c)≈⊤, p(a) 6≈ ⊤∨a≈ c}. We can easily check that W4 ·∅\{a≈
c ·∅} ∪G4 �⋆

T a ≈ c ·∅, and therefore we forget it. We can add p(c) ≈ ⊤ and the second

axiom of W4 to M using UnitPropagate. With Trigger-Unfold and then T-Propagate and

UnitPropagate we can add ∀x. f (x,c)≈ f (x,c) to M. Because of this closure, we can produce

an infinite number of terms f (t,c), f ( f (t,c),c) . . . Since we do not have a ≈ c, they are not all

equal to t in M.

In the rule Instantiate, an instance of a formula ∀x.C ·σ with a term t cannot be added to

F if AVB(F,M) ⊢⋆T C · (σ ∪ [x 7→ t]). This constraint is needed for termination so that redundant

instances are forbidden.
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3.4 Soundness and Completeness

We show that our variant of abstract DPLL modulo theories is compliant with the semantics

defined in Section 2.1.

Lemma 3.6. For every derivation M1 ‖ F1 =⇒
⋆ M2 ‖ F2, every model L of F1 is a model of F2.

Proof. We proceed by case analysis over the rule applied for the step M1 ‖ F1 =⇒M2 ‖ F2.

• In UnitPropagate, Decide, Restart, T-Propagate, and T-Backjump, F1 and F2 are

equal.

• For T-Learn, we have F1,H �⋆
T C. Since L is complete, by Lemma 3.1, if L ◮ F1 and

L ◮ H, then L ◮C.

• For T-Forget, F2 ⊆ F1. Thus, if we have L ◮ F1 then L ◮ F2.

• For the rule Witness-Unfold, assume that L ◮ 〈l〉C ·σ . By definition of ◮, L ◮ l ·σ and

L ◮C ·σ .

• For the rule Trigger-Unfold, assume that L ◮ [l]C ·σ ∧ l ·σ . By definition of ◮, L ◮

C ·σ .

• For the rule Instantiate, assume that L ◮ ∀x.C ·σ ∧ x ≈ x · [x 7→ t]. By definition of

◮, L∪ known(T (L)) �T known(T (t)) and so there is t ′ ∈ T (L) such that L �T t ≈ t ′.

Therefore, L ◮C · (σ ∪ [x 7→ t]).

Lemma 3.7. For every derivation M1 ‖ F1 =⇒
⋆ M2 ‖ F2, we have F2 �

⋆
T F1.

Proof. Let L be a complete and satisfiable set of literals. We proceed by induction over the

number of applications of T-Forget M ‖ F,H→C =⇒M ‖ F . If there are none then F1 ⊆ F2.

Otherwise, consider the last application M ‖ F,H→C =⇒M ‖ F . We have that F ⊆ F2 and, by

induction hypothesis, F ∪H→C �⋆
T F1. Since F ⊢⋆T C, F �⋆

T C by Lemma 3.3.

Theorem 3.1 (Soundness). If the solver returns Unsat on a set of user clauses G with a sound

axiomatization Ax of an extension T ′ of T then G has no model in the theory T ′.

Proof. We define W to be the result of the skolemization and the clausification of Ax. Every

model of Ax can be extended to a model of W by adding the interpretations of the Skolem

functions. As a consequence, since Ax is sound, for every T ′-satisfiable set of literals G′ that

only contains literals of G, there is a model of W ∪G′.

We first need an intermediate lemma. It states that every element of a set of super-literals

M constructed in a derivation is either a decision or implied by the input problem and previous

decisions:

Lemma 3.8. If ∅ ‖ G∪W ·∅ =⇒⋆ M0ed1M1 . . .e
d

nMn ‖ F, L is a model of G∪W ·∅ and L ◮

e1, . . . ,ei then L ◮ Mi for every i in 0 . . .n.
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Proof. Let L be a model of G∪W ·∅, such that L ◮ M. We show that, for every rule that adds a

new super-literal e to M from M ‖ F (except Decide), L ◮ e.

First note that, by Lemma 3.6, L ◮ F . For the rule UnitPropagate, L ◮ H → C∨ e and

L ◮ H ∪¬C. By definition of ◮, L ◮ e. For the rule T-Propagate, M �⋆
T e and, since L is

complete, L ◮ e by Lemma 3.1. The only remaining rule is T-Backjump. There is a subset D

of M such that F ∪D �⋆
T e. Since L ◮ M and L ◮ F , since L is complete, L ◮ e by Lemma 3.1.

Thanks to the previous lemma, we can prove the soundness of the DPLL framework modulo

T . If the solver returns Unsat on G with W then there is a derivation ∅ ‖ G∪W ·∅ =⇒⋆ M ‖
F,H→C =⇒ fail such that M contains no decision literals and H ∧¬C ⊆M. By contradiction,

assume G has a model in T ′. There is a T ′-satisfiable set of literals G′ such that G′ �T G. Since

Ax is sound, W ∧G′ has a model L. By Lemma 3.8, L ◮ M. What is more, by Lemma 3.6,

L ◮ F,H→C. With H ∧¬C ⊆M, we get a contradiction.

Theorem 3.2 (Completeness). If the solver returns Sat on a set of clauses G with a complete

axiomatization Ax of T ′ then G is T ′-satisfiable.

Proof. We define W to be the result of the skolemization and the clausification of Ax. If W is

feasible then so is Ax. As a consequence, since Ax is complete, every set of literals L such that

W ∪L is feasible is T ′-satisfiable.

We show that, if the solver returns Sat on a set of clauses G with the theory W then there is

a T -satisfiable set of literals L such that L �T G and W ∪L is feasible. Since Ax is complete, L is

T ′-satisfiable. Since L �T G, so is G.

Let F be a set of guarded clauses and M a set of literals and closures such that ∅ ‖ G∪W ·
∅=⇒⋆ M ‖ F and:

(i) M ⊢⋆T AVB(F,M),

(ii) M 6⊢⋆T ⊥, and

(iii) if H → C can be added by Instantiate, Witness-Unfold, or Trigger-Unfold then

AVB(F,M) ⊢⋆T C.

Consider L = LIT(M)∪{lσ | l ·σ ∈ M}∪ {t ≈ t | t ∈ T (M)}. By (ii), L is T -satisfiable.

We need to show that L �T G and L ⊲ W , which is the same as L ◮ AVB(W ·∅∪G,∅). It is

sufficient to prove that L ◮ AVB(F,∅). Indeed, the only rule that can remove an element of

W ·∅∪G is T-Forget and, if L ◮ AVB(F,∅) and AVB(F,∅) ⊢⋆T C, by Lemma 3.2, L ◮C.

Now, we only need to show that L ◮ CLO(M). Indeed, M ⊢⋆T AVB(F,M) is the same

as LIT(M)∪ CLO(M) ⊢⋆T AVB(F,M) and therefore L ◮ CLO(M) implies L ◮ AVB(F,M) by

Lemma 3.2. For every closure ϕ ·σ ∈M, we prove that L ⊲ ϕσ by induction over the size of

the formula ϕ .

• l ·σ ∈M. By definition of L, L ⊲ lσ .

• ∀x.C ·σ ∈M. Let t be a ground term of L. By definition of L, t is a ground term of M. By

(iii), AVB(F,M)⊢⋆T C ·(σ∪ [x 7→ t]). Since M ⊢⋆T AVB(F,M), by Lemma 3.4, M ⊢⋆T C ·(σ∪
[x 7→ t]). Therefore, there is ϕ ∈C such that either ϕ ·σ ′ ∈M and L �T (σ ∪ [x 7→ t]) ≈̇σ ′
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or ϕ is a literal, M ⊢⋆T ϕσ , and M∪known(T (CLO(M))) ⊢⋆T known(T (ϕσ)). In the first

case, since ϕ is strictly smaller than ∀x.C, we have L ⊲ ϕσ ′ by induction hypothesis and,

hence, L ⊲ ϕσ . In the second case, L ⊲ ϕσ by definition of L. By definition of ⊲ on

universally quantified formulas, L ⊲ (∀x.C)σ .

• 〈l〉C ·σ ∈M. By (iii), we have AVB(F,M) ⊢⋆T l ·σ and AVB(F,M) ⊢⋆T C ·σ . Since M ⊢⋆T
AVB(F,M), by Lemma 3.4, M ⊢⋆T l ·σ and M ⊢⋆T C ·σ . Hence, there is ϕ ∈ C such that

either there is a substitution σ ′ such that ϕ ·σ ′ ∈ M and M ⊢⋆T σ ≈̇σ ′ or ϕ is a literal,

M ⊢⋆T ϕσ and, M ∪ known(T (CLO(M))) ⊢⋆T known(T (ϕσ)). In both cases, L ⊲ ϕσ

with the same reasoning as for universal quantifiers. In the same way, L ⊲ lσ . Therefore,

L ⊲ (〈l〉C)σ .

• [l]C · σ ∈ M. Assume L ⊲ lσ . By definition of ⊲, we have both M ⊢⋆T lσ and M ∪
known(T (M)) ⊢⋆T known(T (lσ)). Thus ⌈M⌉ ⊢⋆T l ·σ . By (iii), AVB(F,M) ⊢⋆T C ·σ . As a

consequence, L ⊲Cσ like in the two previous cases and, by definition of ⊲, L ⊲ ([l]C)σ .

3.5 Progress and Termination

We have shown that our version of abstract DPLL modulo theories only allows derivations that

are compliant with the semantics of Section 2. In this section, we show that, if some restrictions

are applied, there cannot be infinite DPLL derivations. We also show that, within the same

restrictions, every derivation that can not continue is terminal, i.e., the solver can return Sat or

Unsat.

For termination, we require instantiation to be fair, that is to say that every possible instance

should be generated at some point in the search. To define fairness, we use a notion of instan-

tiation level. An instantiation level n for a term t indicates that t is the result of n rounds of

instantiation. More formally, if M is a set of super-literals, the instantiation level levelM(t) (resp.

levelM(e)) of a term t (resp. a super-literal e) is either a non-negative integer or a special element

∞. It is defined as the limit of the sequence leveliM computed in the following manner:

on a term t leveliM(t) , min{leveliM(e) | e ∈M and t ∈T (e)}

on a literal l leveliM(l) , 0

on a closure or anti-closure level0M(e) , 0 if σ is empty and ∞ otherwise

ϕ ·σ or ¬(ϕ ·σ) leveli+1
M (e) , 1+max{leveliM(xσ) | x ∈ Dom(σ)}

Operations min, max and + are so that, if S is a non-empty set, min(S∪∞) = min(S), min(∅) =
∞, max(S∪∞) = ∞, max(∅) = −1, and 1+∞ = ∞. This sequence always converges since the

level of every term or super-literal either stays infinite forever or becomes finite at some i and

does not change after that.

Using this definition, we define the current instantiation level of a set of super-literals M

as level(M) = max{levelM(e) | e ∈M}. We enforce fairness by requiring that new instances of

level strictly bigger than the current instantiation level are only possible when:

• a truth assignment, as defined in Section 2.2, has been reached, and
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• every previously available instance of a smaller instantiation level has already been han-

dled.

These two requirements are obtained by a restriction on derivations:

Definition 3.4 (Fairness). We say that a derivation is fair if, for every step ‖ F =⇒ Me ‖ F

where levelM(e)> level(M), e has form x≈ x · [x 7→ t] and Instantiate can be applied to some

universal formula ∀x.ϕ ·σ and the term t in M ‖ F . For every such step, if M′ is the minimal

prefix of M such that t ⊆ T (M′), then there is a prefix N of M containing M′ and ∀x.ϕ ·σ such

that:

(a) N 6⊢⋆T ⊥,

(b) for every unit super-clause e ∈ AVB(F,∅), we have ⌈N⌉ ⊢⋆T e,

(c) for every closure 〈l〉C ·σ ∈ N, ⌈N⌉ ⊢⋆T l ·σ and, if C is a unit clause, ⌈N⌉ ⊢⋆T C ·σ ,

(d) for every closure [l]ϕ · σ ∈ N such that ϕ is a unit clause, if ⌈N⌉ ⊢⋆T l · σ then we have

⌈N⌉ ⊢⋆T ϕ ·σ ,

(e) for every closure ∀x.ϕ ·σ ∈ M′ such that ϕ is a unit clause and for every term t ∈ T (M′)
such that levelM(ϕ · (σ ∪ [x 7→ t]))≤ level(M), we have ⌈N⌉ ⊢⋆T ϕ · (σ ∪ [x 7→ t]), and

(f) for every guarded clause H→C that can be added to F by applying Instantiate, Witness-Unfold

or Trigger-Unfold on a closure of M′, if levelM(H)≤ level(M), AVB(F,M) ⊢⋆T C.

Remark 3.4. Note that, in a fair derivation, the current instantiation level of every partial model

M is finite.

Remark 3.5. Dealing with instantiation levels is not mandatory. To ensure fairness, it suffices

to handle unit clauses, triggers and witnesses before generating new instances and to select

instances in the order in which they become possible.

Using this definition of fairness, we state some restrictions on derivation that enforce termi-

nation:

Theorem 3.3 (Termination). There is no infinite derivation Der from a state ∅ ‖G∪W ·∅ where

W is terminating such that:

• Der has no infinite sub-derivation made only of T-Learn, T-Forget, and redundant

Witness-Unfold, Trigger-Unfold and Instantiate steps,

• the derivation is fair,

• for every sub-derivation of the form: Si−1 =⇒ Si =⇒ . . .=⇒ S j =⇒ . . .=⇒ Sk where the

only three Restart steps are the ones producing Si, S j and Sk, either:

– there are more DPLL steps that are neither T-Learn or T-Forget steps nor re-

dundant applications of Witness-Unfold, Trigger-Unfold or Instantiate in

S j =⇒ . . .=⇒ Sk than in Si =⇒ . . .=⇒ S j, or
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– a guarded clause including only literals and closures with empty substitutions is

learned in S j =⇒ . . .=⇒ Sk and is not forgotten in Der.

Remark 3.6. If the axiomatization W is empty, those are exactly the restrictions needed for

termination of classical abstract DPLL modulo theories.

Proof. Assume that there is an infinite derivation Der that satisfies these restrictions. Since

there is only a finite number of literals and closures with empty substitutions in G∪W ·∅, after

a finite number of steps, Restart steps in Der are separated by an increasing number of steps

that are neither T-Learn or T-Forget steps nor redundant applications of Witness-Unfold,

Trigger-Unfold or Instantiate. Since there is no infinite sub-derivation of Der made only

of T-Learn, T-Forget, and redundant Witness-Unfold, Trigger-Unfold and Instantiate

steps, for every integer n, there is a sub-derivation of Der containing no Restart steps and

more than n steps that are neither T-Learn or T-Forget steps nor redundant applications of

Witness-Unfold, Trigger-Unfold or Instantiate. With the two following properties, we

reach a contradiction:

(i) Let MW be a finite set of super-literals. There is an integer maxstep such that, for ev-

ery sub-derivation Der′ of Der containing no Restart, if, for every state M ‖ F in Der′,

M ⊆ MW , then Der′ contains no more than maxstep steps that are neither T-Learn, or

T-Forget steps nor redundant applications of Witness-Unfold, Trigger-Unfold, or

Instantiate.

(ii) If W is terminating, then there is a finite set of super-literals MW such that, at every state

M ‖ F in Der, M ⊆MW .

Proof of (i): Let Der′ be a sub-derivation of Der containing no Restart such that, for every

state M ‖ F in Der′, M ⊆MW . We first need an order on partial models M. Every partial model

M can be written M1ed1M2 . . .MnednMn+1 where ed1 . . .e
d

n are the only decision super-literals in M.

The order is defined as the lexicographic order on sequences ♯M1 . . . ♯Mn+1 where ♯Mk is the

length of Mk.

An inspection of UnitPropagate, Decide, T-Propagate, and T-Backjump shows that

they produce a strictly greater partial model. The other rules do not change the partial model.

Since MW is finite and a partial model cannot contain the same super-literal twice, the size of

strictly increasing sequences of partial models is bounded.

Thus, we only have to consider sub-derivations that consist of T-Learn, T-Forget, Instantiate,

Witness-Unfold, and Trigger-Unfold steps. Since MW is finite, there can only be a finite

number of distinct applications of Instantiate, Witness-Unfold and Trigger-Unfold in

the derivation. Therefore, if ♯CLO(MW ) is the number of closures in MW , there can only be

♯CLO(MW ) non-redundant applications of Instantiate, Witness-Unfold, and Trigger-Unfold

in our sub-derivation.

As a conclusion, there is an integer maxstep such that every derivation Der′ contains no more

than maxstep steps that are neither T-Learn or T-Forget steps nor redundant applications of

Witness-Unfold, Trigger-Unfold or Instantiate.
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Proof of (ii): The idea of the proof is the following. During the search, the algorithm will go

through the instantiation trees of L∪W , where L is a set of literals from G. Fairness will prevent

it from generating too many instances before generating the one instance that will allow the tree

to grow. Note that, since the derivation is fair, every element of M has a finite instantiation level.

Indeed, if Instantiate can be applied to some universal formula and some term t in M ‖ F

then t ∈T (M).
Let us first construct the sequence of sets of super-literals Zi that will be used to bound M

during the search. We call sub-formula of W , an element of the smallest set containing {ϕ |ϕ ∈C

and C ∈W} and such that, if ∀x.C, 〈l〉C or [l]C is a sub-formula of W , l and every element of C

are sub-formulas of W .

We define the sequence Zi such that Z0 = {l, l ·∅, ¬(l ·∅) | l or ¬l occurs in G} ∪ {ϕ ·
∅, ¬(ϕ ·∅) | ϕ is a closed sub-formula of W} and Zn+1 = Zn ∪{ϕ ·σ ,¬(ϕ ·σ) | ϕ is a sub-

formula of W or the equality x≈ x and T (σ)⊆T (Zn)}.

Remark 3.7. By construction of the sequence Zi, if an element e ∈M has an instantiation level

n in M then e ∈ Zn.

Since W is terminating, for every subset L of the finite set of literals {l | l ·∅ ∈ Z0}, we can

choose a finite instantiation tree of W ∪L. We define what is the biggest truth assignment AM

occurring in these trees that is implied by the set M at some point in the search. If A is a set of

super-clauses, we define UNIT(A) to be the set of unit super-clauses of A.

For every set of super-literals M, we compute a sequence AM
i of sets of theory clauses as

follows. AM
0 is the biggest subset of {l ·∅ | l ·∅ ∈ Z0} such that ⌈M⌉ ⊢⋆T AM

0 . AM
1 is the biggest

truth assignment of AM
0 ∪W ·∅ such that ⌈M⌉ ⊢⋆T UNIT(AM

1 ). Such a truth assignment may not

exist, for instance, if W contains a unit theory clause 〈l〉C and ⌈M⌉ 6⊢⋆T l ·∅. Let TM be the finite

instantiation tree of {l | l ·∅ ∈ AM
0 }∪W . If ∀x.C ·σ , t is the new instance added to AM

i in TM,

then AM
i+1 is the biggest truth assignment of AM

i ∪C · (σ ∪ [x 7→ t]) such that ⌈M⌉ ⊢⋆T UNIT(AM
i+1),

if any. We call dM the maximal i for which AM
i exists and we define AM as AM

dM .

For i ∈ 0..dM, let nM
i be the number of closures that are in AM

i but not in AM
i−1, if any. We

define nmax and dmax to be integers such that, for every subset L of {l | l ·∅ ∈ Z0}, the height of

the chosen finite instantiation tree T of L∪W is less than dmax and there is less than nmax closures

in every truth assignment of T. We have that dM < dmax and nM
i < nmax for every M and every

i ∈ 0..dM. We call nM the integer ∑i∈0..dM(nM
i + 1)× (nmax + 1)(dmax−i). Note that nM models a

lexicographic order on the finite sequence nM
0 . . .nM

dM .

Remark 3.8. By definition, nM depends only on AM and, if AMe is different from AM, then

nMe > nM.

Let m be (nmax +2)dmax+1. We show that, for every state M ‖ F in the derivation, the current

instantiation level in M is at most nM +1. Thus, if ∅ ‖W ·∅∪G =⇒M ‖ F , elements of M have

an instantiation level of at most m+1 in M. By Remark 3.7, M ⊆ Zm+1.

Let us now do the proof. We show by induction over the derivation of M ‖ F that:

1. the current instantiation level in M is at most nM +1, and
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2. there is a prefix M′ of M such that elements of M′ have an instantiation level smaller or

equal to nM in M and ⌈M′⌉ ⊢⋆T UNIT(AM).

If we remove elements from M, we necessarily return to some previous state of M in the deriva-

tion, where the two properties hold by induction hypothesis. In an application of T-Backjump

MedN ‖ F =⇒Me′ ‖ F , e′ ∈ AVB(F,M)∪LIT(MedN). Thus, the instantiation level of e′ in M

is smaller than the current instantiation level in M. As a consequence, since the current instan-

tiation level in M is at most nM + 1 by induction hypothesis, the current level in Me′ is also at

most nM +1.

For a step M ‖ F =⇒ Me ‖ F , we show that e has an instantiation level of at most nM + 1

in M. The both properties then follow from remark 3.8. By contradiction, assume that e has an

instantiation level of nM + 2 in M. Since the derivation if fair, e has form x ≈ x · [x 7→ t], some

universal formula ∀x.C ·ϕ can be instantiated with t, and, if M′ is the minimal prefix of M such

that t ⊆T (M′), then there is a prefix N of M containing M′ and ∀x.C ·ϕ such that:

(a) N 6⊢⋆T ⊥,

(b) for every unit super-clause e ∈ AVB(F,∅), we have ⌈N⌉ ⊢⋆T e,

(c) for every closure 〈l〉C ·σ ∈ N, ⌈N⌉ ⊢⋆T l ·σ and, if C is a unit clause, ⌈N⌉ ⊢⋆T C ·σ ,

(d) for every closure [l]ϕ · σ ∈ N such that ϕ is a unit clause, if ⌈N⌉ ⊢⋆T l · σ then we have

⌈N⌉ ⊢⋆T ϕ ·σ ,

(e) for every closure ∀x.ϕ ·σ ∈M′ such that ϕ is a unit clause, and for every term t ∈ T (M′)
such that levelM(ϕ · (σ ∪ [x 7→ t]))≤ level(M), we have ⌈N⌉ ⊢⋆T ϕ · (σ ∪ [x 7→ t]), and

(f) for every guarded clause H→C that can be added to F by applying Instantiate, Witness-Unfold

or Trigger-Unfold on a closure of M′, if levelM(H)≤ level(M), AVB(F,M) ⊢⋆T C.

Since t ∈ T (M′), there must be an element of M′ that has an instantiation level in M of nM +1

at least and, by induction hypothesis, of nM +1 exactly. As a consequence, by property 2, there

is a prefix M′′ of M′ such that ⌈M′′⌉ ⊢⋆T UNIT(AM). We need two intermediate lemmas:

Lemma 3.9. N contains a truth assignment of AM
0 ∪W ·∅.

Proof. By definition of AM
0 , for every literal l ·∅ ∈ UNIT(AM

0 ), we have that ⌈N⌉ ⊢⋆T l ·∅. Since

UNIT(AVB(F,∅)) ⊢⋆T UNIT(W ·∅), by (b), if l ∈W then ⌈N⌉ ⊢⋆T l ·∅. Moreover, for every

closure ϕ ·∅ ∈ UNIT(W ·∅) such that ϕ is not a literal, ϕ ·∅ ∈ UNIT(AVB(F,∅)). By (b),

⌈N⌉ ⊢⋆T UNIT(AVB(F,∅)). Therefore, for every closure ϕ ·∅ ∈ UNIT(W ·∅) such that ϕ is not

a literal, ⌈N⌉ ⊢⋆T ϕ ·∅ and ϕ ·∅ ∈ N. What is more, we have:

• For every 〈l〉C such that N ⊢⋆T 〈l〉C ·∅, ⌈N⌉ ⊢⋆T l ·∅ and, if C is a unit clause ϕ then

⌈N⌉ ⊢⋆T ϕ ·∅ by (c).

• For every [l]ϕ ∈ UNIT(W ) such that N ⊢⋆T [l]C ·∅ and N ⊢⋆T l ·∅, we have ⌈N⌉ ⊢⋆T ϕ ·∅
by (d).
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As a consequence, dM is at least one and AM is a truth assignment.

Lemma 3.10. For every closure ϕ ·σ such that ⌈N⌉ ⊢⋆T ϕ ·σ , there is a truth assignment A of

AM ∪ϕ ·σ such that ⌈N⌉ ⊢⋆T UNIT(A).

Proof. We do the proof by structural induction over ϕ .

If ϕ is a universally quantified formula, a literal, or a trigger [l]C ·σ such that {l′σ ′ | l′ ·σ ′ ∈
AM} 6⊲T lσ , then AM ∪ϕ ·σ is a truth assignment of AM ∪ϕ ·σ .

If ϕ is a witness 〈l〉C then ⌈N⌉ ⊢⋆T l ·σ by (c). If C is not a unit clause, AM∪ϕ ·σ ∪ l ·σ ∪C ·σ
is a truth assignment of AM ∪ϕ ·σ . Otherwise, ⌈N⌉ ⊢⋆T C ·σ by (c). By induction hypothesis,

there is a truth assignment A of AM ∪C · σ such that ⌈N⌉ ⊢⋆T UNIT(A). As a consequence,

A∪ϕ ·σ ∪ l ·σ is a truth assignment of AM ∪ϕ ·σ and ⌈N⌉ ⊢⋆T UNIT(A)∪ϕ ·σ ∪ l ·σ .

If ϕ is a trigger [l]C and {lτ | l · τ ∈ AM}⊲T lσ then ⌈N⌉ ⊢⋆T l ·σ since ⌈M′⌉ ⊢⋆T UNIT(AM)
and M′ ⊆ N. If C is not a unit clause, AM ∪ϕ ·σ ∪C ·σ is a truth assignment of AM ∪ϕ ·σ .

Otherwise, we deduce that ⌈N⌉ ⊢⋆T C ·σ by (d), and, by induction hypothesis, there is a truth

assignment A of AM ∪C ·σ such that ⌈N⌉ ⊢⋆T UNIT(A). As a consequence, A∪ϕ ·σ is a truth

assignment of AM ∪ϕ ·σ and ⌈N⌉ ⊢⋆T UNIT(A)∪ϕ ·σ .

Corollary 3.1. For every guarded clause H → C ∨ ϕ · σ that can be obtained by applying

either Witness-Unfold or Trigger-Unfold such that ϕ · σ ∈ N, if UNIT(AM) ⊢⋆T H then

UNIT(AM) ⊢⋆T ϕ ·σ . If UNIT(AM) is final, then the same is true for any H→C∨ϕ ·σ that can

be obtained by applying Instantiate.

Proof. We show that, in each case, there is σ ′ such that AM is a truth assignment of ϕ · σ ′,
UNIT(AM) ⊢⋆T σ ≈̇σ ′ and UNIT(AM)∪T (UNIT(AM)) ⊢⋆T known(T (σ)).

If H → C∨ϕ ·σ can be obtained by Witness-Unfold, H is 〈l〉(C∨ϕ) · µ such that σ is

µ|vars(ϕ). Thus, since UNIT(AM) ⊢⋆T H, there is 〈l〉(C∨ϕ) · µ ′ ∈ AM, such that UNIT(AM) ⊢⋆T
µ ≈̇ µ ′ and UNIT(AM)∪T (UNIT(AM)) ⊢⋆T known(T (µ)). Since ⌈N⌉ ⊢⋆T UNIT(AM), we have

both ⌈N⌉ ⊢⋆T µ ≈̇ µ ′ and ⌈N⌉∪T (N) ⊢⋆T known(T (µ)). Hence, ⌈N⌉ ⊢⋆T ϕ · µ ′|vars(ϕ) and, by

Lemma 3.10, there is a truth assignment A of AM ∪ϕ ·µ ′|vars(ϕ) such that ⌈N⌉ ⊢⋆T UNIT(A). By

construction, A is a truth assignment of AM and, by maximality of AM, A = AM.

If H→C∨ϕ ·σ can be obtained by Trigger-Unfold, there is [l](C∨ϕ) ·µ and l ·µ|vars(l)

in H such that σ = µ|vars(ϕ). Like for Witness-Unfold, there is [l](C ∨ ϕ) · µ ′ ∈ AM such

that UNIT(AM) ⊢⋆T µ ≈̇ µ ′. Since UNIT(AM) ⊢⋆T l · µ|vars(l), UNIT(AM) ⊢⋆T l · µ ′|vars(l) and there

is a truth assignment A of AM ∪ϕ · µ ′|vars(ϕ) such that ⌈N⌉ ⊢⋆T UNIT(A). Since UNIT(AM) ⊢⋆T
l ·µ ′|vars(l), A is a truth assignment of AM and, by maximality of AM, A = AM.

If UNIT(AM) is final and H→C∨ϕ ·σ can be obtained by Instantiate, there is ∀x.(C∨
ϕ) · µ and x ≈ x · [x 7→ t] ∈ H such that σ = (µ ∪ [x 7→ t])|vars(ϕ). Since UNIT(AM) ⊢⋆T H, there

is ∀x.C∨ϕ ·µ ′ ∈ AM and t ′ ∈T (UNIT(AM)) such that UNIT(AM) ⊢⋆T (µ ∪ [x 7→ t]) ≈̇ (µ ′∪ [x 7→
t ′]) and UNIT(AM)∪T (UNIT(AM)) ⊢⋆T known(T (µ ∪ [x 7→ t])). Since AM is final, there is

C′′ ∨ϕ ·σ ′′ ∈ AM such that UNIT(AM) ⊢⋆T (µ ′ ∪ [x 7→ t ′]) ≈̇σ ′′. Since ⌈N⌉ ⊢⋆T UNIT(AM), we

have both ⌈N⌉ ⊢⋆T (µ ∪ [x 7→ t])|vars(ϕ) ≈̇σ ′′ and ⌈N⌉∪T (N) ⊢⋆T known(T (µ ∪ [x 7→ t])). Thus,

⌈N⌉ ⊢⋆T ϕ · σ ′′ and, by Lemma 3.10, there is a truth assignment A of AM ∪ ϕ · σ ′′ such that
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⌈N⌉ ⊢⋆T UNIT(A). By construction, A is a truth assignment of AM and, by maximality of AM,

A = AM.

Since N 6⊢⋆T ⊥ by (a), AM cannot be T -unsatisfiable. If AM is not final, let ∀x.C · σ , t be

the new instance added to AM in the instantiation tree TM. We have that ∀x.C ·σ ∈ AM and

t ∈ T (UNIT(AM)). If C is not a unit clause, AM ∪C · (σ ∪ [x 7→ t]) is a truth assignment of

AM ∪C · (σ ∪ [x 7→ t]) such that ⌈N⌉ ⊢⋆T UNIT(AM ∪C · (σ ∪ [x 7→ t])) which contradicts the

definition of AM. Therefore, C is a unit clause. Since ⌈M′′⌉ ⊢⋆T UNIT(AM), there is a substitution

σ ′ and a term t ′ ∈ T (M′′) such that ∀x.C ·σ ′ ∈ M′′, M′′ ⊢⋆T σ ≈̇σ ′, known(T (M′′))∪M′′ ⊢⋆T
known(T (σ))∪ known(T (t)) and M′′ ⊢⋆T t ≈ t ′. Since ∀x.C ·σ ′ and t ′ are in M′′, this instance

has an instantiation level smaller or equal to nM + 1. By (e), ⌈N⌉ ⊢⋆T C · (σ ′ ∪ [x 7→ t ′]). Since

M′′ ⊆ N, ⌈N⌉ ⊢⋆T C · (σ ∪ [x 7→ t]). By Lemma 3.10, there is a truth assignment A of AM ∪C ·
(σ ∪ [x 7→ t]) such that ⌈N⌉ ⊢⋆T UNIT(A) which contradicts the definition of AM.

Therefore AM is final and no new instance is possible in AM. Consider the universal formula

∀x.C ·σ ∈ N that we can instantiate with the term t ∈ T (M′) by fairness. Let us show that

we have AVB(F,M) ⊢⋆T C · (σ ∪ [x 7→ t]), which contradicts the non-redundancy condition of

Instantiate.

We first show that, for every ϕ ·σ ∈N, UNIT(AM) ⊢⋆T ϕ ·σ . By contradiction, let ϕ ·σ be the

first closure of N such that UNIT(AM) 6⊢⋆T ϕ ·σ . Let M◦(ϕ ·σ) ‖ F◦ be the state after ϕ ·σ was

added. If ϕ ·σ ∈ GRD(F◦) was added to M◦ using T-Propagate, then UNIT(AM) ⊢⋆T ϕ ·σ .

Indeed, UNIT(AM) implies every closure ϕ · σ in M◦ and also l ·∅ for every user literal in

l ∈ M. By construction, if ϕ ·σ was added by any other rule, ϕ ·σ occurs in AVB(F◦,M◦).
As a consequence, either ϕ ·σ ∈ C′, for some C′ ∈W ·∅, or there is a guarded clause H → C

that can be obtained by either Witness-Unfold, Trigger-Unfold, or Instantiate such that

ϕ ·σ ∈C and H ⊆M◦. If ϕ ·σ ∈C′, for some C′ ∈W ·∅, then ϕ ·σ ∈ AM, by construction of AM
1 .

Otherwise, there is a guarded clause H → C that can be obtained by either Witness-Unfold,

Trigger-Unfold, or Instantiate such that ϕ ·σ ∈C and UNIT(AM) ⊢⋆T H. By Corollary 3.1,

UNIT(AM) ⊢⋆T ϕ ·σ .

As a consequence, for every closure ϕ ·σ ∈ N, UNIT(AM) ⊢⋆T ϕ ·σ . Since LIT(M) ⊆ AM

by construction, there is a term t ′ ∈ T (AM) and a substitution σ ′ such that ∀x.C · σ ′ ∈ AM,

UNIT(AM) ⊢⋆T σ ≈̇σ ′, known(T (UNIT(AM)))∪UNIT(AM) ⊢⋆T known(T (σ))∪ known(T (t)),
and UNIT(AM) ⊢⋆T t ≈ t ′. Since AM is final, there is C · σ ′′ ∈ AM such that UNIT(AM) ⊢⋆T
σ ′′ ≈̇ (σ ′ ∪ [x 7→ t ′]). We only need to show that AVB(F,M) ⊢⋆T C ·σ ′′. Indeed, since ⌈M′′⌉ ⊢⋆T
UNIT(AM), we can deduce AVB(F,M) ⊢⋆T C · (σ ∪ [x 7→ t]). By construction of AM, we are in

one of three cases:

• There is 〈l〉C · σ ′′ ∈ AM. Since ⌈M′′⌉ ⊢⋆T UNIT(AM), there is 〈l〉C · τ ∈ M′′ such that

M′′ ⊢⋆T σ ′′ ≈̇ τ and M′′ ∪ known(T (M′′)) ⊢⋆T known(T (σ ′′)). As a consequence, by (f),

AVB(F,M) ⊢⋆T C ·σ ′′.

• There is [l]C ·σ ′′ ∈ AM such that UNIT(AM) ⊢⋆T lσ ′′. Since ⌈M′′⌉ ⊢⋆T UNIT(AM), there

is [l]C · τ ∈ M′′ such that M′′ ⊢⋆T σ ′′ ≈̇ τ , M′′ ∪ known(T (M′′)) ⊢⋆T known(T (σ ′′)), and

M′′ ⊢⋆T lσ ′′. Therefore, by (f), AVB(F,M) ⊢⋆T C ·σ ′′.
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• There is ∀y.C · (σ ′′ \ [y 7→ yσ ′′]) ∈ AM and yσ ′′ ∈T (UNIT(AM)). Since we have ⌈M′′⌉ ⊢⋆T
UNIT(AM), there is ∀y.C · τ ∈M′′ and s ∈ T (M′′) such that M′′ ⊢⋆T (σ ′′ \ [y 7→ yσ ′′]) ≈̇ τ ,

M′′ ⊢⋆T yσ ′′ ≈ s, and M′′∪known(T (M′′)) ⊢⋆T known(T (σ ′′)). As a consequence, by (f),

AVB(F,M) ⊢⋆T C ·σ ′′.

Consequently, property 1 holds.

We finally need a progress property. Every derivation that does not allow the solver to

terminate can be extended without breaking the restrictions requested for termination. What

is more, we only require the rule T-Propagate to be applied when ⌈M⌉ ⊢⋆T e. We need an

intermediate lemma:

Lemma 3.11 (Conflict Analysis). If there is a conflict clause in the state M ‖F and M contains at

least a decision literal, then there is a possible application M ‖ F =⇒M′e ‖ F of T-Backjump.

Proof. Let H → C be a conflict clause in the state M ‖ F . By definition, H ∧¬C ⊆ M and

H →C ∈ F . We define a sequence ei of literals and a sequence Mi of subsequences of M such

that M can be written M1ed1 . . .MnednMn+1 and Mi contain no decision super-literals. We write Mi

for the prefix . . .Mi of M.

Let us show that, for every D⊆M such that F ∪D �⋆
T ⊥, there is an application M ‖ F =⇒

M j¬ei ‖ F of T-Backjump. We do this proof by induction on position of the last and the

before-last element of D in M. In other words, we can use the induction hypothesis on a set of

super-literals D′ if either there is an element of D that appears strictly after every element of D′

in M or if the last element e of D in M is in D′ and the before-last element of D in M appears

strictly after every element of D′ \ e in M.

If every element of D is in M1 then there is an application of T-Backjump M ‖ F =⇒
M1¬e1 ‖ F .

If the element of D that occurs last in M is a decision literal ei, let j≤ i be the smallest index

such that D \ ei ⊆ M j and ei occurs in AVB(F,M j) (by definition of Decide such a j always

exists). If j = 1 or e j−1 ∈ D or ei does not occur in AVB(F,M j−1)
1 then F ∪ (D\ ei) �

⋆
T ¬ei and

ei is undefined in M j. As a consequence, there is a T-Backjump step M ‖ F =⇒M j¬ei ‖ F .

Otherwise, let e be the element of D that occurs last in M if it is not a decision super-literal

and the element of D that occurs before last in M otherwise. Let M′ be such that M = M′e . . . .
By hypothesis, e is not a decision literal. Thus, the super-literal e must have been added to the

partial model by one of the rules UnitPropagate, T-Propagate, or T-Backjump. We show

that, in each case, there is a set of super-literals D′ ⊆M′ such that F∪D′ �⋆
T e . We then consider

the set D′′ = (D\ e)∪D′ on which we can apply the induction hypothesis.

• If e was added to M′ using UnitPropagate, then there is a clause H →C∨ e such that

H ∪¬C ⊆M′ and F �⋆
T H→C∨ e by Lemma 3.7. Thus, F ∪H ∪¬C �⋆

T e.

• If e was added to M′ using T-Propagate, then M′ �⋆
T e by Lemma 3.5. Let S be a minimal

subset of M′ such that S �⋆
T e. We have F ∪S �⋆

T e.

1These three hypothesis are not needed to apply T-Backjump. Still, to implement conflict analysis, we want to

make j as small as possible.
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• If e was added to M′ using T-Backjump, there is a set of super-literals D ⊆M′ and a set

of guarded clauses F ′ such that F ′∪D �⋆
T e and F �⋆

T F ′ by Lemma 3.7. Thus, F∪D �⋆
T e.

Remark 3.9. Compared to usual DPLL, back-jumping is restricted by the requirement on T-Backjump

that e′ must appear in AVB(F,M). This restriction is needed in general but it can be alleviated by

allowing to add a subsequence of MedN to M using UnitPropagate and T-Propagate before

e′ is added with T-Backjump.

Corollary 3.2. If here is a closure or a literal e such that ¬e ∈M and ⌈M⌉ ⊢⋆T e, then a conflict

clause can be learned so that either Fail or T-Backjump can be applied.

Proof. Since ⌈M⌉ ⊢⋆T e, there is a set of closures S ⊆ ⌈M⌉ such that S ⊢⋆T e. We construct a

guarded clause H → e that can be added to F using T-Learn. If e is a literal, let H be S itself.

Otherwise, since ¬e ∈ M is an anti-closure, e occurs in AVB(F,M). Indeed, a guarded clause

H → C of F cannot be forgotten if there is a closure of C defined in M that does not occur in

AVB(F \H → C,H). Let H ⊆ ⌈M⌉ be a superset of S such that e occurs in AVB(F,H). Now,

we can add H → e to F using T-Learn. By definition of ⌈M⌉, closures of H either are already

in M or can be propagated using T-Propagate without breaking the fairness property. As a

consequence, H → e is a conflict clause and either Fail or, by Lemma 3.11, T-Backjump can

be applied on M ‖ F .

Theorem 3.4 (Progress). If the solver can not return after a fair derivation ∅ ‖ G∪W ·∅ =⇒
M ‖ F, then there is a fair derivation M ‖ F =⇒+ S containing no Restart step and at least

one step that is neither an application of T-Learn or T-Forget nor a redundant application

of Witness-Unfold, Trigger-Unfold or Instantiate.

Remark 3.10. This proof also shows that the definition of fairness does not constrain the choice

of instantiating eagerly or lazily, namely after or before deciding on literals of a disjunction. If

a decision is possible, then it is allowed and, if an instance is possible, then it will be allowed or

redundant after some steps that do not involve any decision.

Proof. If the solver cannot return on M ‖ F then at least one of the following properties is false:

(i) M ⊢⋆T AVB(F,M),

(ii) M 6⊢⋆T ⊥, and

(iii) if H → C can be added by Instantiate, Witness-Unfold, or Trigger-Unfold then

AVB(F,M) ⊢⋆T C.

Assume (i) is false in M ‖ F . If there is a guarded clause H→C ∈ F such that H∪¬C⊆M,

then H → C is a conflict clause in M ‖ F , and, by Lemma 3.11, either Fail or T-Backjump

can be applied. Otherwise, there is an undefined super-literal e that occurs in AVB(F,M). Since

e ∈ AVB(F,M), levelM(e)≤ level(M) and Decide can be applied on e.

If (ii) is false, then LIT(M)∪{lσ | l ·σ ∈ M} �T ⊥. Like in the proof of Corollary 3.2, a

conflict clause can be learned so that either Fail or T-Backjump can be applied.
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If (iii) is false in M ‖ F , there is a guarded clause H→C that can be added to F using either

Instantiate, Witness-Unfold, or Trigger-Unfold on M such that either AVB(F,H) 6⊢⋆T
C or AVB(F,H) ⊢⋆T C and H * M. If AVB(F,H) 6⊢⋆T C, the application of Instantiate,

Witness-Unfold, or Trigger-Unfold is non-redundant in F . Otherwise, ⌈M⌉ ⊢⋆T H and,

for some l · σ ∈ H \M, l · σ ∈ GRD(F). If ¬(l · σ) ∈ M, we conclude using Corollary 3.2.

Otherwise, T-Propagate can be applied to l ·σ if it is not forbidden by fairness.

Assume the application of T-Propagate is forbidden by fairness. The application adding

H→C to F must be an application of Instantiate and l ·σ must be of the form x≈ x · [x 7→ t].
At least one of the following properties is false:

(a) M 6⊢⋆T ⊥,

(b) for every unit super-clause e ∈ AVB(F,∅), ⌈M⌉ ⊢⋆T e,

(c) for every closure 〈l〉C ·σ ∈M, ⌈M⌉ ⊢⋆T l ·σ and, if C is a unit clause, ⌈M⌉ ⊢⋆T C ·σ ,

(d) for every closure [l]ϕ ·σ ∈ M such that ϕ is a unit clause, if ⌈M⌉ ⊢⋆T l ·σ then we have

⌈M⌉ ⊢⋆T ϕ ·σ ,

(e) for every closure ∀x.ϕ ·σ ∈M such that ϕ is a unit clause and for every term t ∈T (M) such

that levelM(ϕ · (σ ∪ [x 7→ t]))≤ level(M), we have ⌈M⌉ ⊢⋆T ϕ · (σ ∪ [x 7→ t]), and

(f) for every guarded clause H→C that can be added to F by either Instantiate, Witness-Unfold

or Trigger-Unfold on M, if levelM(H)≤ level(M), AVB(F,M) ⊢⋆T C.

Condition (a) can not be false if (i) is true.

If (b) is false then there is a unit super-clause e ∈ AVB(F,∅) such that e 6∈ M. If ¬e ∈ M,

∅→ e is a conflict clause in F . Otherwise, by construction, e is of level 0 in M and e can be

added to M using UnitPropagate.

If (c) is false, there is a closure 〈l〉C ·σ ∈ M such that ⌈M⌉ 6⊢⋆T l ·σ or C is a unit clause

and ⌈M⌉ 6⊢⋆T C · σ . Therefore, the rule Witness-Unfold can be applied with 〈l〉C · σ . If it

is redundant, AVB(F,M) ⊢⋆T l ·σ and AVB(F,M) ⊢⋆T C ·σ . Therefore, either ¬(l ·σ) or ¬(C ·
σ) (if it is a unit clause) is in M and there is a conflict clause in F after the application of

Witness-Unfold or one of l ·σ , C ·σ can be added to M using UnitPropagate.

If (d) is false, there is a closure [l]ϕ · σ ∈ M such that ⌈M⌉ ⊢⋆T l · σ and ⌈M⌉ 6⊢⋆T ϕ · σ .

Hence Trigger-Unfold can be be applied with [l]ϕ ·σ . If it is redundant, either l ·σ can be

added to M using T-Propagate, there is a conflict clause, or ϕ ·σ can be added to M using

UnitPropagate.

If (e) is false, there is a closure ∀x.ϕ ·σ ∈M and a term t ∈T (M) such that ϕ · (σ ∪ [x 7→ t])
has an instantiation level smaller than the current instantiation level in M and ⌈M⌉ 6⊢⋆T ϕ · (σ ∪
[x 7→ t]). First assume that AVB(F,M) 6⊢⋆T ϕ · (σ ∪ [x 7→ t]). Then, Instantiate can be applied

with ∀x.ϕ ·σ . If it is redundant then either x≈ x · [x 7→ t] can be added to M using T-Propagate,

there is a conflict clause, or ϕ · (σ ∪ [x 7→ t]) can be added to M using UnitPropagate.

If AVB(F,M)⊢⋆T ϕ ·(σ∪ [x 7→ t]) then UNIT(AVB(F,M))⊢⋆T ϕ ·(σ∪ [x 7→ t]). By Lemma 3.4,

⌈M⌉ 6⊢⋆T UNIT(AVB(F,M)) (otherwise, ⌈M⌉ ⊢⋆T ϕ ·(σ ∪ [x 7→ t])). Then, there is a guarded clause
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H→ e ∈ F such that H ⊆M and M 6⊢⋆T e. Since H ⊆M, e has an instantiation level smaller than

the current instantiation level in M and can be added to M using UnitPropagate.

Otherwise, (f) is false and either Instantiate, Witness-Unfold or Trigger-Unfold

can be applied with levelM(H) ≤ level(M) so that either AVB(F,H) 6⊢⋆T C or AVB(F,H) ⊢⋆T
C and H * M. If AVB(F,H) 6⊢⋆T C, the application of Instantiate, Witness-Unfold, or

Trigger-Unfold is non-redundant in F . Otherwise, ⌈M⌉ ⊢⋆T H and, for some l ·σ ∈ H \M,

l ·σ ∈ GRD(F). If ¬(l ·σ) ∈ M, we conclude using Corollary 3.2. Otherwise, T-Propagate

can be applied to l ·σ . Indeed, since levelM(H)≤ level(M), it is not forbidden by fairness.

4 Case Study: Imperative Doubly-Linked Lists

In this section, we give a rather large axiomatization as an example (more than 50 axioms). We

assume that the background theory T contains integer linear arithmetic and booleans. For the

sake of simplicity, we assume that we can use sorts. The axiomatized extension T ′ of T contains

a definition of imperative doubly-linked lists with a definition for iterators (named cursors), an

equality function, several modification functions and so on. We prove that this axiomatization

is sound, complete and terminating. It is inspired from the API of lists in the Ada standard

library [7].

4.1 Theory

Lists are ordered containers of elements on which an equivalence, named equal elements, is

defined. We represent imperative lists of elements as pairs of:

• an iterative part: a finite sequence of distinct cursors (used to iterate through the list),

• a content part: a partial mapping from cursors to elements, only defined on cursors that

are in the sequence.

The iterative part of an imperative list co is modeled by an integer length(co) representing

the length of the sequence together with a total function position so that, for every cursor cu,

position(co,cu) returns the position of cu in co if it appears in the sequence and 0 otherwise. The

content part of co is modeled by a function element so that element(co,cu) returns the element

associated to cu in co if any:

elements : ⋆ ⋆ ⋆
↑ ↑ . . . ↑

cursors : • • •
positions : 1 2 length

Thanks to this description, we can define several other functions. has element(co,cu) returns

true if and only if cu appears in the imperative part of co and is empty(co) returns true if co is an

empty list. The functions last, f irst, previous and next are used to iterate through the iterative

part of co. If co is empty, last(co) and f irst(co) return a special cursor, named no element that

never appears in any list. no element is also added at both ends of the iterative part of co so that
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previous(co, f irst(co)), previous(co,no element), next(co, last(co)) and next(co,no element)
are no element:

� ◦← •⇄ • · · · •⇄ • → ◦	
no element sequence no element

We define two functions le f t and right, that are used to split the list. If cu appears in the

imperative part of co or is no element, le f t(co,cu) (resp. right(co,cu)) returns the prefix (resp.

suffix) of co that stops (resp. starts) before cu:

⋆ ⋆
↑ . . . ↑
• •

⋆ ⋆
↑ . . . ↑
cu •

le f t(co,cu) right(co,cu)

A special empty list empty is returned by le f t(co,cu) (resp. right(co,cu)) if the cursor cu is

f irst(co) (resp. no element). On no element, le f t(co,cu) returns co.

To search the content part of co for the first occurrence of an element e modulo equivalence,

we use the function f ind. If cu appears in the iterative part of co, f ind(co,e,cu) returns the first

cursor of co following cu which is mapped to an element equivalent to e. If there is no such

element, no element is returned. To search the whole list co, the cursor no element can be used

instead of f irst(co). contains(co,e) is true if and only if co contains an element equivalent to e.

We add a notion of equality on list: equal lists(co1,co2) is true if and only if both parts of

co1 and co2 are equal.

The last three functions are designed to describe how a list co is modified when an element

is either inserted, deleted or replaced in co. If insert(co,cu,e,r) is true then r can be obtained

by inserting a cursor before cu in the list co (or at the end if cu is no element) and mapping it to

e. If delete(co,cu,r) is true then r can be obtained by deleting the cursor cu from the list co. If

replace element(co,cu,e,r) is true then r can be obtained by replacing the element associated

to cu in co by e.

4.2 Axiomatization

We give in this section an overview of the axiomatization of the extension of Section 4.1. For

readability, we extend our logic to sort. We specify the sort of every quantified variable. Here

we only give a few axioms. The whole axiomatization is available in Appendix A.

The functions length and position are constrained by the axiomatization so that they effec-

tively give a representation of the iterative part of the list. The three following axioms express

that a list contains a finite sequence of distinct cursors:

LENGTH GTE ZERO:

∀co : list.[length(co)]length(co)≥ 0

POSITION GTE ZERO:

∀co : list,cu : cursor.[position(co,cu)]
length(co)≥ position(co,cu)∧ position(co,cu)≥ 0
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POSITION EQ:

∀co : list,cu1cu2 : cursor.[position(co,cu1), position(co,cu2)]
position(co,cu1)> 0→ position(co,cu1)≈ position(co,cu2)→ cu1 ≈ cu2

Functions on lists such as right, previous, f irst or f ind are described on their domain of defi-

nition. We only present f ind. The function f ind f irst(co,e) returns the result of f ind(co,e,no element),
that is to say the first cursor of co that is mapped to an element equivalent to e. The result

f ind(co,e,cu) can then be defined to be the result of f ind f irst on the cursors following cu in

co that is to say right(co,cu).

FIND FIRST RANGE:

∀co : list,e : element type.[ f ind f irst(co,e)]
f ind f irst(co,e)≈ no element ∨ position(co, f ind f irst(co,e))> 0

FIND FIRST NOT:

∀co : list,e : element type,cu : cursor.[ f ind f irst(co,e),element(co,cu)]
f ind f irst(co,e)≈ no element→ position(co,cu)> 0→

equal elements(element(co,cu),e) 6≈ ⊤

FIND FIRST FIRST:

∀co : list,e : element type,cu : cursor.[ f ind f irst(co,e),element(co,cu)]
0 < position(co,cu)< position(co, f ind f irst(co,e))→

equal elements(element(co,cu),e) 6≈ ⊤

FIND FIRST ELEMENT:

∀co : list,e : element type.[ f ind f irst(co,e)]0 < position(co, f ind f irst(co,e))→
equal elements(element(co, f ind f irst(co,e)),e)≈⊤

FIND FIRST:
∀co : list,e : element type.[ f ind(co,e,no element)]

f ind(co,e,no element)≈ f ind f irst(co,e)

FIND OTHERS:

∀co : list,e : element type,cu : cursor.[ f ind(co,e,cu)]
position(co,cu)> 0→ f ind(co,e,cu)≈ f ind f irst(right(co,cu),e)

The predicates describing a modification of the list are only relevant if they are known to be

true. Here are axioms describing how the result of a deletion is related to the initial state of the

list. They express the links between the two lists using functions length, position and element.

DELETE RANGE:
∀co1co2 : list,cu : cursor.[delete(co1,cu,co2)]

delete(co1,cu,co2)≈⊤→ position(co1,cu)> 0

DELETE LENGTH:

∀co1co2 : list,cu : cursor.[delete(co1,cu,co2)]
delete(co1,cu,co2)≈⊤→ length(co2)+1≈ length(co1)
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DELETE POSITION BEFORE:

∀co1co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co1,cu2)]
(delete(co1,cu1,co2)≈⊤∧ position(co1,cu2)< position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)
∀co1co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co2,cu2)]

(delete(co1,cu1,co2)≈⊤∧0 < position(co2,cu2)< position(co1,cu1))→
position(co1,cu2)≈ position(co2,cu2)

DELETE POSITION AFTER:

∀co1co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co1,cu2)]
(delete(co1,cu1,co2)≈⊤∧ position(co1,cu2)> position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)+1

∀co1co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co2,cu2)]
(delete(co1,cu1,co2)≈⊤∧ position(co2,cu2)≥ position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)+1

DELETE POSITION NEXT:

∀co1co2 : list,cu : cursor.[delete(co1,cu,co2)]delete(co1,cu,co2)≈⊤→ 〈next(co1,cu)〉⊤

DELETE ELEMENT:

∀co1co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2),element(co1,cu2)]
(delete(co1,cu,co2)≈⊤∧ position(co2,cu2)> 0)→

element(co1,cu2) = element(co2,cu2)

4.3 Properties

In this section, we illustrate how a proof of termination, soundness and completeness can be

conducted on the axiomatization of doubly-linked lists.

Theorem 4.1. The axiomatization in Section 4.2 is terminating, sound and complete with respect

to the theory of doubly-linked lists in Section 4.1.

4.3.1 Proof of Termination

Every universal quantification is done on lists, cursors or elements. As a consequence, if we

show that only a finite number of terms of type list, cursor and element can be created, we can

deduce that the axiomatization is terminating.

Let us first look at terms of type list. There is only one formula containing a literal in which

there is a sub-term t of type list that does not appear in the trigger, namely FIND OTHERS. The

trigger of this formula is f ind(co,e,cu). Such a term cannot be created by the axiomatization.

Since the symbol f ind is not interpreted, known( f ind(co,e,cu)) can only be deduced if we have

known( f ind(co′,e′,cu′)) and equalities between each sub-term. These equalities are enough to

ensure that the new term right(co,cu) is equal to the already known term right(co′,cu′). As a

consequence, there can only be one new term of type list per terms of the form f ind(co,e,cu) in

the initial problem.
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Then we concentrate on terms of type cursor. The axioms CONTAINS DEF, FIND FIRST,

FIND OTHERS, INSERT NEW, INSERT NEW NO ELEMENT and DELETE POSITION NEXT all

contain a literal in which there is a sub-term t of type cursor that does not appear in the trigger.

Also, there is an existentially quantified cursor variable in EQUAL LISTS INV, which amounts

to a term of type cursor after skolemization. All these cases can be solved as for the lists terms.

Indeed, the symbols contains(co,e), f ind(co,e,cu), insert(co1,cu,e,co2), delete(co1,cu,co2)
and equal lists(co1,co2) are all uninterpreted and cannot be created by the axiomatization.

Finally, let us look at terms of type element. There are a great deal of those because the

function element is often used. However, most of the time, new terms of type element appear

in an equality with an already known term (a sub-term of the trigger). For these terms to be

deduced, the equality has to be assumed. Since the equality is with an already known term, the

term is not new any more. Remain the axioms FIND FIRST ELEMENT and EQUAL LISTS INV

which can both be solved with the same reasoning we did for terms of type list and cursor.

Indeed, f ind f irst(co,e) is uninterpreted and can only be created once per contains(co,e) and

twice per f ind(co′,e,cu) which themselves cannot be created.

4.3.2 Proof of Soundness

We show that, if a set of literals G has a model in the theory of doubly-linked lists then there is

a total model of G and the axiomatization. If I is a model of a set of literals G in the theory of

doubly-linked lists, we define L = {l | I(l) =⊤}. By construction of L, L is a total model of G.

It is straightforward to show that, for every axiom ϕ of the axiomatization, L ⊲T ϕ .

4.3.3 Proof of Completeness

We first need a lemma that states that equalities between integers can safely be added to partial

models of the axiomatization:

Lemma 4.1. If the axiomatization is true in a world L, t1, t2 ∈ T (L) have type integer and

L 2T t1 6≈ t2 then the axiomatization is also true in L∪ t1 ≈ t2.

Proof. Triggers of the axiomatization either have no (non-variable) sub-term of type integer or

can be written t ≈ t where t is of type integer and has no proper (non-variable) sub-term of

this type. In both cases, assuming an equality between two known integer terms cannot make

any new sub-term of a trigger become known nor make a trigger itself become true. As a

consequence, for every literal l appearing as a trigger in the axiomatization, if L 6⊲T l, t1, t2 ∈
T (L) have type integer and L 2T t1 6≈ t2 then L∪ t1 ≈ t2 6⊲T l. This is enough to show that,

if the axiomatization is true in L, t1, t2 ∈ T (L) have type integer and L 2T t1 6≈ t2 then the

axiomatization is true in L∪ t1 ≈ t2.

Let G be a set of literals and L a world in which G and the axiomatization are true. We

construct a model from L in the theory of doubly-linked lists. Since L ⊲T G, it is also a model

of G.

Since L is T -satisfiable, let IT be a model of L. No integer constant appears in a trigger of

the axiomatization. As a consequence, the axiomatization is true in L∪{i ≈ i | i is an integer
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constant}. For every term t ∈T (L) of the form length(co) or position(co,cu), we add t ≈ IT (t)
to L. By Lemma 4.1, the axiomatization is still true in L.

For every term co of type list in L, if length(co) is not in T (L) modulo T , we add length(co)≈
0 to L and, for every term cu of type cursor, if position(co,cu) is not in L, we add position(co,cu)≈
0. This amounts to deciding that lists that are not forced to be non-empty are empty and cursors

that are not forced to be valid in a list l are not valid in l. The axiomatization is still true in L.

Indeed, thanks to POSITION GTE ZERO, length(co) is in T (L) whenever there is a cursor cu

such that position(co,cu) is in T (L).
We now need to associate a cursor to every position of every non-empty list. For this, we

consider zones of lists. We define a zone of a term co of type list in L to be a sublist co[i, j], with i

and j are in 0..length(co) such that either i = 0 or there is a term cu of type cursor in T (L) such

that L �T position(co,cu)≈ i and, for all k such that i < k≤ j, there is no term cu of type cursor

in L such that L �T position(co,cu)≈ k. Remark that elements that are inserted and deleted are,

by construction, in a zone of size 1 only containing them (see DELETE POSITION NEXT). In the

same way, for right and le f t, cuts are always done at the junction between two different zones.

For every zone z of a list, we define the equivalence class of z, written eq(z), to be the set of

the zones that are bound to contain the same cursors as z by literals in L. This computation is

straight-forward. For example, here are the rules for deletion.

For every co[i, j] ∈ eq(z):

L �T delete(co,cu,co′)≈⊤ and L �T j < position(co,cu) → co′[i, j] ∈ eq(z)
L �T delete(co,cu,co′)≈⊤ and L �T j > position(co,cu) → co′[i−1, j−1] ∈ eq(z)
L �T delete(co′,cu,co)≈⊤ and L �T j < position(co′,cu) → co′[i, j] ∈ eq(z)
L �T delete(co′,cu,co)≈⊤ and L �T position(co′,cu)≤ j → co′[i+1, j+1] ∈ eq(z)

L �T le f t(co,cu)≈ co′ and L �T 0 < j < position(co,cu) → co′[i, j] ∈ eq(z)
L �T le f t(co′,cu)≈ co → co′[i, j] ∈ eq(z)

The set eq(z) has some good properties:

1. Every element of eq(z) is a zone.

2. Every zone in eq(z) has the same length.

3. If a zone in eq(z) starts with 0 then they all start with 0.

4. If position(co,cu) > 0 and co[position(co,cu), ] ∈ eq(z) then, for every zone co′[i, ] ∈
eq(z), L �T position(co′,cu)≈ i.

From the last two properties, we deduce that each list co appears at-most once in eq(z). As a

consequence, we can associate a free cursor variable to each position in the equivalent zone of a

list without creating lists that may contain the same cursor twice:

While there is a zone co[i, j], with co known and i < j:

• We compute the set of zones eq(co[i, j]).

• To each k such that i < k ≤ j, we associate a fresh cursor cuk.
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• For each co′[i′, j′] and each k′ such that i′ < k′ ≤ j′, position(co′,cuk′−i′+i) ≈ k′ is added

to L.

Once there is no more zone co[i, j], with co ∈ T (L) and i < j, for every term of type list and

every term of type cursor of L, we can add position(co,cu) ≈ 0 to L. We can check straight-

forwardly that the axiomatization is still true in L. We now have an interpretation in the theory

of doubly-linked lists of the iterative part of every list that appears in L.

Let us now consider the content part. Let e be a fresh term of type element. We map

element(co,cu) to e for any term co of type list and any term cu of type cursor in L such that

element(co,cu) is not in L modulo T . Each axiom with element(l,cu) as a trigger either deduces

an equality or an equivalence between new terms, or a non-equivalence between a known term

and a new term. As a consequence, the axiomatization is still true in L.

Remark 4.1. Here we are axiomatizing lists of an abstract infinite type. This proof works for

any element type with an infinite number of equivalence classes. If the element type has a

finite number of equivalence classes, let us call it n, then the axiomatization is not complete any

more. For example, consider the finite set of literals L with n constants of type element e1 . . .en

containing position(co, f ind f irst(co,ei))> n for every i∈ 1..n and equal elements(ei,e j) 6≈ ⊤
for every i and j ∈ 1..n such that i 6= j.

We have constructed a model for L in the theory of doubly linked list described in Sec-

tion 4.1. As a consequence, the axiomatization from Section 4.2 is complete for this theory.

5 Implementation in the Alt-Ergo Theorem Prover

In this section, we present our implementation of the framework of Section 3.2 in the Alt-Ergo

theorem prover. We discuss various specificities of this implementation and finally give some

bench-marks using the theory of doubly-linked lists given in Section 4.1.

5.1 E-Matching on Uninterpreted Sub-Terms

Instantiating every universal quantifier with every known term is really inefficient. All the more

since some instances are not usable because there is a trigger directly behind the universal quan-

tifier. As a consequence, we would like to use as much as possible the powerful E-matching

techniques that are commonly used in SMT solvers. However, we have a constraint that is not

usually required in SMT solvers: we need the matching algorithm to be complete. Indeed, this

is needed not only for completeness of our solver but also for termination which is mandatory

to allow an eager instantiation mechanism.

There are two possibilities to easily turn incomplete E-matching techniques into a complete

instantiation mechanism. The first one is to restrict the input language so that axiomatizations

can only use some restricted form of triggers on which E-matching is complete. The second

one, that we have chosen, is to apply E-matching on parts of triggers on which it is complete

and then to check the remaining ones.
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More formally, assume that we have an E-matching implementation that is complete on

terms that only contain uninterpreted symbols. For every closure ϕ ·σ where ϕ is a universally

quantified formula ∀x.[l1, . . . , ln]ϕ
′ where ϕ ′ is not a trigger, we compute a triplet made of a set

of literals lϕ and two sets of terms, pϕ and kϕ . It has the following properties:

(i) every free variable (that is not in the domain of σ ) in lϕ or kϕ is also in pϕ ,

(ii) terms of pϕ only contain variables and uninterpreted symbols,

(iii) if τ is a mapping from free variables of pϕ to terms containing only variables that are in

the domain of σ , then, for i in 1..n:

known(T (σ)∪T (τσ)∪T (pϕτσ)∪ kϕτσ)∪ lϕτσ �T known(T (li))τσ

To instantiate the closure ϕ ·σ , we use the matching algorithm on pϕσ to get a substitution τ

from free variables of pϕ to known terms. We then wait for every term in kϕτσ to appear in M,

and every literal of lϕτσ ∪ liσ to be true in M to do the actual instantiation.

To compute the triplet, we proceed in the following way. We associate a fresh variable xt

to every sub-term t of a literal li such that t begins with an interpreted function symbol. For

every sub-term t of a literal li such that t begins with a uninterpreted function symbol, and t does

not appear as an argument of a uninterpreted function symbol in li, we create a pattern pt by

replacing every sub-term t ′ of t that begins with an interpreted function symbol by the variable

xt ′ . We now define pϕ to be the set of all the patterns pt constructed above; kϕ to be the set of all

the sub-terms t of a literal li beginning with an interpreted function symbol such that xt does not

appear in pϕ ; and ls to be the set of all the equalities xt ≈ t where t is a sub-term of li beginning

with an interpreted function symbol and xt is not in kϕ .

5.2 Different Notions of Termination

The notion of termination in Section 2.2 may turn out be too constraining for some axiomati-

zation. Let us start with an example. Assume that we want to add to our theory in Section 4.1

a notion of structural equality of lists modulo equivalence of elements named equivalent lists.

The function equivalent lists(co1,co2) returns true if and only if co1 and co2 contain equivalent

elements in the same order. In an axiomatization of this concept, we could have:

EQUIVALENT LISTS ELEMENT:

∀co1co2 : list.[equivalent lists(co1,co2)]equivalent lists(co1,co2)≈⊤→
(∀cu1 : cursor.[element(co1,cu1)]position(co1,cu1)> 0→
∃cu2 : cursor.position(co1,cu1) = position(co2,cu2)∧

equivalent lists elements(element(co1,cu1),element(co2,cu2))≈⊤)

Unfortunately, such an axiom would introduce a loop. If the set of literals includes both

equivalent lists(co1,co2)≈⊤ and equivalent lists(co2,co1)≈⊤ and element(co1,cu) is known

for some cu, there is a branch deducing the term element(co2,sko(co1,co2,cu)) which itself al-

lows the deduction of the term element(co1,sko(co2,co1,sko(co1,co2,cu))) and so on. We can
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see that the term sko(co2,co1,sko(co1,co2,cu)) is in fact equal to cu, using POSITION EQ. How-

ever, our definition of truth assignment is not restrictive enough to enforce this deduction.

The definition of truth assignment given in Section 2.2 can easily be made more or less re-

strictive. This results in a more or less constraining notion of fairness in the proof of termination

of the solver Section 3.5. Here are a few examples of alternative choices:

1. Require that at least an element ϕi ·σi is added to assignments containing a disjunction

ϕ1 ·σ1∨ ·· · ∨ϕn ·σn (in the definition of Section 2.2, assignments are allowed to contain

none). In practice, this amounts to enforcing a lazy instantiation approach, that is to say

that new instances can only be generated when enough literal have been assigned a truth

value by the model to imply every clause.

2. Require that, if ϕ1σ1 . . .ϕn−1σn−1 are literals that are false in an assignment containing

a disjunction ϕ1 ·σ1 ∨ ·· · ∨ϕn ·σn then ϕn ·σn is added to the assignment. A compliant

implementation could be obtained by requiring an eager application of T-Propagate and

UnitPropagate in clauses.

3. Do not require that ϕ is added to assignments containing a witness 〈l〉ϕ or a trigger [l]ϕ
with l true. The rules Witness-Unfold and Trigger-Unfold do no longer have to be

applied eagerly (before new instances are made).

The first two alternatives would allow the proof of termination of the equivalent lists example

to go through. The first one has the drawback of forbidding an eager instantiation of universal

quantifiers that can be profitable in practice. We have implemented the second alternative in

Alt-Ergo.

Another possibility that we have implemented is allowing the solver to add to truth assign-

ments negations of closures that occur in disjunctions. This gives a more constraining version of

termination that can still be proved for the axiomatization of the theory of doubly-linked list. As

compensation, new rules can be added to our version of abstract DPLL to handle anti-closures.

They have to work in a compatible way with the semantics of negations of closures defined

for the proofs of Section 3.4. Existential quantifiers arising from the negation of a universally

quantified formula can be handled by associating a priori a Skolem constant to every universal

quantifier in the axiomatization.

5.3 Accommodating Non-Convex Theories

The notion of satisfiability in Section 2.1 can also turn out to be too constraining. For example, in

the proof of completeness of Section 4.3, we need to show that adding equalities on known terms

of type integer do not break the partial model. This lemma is needed because we cannot assume

that, for a partial model L and two known terms t1 and t2 such that L 2T t1 ≈ t2, we can find

an interpretation I of L such that, I(t1) 6= I(t2). Indeed, linear integer arithmetic is not a convex

theory, which means that there can be a set of literals L and a set of terms t1,s1, . . . , tn,sn ⊆T (L)
such that L �T t1 ≈ s1∨·· ·∨ tn ≈ sn and, for every i ∈ 1..n, L 2T ti ≈ si. As a consequence, if an

axiomatization does not have the above property, it will not be complete in our framework.

To have a less constraining notion of completeness, the definition of satisfiability can be

modified. Let F be an axiomatization. Instead of searching for any T -satisfiable set of literals
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L such that L ⊲ F , we can restrict the definition of partial models so that we only search for

T -satisfiable sets of literals L such that, if L �T t1 ≈ s1∨·· ·∨ tn ≈ sn for t1,s1, . . . , tn,sn ⊆T (L)
then L �T ti ≈ si for some i ∈ 1..n. Our implementation in Alt-Ergo complies with this second

definition by using the disjunctions generated by the theory combination mechanism.

5.4 Benchmarks

We use the Why3 VC generator version 0.80 and the Alt-Ergo theorem prover version 0.95. The

implementation instantiates every universally quantified formula of the theory before deciding

on literals. We define some program functions for a program API of lists, using contracts.

For example, an element can only be accessed on a valid cursor and, after an application of

the modification function insert, the new version of the list is related to the old one by the

predicate insert.

val element (co:list) (cu:cursor) : element_type

requires { has_element co cu }

ensures { result = element co cu }

val insert (co:ref list) (cu:cursor) (e:element_type) : unit

requires { has_element !co cu \/ cu = no_element }

reads { co }

writes { co }

ensures { insert (old !co) cu e !co }

The tests for using the theory of doubly-linked lists are given in Appendix B. Here is only

one of them. The function double_size iterates through the list li, inserting the element

e before each existing element of the list. If the list li is not empty at the beginning of the

function, then li should be twice as long at the end of the function. Since there is a loop, we

need to come up with a loop invariant powerful enough to deduce both that the post-condition is

true and that the iteration can be resumed after the insertion. The loop invariant states that:

• the current cursor is valid in li and used to be valid in li at the beginning of the function

or no element was reached

• the length of the visited part was doubled, and

• the unvisited part of the list li has not been modified yet.

let double_size (li : ref list) (e : element_type) =

requires { not (is_empty !li) }

ensures { length !li = 2 * (length (old !li)) }

let c = ref (first !li) in

’Loop_Entry:

while has_element !li !c do

invariant {

(((has_element (at !li ’Loop_Entry) !c /\ has_element !li !c)

\/ !c = no_element) /\
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Tests Alt-Ergo Alt-Ergo⋆

test_delete 14 5

test_insert 608 394

double_size 314 47

filter 196 207

my_contain 22 2

my_find 300 6

map_f 107 31

Figure 3: Time (in seconds) needed to solve all tests with Alt-Ergo giving the first-order axiom-

atization directly and Alt-Ergo through the theory mechanism (named Alt-Ergo⋆) .

length (left !li !c) = 2 * (length (left (at !li ’Loop_Entry) !c)) /\

equal_lists (right !li !c) (right (at !li ’Loop_Entry) !c))

}

insert li !c e;

c := next !li !c

done

Table 3 is a comparison between the results obtained by giving the axiomatization directly in

input to Alt-Ergo and using it as a theory through the new mechanism. We see that, on average,

our implementation gives better results than the usual instantiation mechanism of Alt-Ergo. This

is mainly due to the fact that instances are now generated in an eager way.

The necessity of specifying appropriate triggers may seem to be a drawback of our approach.

However, even if triggers can be inferred by SMT solvers, efficient handling of first-order for-

mulas usually requires user guidance in this choice. Indeed, if we remove our triggers from the

first-order axiomatization of lists before giving it to Alt-Ergo, the programs in Table 3 can no

longer be verified in less than the time limit of 1000s.

6 Conclusion

We have introduced an abstract description of an SMT solver in which a new theory can be

defined as a first-order axiomatization with triggers. If such an axiomatization can be proved to

be sound, complete, and terminating in our framework, then the solver will behave as a decision

procedure for this theory. We believe that this mechanism will be useful in proof of programs

where domain-specific theories are often needed (for libraries, data structures, etc.), as is wit-

nessed by a wide range of papers that deal with theories, cf. [3, 10, 22].

In future work, we would like to investigate the combination of several theories defined as

first-order axiomatizations in a Nelson-Oppen framework. This will require determining which

requirements are needed to preserve termination. Another area worth of investigation is whether

it is possible to check automatically the completeness and termination of an axiomatization, at

least in some restricted cases.
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accompanying reachability predicate. International journal on software tools for technol-

ogy transfer 11(2), 105–116 (2009)

[6] Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J.

ACM 52(3), 365–473 (2005)
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A Axiomatization of Imperative Doubly-Linked Lists

LENGTH GTE ZERO:

∀co : list.[length(co)]length(co)≥ 0

IS EMPTY:

∀co : list.[is empty(co)]is empty(co)≈⊤↔ length(co)≈ 0

EMPTY IS EMPTY:

is empty(empty)

EQUAL ELEMENTS REFL:

∀e : element type.[equal elements(e,e)]equal elements(e,e)≈⊤

EQUAL ELEMENTS SYM:

∀e1e2 : element type.[equal elements(e1,e2)]
equal elements(e1,e2)≈ equal elements(e2,e1)

EQUAL ELEMENTS TRANS:

∀e1e2e3 : element type.[equal elements(e1,e2),equal elements(e2,e3)]
equal elements(e1,e2)≈⊤→ equal elements(e2,e3)≈⊤→

equal elements(e1,e3)≈⊤
∀e1e2e3 : element type.[equal elements(e1,e2),equal elements(e1,e3)]

equal elements(e1,e2)≈⊤→ equal elements(e2,e3)≈⊤→
equal elements(e1,e3)≈⊤

POSITION GTE ZERO:

∀co : list,cu : cursor.[position(co,cu)]
length(co)≥ position(co,cu)∧ position(co,cu)≥ 0

POSITIONNO ELEMENT:

∀co : list.[position(co,no element)]position(co,no element)≈ 0

POSITION EQ:

∀co : list,cu1cu2 : cursor.[position(co,cu1), position(co,cu2)]
position(co,cu1)> 0→ position(co,cu1)≈ position(co,cu2)→ cu1 ≈ cu2

PREVIOUS IN:

∀co : list,cu : cursor.[previous(co,cu)]
(position(co,cu)> 1∨ position(co, previous(co,cu))> 0)→

position(co, previous(co,cu))≈ position(co,cu)−1
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PREVIOUS EXT:

∀co : list,cu : cursor.[previous(co,cu)]
(position(co,cu)≈ 1∨ cu≈ no element)→ previous(co,cu)≈ no element

NEXT IN:

∀co : list,cu : cursor.[next(co,cu)]
(length(co)> position(co,cu)> 0∨ position(co,next(co,cu))> 0)→

position(co,next(co,cu))≈ position(co,cu)+1

NEXT EXT:

∀co : list,cu : cursor.[next(co,cu)]
(position(co,cu)≈ length(co)∨ cu≈ no element)→ next(co,cu)≈ no element

LAST EMPTY:

∀co : list.[last(co)]length(co)≈ 0↔ last(co)≈ no element

LAST GEN:

∀co : list.[last(co)]length(co)≈ position(co, last(co))

FIRST EMPTY:

∀co : list.[ f irst(co)]length(co)≈ 0↔ f irst(co)≈ no element

FIRST GEN:

∀co : list.[ f irst(co)]length(co)> 0→ position(co, f irst(co))≈ 1

HAS ELEMENT DEF:

∀co : list,cu : cursor.[has element(co,cu)]position(co,cu)> 0↔ has element(co,cu)≈⊤

LEFT NO ELEMENT:

∀co : list.[le f t(co,no element)]le f t(co,no element)≈ co

LEFT LENGTH:

∀co : list,cu : cursor.[le f t(co,cu)]
position(co,cu)> 0→ length(le f t(co,cu))≈ position(co,cu)−1
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LEFT POSITION IN:

∀co : list,cu1cu2 : cursor.[position(le f t(co,cu1),cu2)]
(position(le f t(co,cu1),cu2)> 0∨ position(co,cu2)< position(co,cu1))→

position(le f t(co,cu1),cu2)≈ position(co,cu2)
∀co : list,cu1cu2 : cursor.[le f t(co,cu1), position(co,cu2)]

(position(le f t(co,cu1),cu2)> 0∨ position(co,cu2)< position(co,cu1))→
position(le f t(co,cu1),cu2)≈ position(co,cu2)

LEFT POSITION EXT:

∀co : list,cu1cu2 : cursor.[position(le f t(co,cu1),cu2)]
position(co,cu2)≥ position(co,cu1))> 0→

position(le f t(co,cu1),cu2)≈ 0

LEFT ELEMENT:

∀co : list,cu1cu2 : cursor.[element(le f t(co,cu1),cu2)]
(position(le f t(co,cu1),cu2)> 0∨0 < position(co,cu2)< position(co,cu1))→

element(le f t(co,cu1),cu2)≈ element(co,cu2)
∀co : list,cu1cu2 : cursor.[le f t(co,cu1),element(co,cu2)]

(position(le f t(co,cu1),cu2)> 0∨0 < position(co,cu2)< position(co,cu1))→
element(le f t(co,cu1),cu2)≈ element(co,cu2)

RIGHT NO ELEMENT:

∀co : list.[right(co,no element)]right(co,no element)≈ empty

RIGHT LENGTH:

∀co : list,cu : cursor.[right(co,cu)]
position(co,cu)> 0→ length(right(co,cu))≈ length(co)− position(co,cu)+1

RIGHT POSITION IN:

∀co : list,cu1cu2 : cursor.[position(right(co,cu1),cu2)]
(position(right(co,cu1),cu2)> 0∨0 < position(co,cu1)≤ position(co,cu2))→

position(right(co,cu1),cu2)≈ position(co,cu2)− position(co,cu1)+1

∀co : list,cu1cu2 : cursor.[right(co,cu1), position(co,cu2)]
(position(right(co,cu1),cu2)> 0∨0 < position(co,cu1)≤ position(co,cu2))→

position(right(co,cu1),cu2)≈ position(co,cu2)− position(co,cu1)+1

RIGHT POSITION EXT:

∀co : list,cu1cu2 : cursor.[position(right(co,cu1),cu2)]
position(co,cu2)< position(co,cu1))→

position(right(co,cu1),cu2)≈ 0
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RIGHT ELEMENT:

∀co : list,cu1cu2 : cursor.[element(right(co,cu1),cu2)]
(position(right(co,cu1),cu2)> 0∨0 < position(co,cu1)≤ position(co,cu2))→

element(right(co,cu1),cu2)≈ element(co,cu2)
∀co : list,cu1cu2 : cursor.[right(co,cu1),element(co,cu2)]

(position(right(co,cu1),cu2)> 0∨0 < position(co,cu1)≤ position(co,cu2))→
element(right(co,cu1),cu2)≈ element(co,cu2)

FIND FIRST RANGE:

∀co : list,e : element type.[ f ind f irst(co,e)]
f ind f irst(co,e)≈ no element ∨ position(co, f ind f irst(co,e))> 0

FIND FIRST NOT:

∀co : list,e : element type,cu : cursor.[ f ind f irst(co,e),element(co,cu)]
f ind f irst(co,e)≈ no element→ position(co,cu)> 0→

equal elements(element(co,cu),e) 6≈ ⊤

FIND FIRST FIRST:

∀co : list,e : element type,cu : cursor.[ f ind f irst(co,e),element(co,cu)]
0 < position(co,cu)< position(co, f ind f irst(co,e))→

equal elements(element(co,cu),e) 6≈ ⊤

FIND FIRST ELEMENT:

∀co : list,e : element type.[ f ind f irst(co,e)]0 < position(co, f ind f irst(co,e))→
equal elements(element(co, f ind f irst(co,e)),e)≈⊤

CONTAINS DEF:

∀co : list,e : element type.[contains(co,e)]
contains(co,e)↔ 0 < position(co, f ind f irst(co,e))

FIND FIRST:
∀co : list,e : element type.[ f ind(co,e,no element)]

f ind(co,e,no element)≈ f ind f irst(co,e)

FIND OTHERS:

∀co : list,e : element type,cu : cursor.[ f ind(co,e,cu)]
position(co,cu)> 0→ f ind(co,e,cu)≈ f ind f irst(right(co,cu),e)

REPLACE ELEMENT RANGE:

∀co1co2 : list,cu : cursor,e : element type.[replace element(co1,cu,e,co2)]
replace element(co1,cu,e,co2)≈⊤→ position(co1,cu)> 0
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REPLACE ELEMENT LENGTH:

∀co1co2 : list,cu : cursor,e : element type.[replace element(co1,cu,e,co2)]
replace element(co1,cu,e,co2)≈⊤→ length(co1)≈ length(co2)

REPLACE ELEMENT POSITION:

∀co1co2 : list,cu1cu2 : cursor,e : element type.[replace element(co1,cu1,e,co2), position(co1,cu2]
replace element(co1,cu1,e,co2)≈⊤→ position(co1,cu2)≈ position(co2,cu2)

∀co1co2 : list,cu1cu2 : cursor,e : element type.[replace element(co1,cu1,e,co2), position(co2,cu2]
replace element(co1,cu1,e,co2)≈⊤→ position(co1,cu2)≈ position(co2,cu2)

REPLACE ELEMENT ELEMENT IN:

∀co1co2 : list,cu : cursor,e : element type.[replace element(co1,cu,e,co2)]
replace element(co1,cu,e,co2)≈⊤→ element(co2,cu)≈ e

REPLACE ELEMENT ELEMENT EXT:

∀co1co2 : list,cu1cu2 : cursor,e : element type.[replace element(co1,cu1,e,co2),element(co1,cu2)]
(replace element(co1,cu1,e,co2)≈⊤∧ position(co1,cu2)> 0∧ cu1 6≈ cu2)→

element(co1,cu2)≈ element(co2,cu2)
∀co1co2 : list,cu1cu2 : cursor,e : element type.[replace element(co1,cu1,e,co2),element(co2,cu2)]

(replace element(co1,cu1,e,co2)≈⊤∧ position(co1,cu2)> 0∧ cu1 6≈ cu2)→
element(co1,cu2)≈ element(co2,cu2)

INSERT RANGE:

∀co1co2 : list,cu : cursor,e : element type.[insert(co1,cu,e,co2)]
insert(co1,cu,e,co2)≈⊤→ cu≈ no element ∨ position(co1,cu)> 0

INSERT LENGTH:

∀co1co2 : list,cu : cursor,e : element type.[insert(co1,cu,e,co2)]
insert(co1,cu,e,co2)≈⊤→ length(co2)≈ length(co1)+1

INSERT NEW:

∀co1co2 : list,cu : cursor,e : element type.[insert(co1,cu,e,co2)]
(insert(co1,cu,e,co2)≈⊤∧ position(co1,cu)> 0)→

position(co1, previous(co2,cu))≈ 0∧ element(co2, previous(co2,cu))≈ e

INSERT NEW NO ELEMENT:

∀co1co2 : list,cu : cursor,e : element type.[insert(co1,no element,e,co2)]
insert(co1,no element,e,co2)≈⊤→

position(co1, last(co2))≈ 0∧ element(co2, last(co2))≈ e
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INSERT POSITION BEFORE:

∀co1co2 : list,cu1cu2 : cursor,e : element type.[insert(co1,cu1,e,co2), position(co1,cu2)]
(insert(co1,cu1,e,co2)≈⊤∧0 < position(co1,cu2)< position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)
∀co1co2 : list,cu1cu2 : cursor,e : element type.[insert(co1,cu1,e,co2), position(co2,cu2)]

(insert(co1,cu1,e,co2)≈⊤∧ position(co2,cu2)< position(co1,cu1))→
position(co1,cu2)≈ position(co2,cu2)

INSERT POSITION AFTER:

∀co1co2 : list,cu1cu2 : cursor,e : element type.[insert(co1,cu1,e,co2), position(co1,cu2)]
(insert(co1,cu1,e,co2)≈⊤∧ position(co1,cu2)≥ position(co1,cu1)> 0)→

position(co1,cu2)+1≈ position(co2,cu2)
∀co1co2 : list,cu1cu2 : cursor,e : element type.[insert(co1,cu1,e,co2), position(co2,cu2)]

(insert(co1,cu1,e,co2)≈⊤∧ position(co2,cu2)> position(co1,cu1)> 0)→
position(co1,cu2)+1≈ position(co2,cu2)

INSERT POSITION NO ELEMENT:

∀co1co2 : list,cu : cursor,e : element type.[insert(co1,no element,e,co2), position(co1,cu)]
(insert(co1,no element,e,co2)≈⊤∧ position(co1,cu)> 0)→

position(co1,cu)≈ position(co2,cu)
∀co1co2 : list,cu : cursor,e : element type.[insert(co1,no element,e,co2), position(co2,cu)]

(insert(co1,no element,e,co2)≈⊤∧ position(co2,cu2)< length(co2))→
position(co1,cu)≈ position(co2,cu)

INSERT ELEMENT:

∀co1co2 : list,cu1cu2 : cursor,e : element type.[insert(co1,cu1,e,co2),element(co1,cu2)]
(insert(co1,cu1,e,co2)≈⊤∧ position(co1,cu2)> 0)→

element(co1,cu2)≈ element(co2,cu2)
∀co1co2 : list,cu1cu2 : cursor,e : element type.[insert(co1,cu1,e,co2),element(co2,cu2)]

(insert(co1,cu1,e,co2)≈⊤∧ position(co1,cu2)> 0)→
element(co1,cu2)≈ element(co2,cu2)

DELETE RANGE:

∀co1co2 : list,cu : cursor.[delete(co1,cu,co2)]
delete(co1,cu,co2)≈⊤→ position(co1,cu)> 0

DELETE LENGTH:

∀co1co2 : list,cu : cursor.[delete(co1,cu,co2)]
delete(co1,cu,co2)≈⊤→ length(co2)+1≈ length(co1)
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DELETE POSITION BEFORE:

∀co1co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co1,cu2)]
(delete(co1,cu1,co2)≈⊤∧ position(co1,cu2)< position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)
∀co1co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co2,cu2)]

(delete(co1,cu1,co2)≈⊤∧0 < position(co2,cu2)< position(co1,cu1))→
position(co1,cu2)≈ position(co2,cu2)

DELETE POSITION AFTER:

∀co1co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co1,cu2)]
(delete(co1,cu1,co2)≈⊤∧ position(co1,cu2)> position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)+1

∀co1co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co2,cu2)]
(delete(co1,cu1,co2)≈⊤∧ position(co2,cu2)≥ position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)+1

DELETE POSITION NEXT:

∀co1co2 : list,cu : cursor.[delete(co1,cu,co2)]delete(co1,cu,co2)≈⊤→ 〈next(co1,cu)〉⊤

DELETE ELEMENT:

∀co1co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2),element(co1,cu2)]
(delete(co1,cu,co2)≈⊤∧ position(co2,cu2)> 0)→

element(co1,cu2) = element(co2,cu2)

EQUAL LISTS POSITION:

∀co1co2 : list.[equal lists(co1,co2)]equal lists(co1,co2)≈⊤→
(∀cu : cursor.[position(co1,cu)]position(co1,cu)≈ position(co2,cu))∧
(∀cu : cursor.[position(co2,cu)]position(co1,cu)≈ position(co2,cu))

EQUAL LISTS ELEMENT:

∀co1co2 : list.[equal lists(co1,co2)]equal lists(co1,co2)≈⊤→
(∀cu : cursor.[element(co1,cu)]position(co1,cu)> 0→

element(co1,cu)≈ element(co2,cu))∧
(∀cu : cursor.[element(co2,cu)]position(co1,cu)> 0→

element(co1,cu)≈ element(co2,cu))

EQUAL LISTS INV:

∀co1co2 : list.[equal lists(co1,co2)]equal lists(co1,co2) 6≈ ⊤→
(∃cu : cursor.position(co1,cu)> 0∧

(position(co2,cu)> 0→ element(co1,cu) 6≈ element(co2,cu)))

EQUAL LISTS LENGTH:

∀co1co2 : list.[equal lists(co1,co2)]equal lists(co1,co2)≈⊤→ length(co1)≈ length(co2)
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B Tests in Why3 Language Using the Theory of Doubly-Linked

Lists

API of program functions:

val element (co:list ) (cu:cursor) : element_type

requires { has_element co cu }

ensures { result = element co cu }

val replace_element (co:ref list) (cu:cursor) (e:element_type) : unit

requires { has_element !co cu }

writes { co }

ensures { replace_element (old !co) cu e !co }

val insert (co:ref list) (cu:cursor) (e:element_type) : unit

requires { has_element !co cu \/ cu = no_element }

reads { co }

writes { co }

ensures { insert (old !co) cu e !co }

val prepend (co:ref list) (e:element_type) : unit

reads { co }

writes { co }

ensures { insert (old !co) (first (old !co)) e !co }

val append (co:ref list) (e:element_type) : unit

reads { co }

writes { co }

ensures { insert (old !co) no_element e !co }

val delete (co:ref list) (cu:cursor) : unit

requires { has_element !co cu }

reads { co }

writes { co }

ensures { delete (old !co) cu !co }

val previous (co:list) (cu:cursor) : cursor

requires { cu = no_element \/ has_element co cu }

ensures { result = previous co cu }

val next (co:list) (cu:cursor) : cursor

requires { cu = no_element \/ has_element co cu }

ensures { result = next co cu }
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Tests using this API:

(* take a list of 4 elements, prepend element e, remove all

initial 4 elements, take the last element of the list, it is e *)

let test_delete (li : ref list) (e : element_type) =

requires { length !li = 4 }

ensures { result = e }

prepend li e;

let c = ref (last !li) in

delete li !c;

c := first !li;

c := next !li (first !li);

delete li !c;

c := last !li;

delete li !c;

c := last !li;

delete li !c;

element !li (last !li)

(* adding elements to a list does not invalidate an existing cursor *)

let test_insert (li : ref list) (c d f g h : cursor) (e : element_type) =

requires { position !li c = 4 /\ has_element !li f /\ has_element !li h }

ensures { has_element !li c }

insert li c e;

append li e;

if has_element !li d then

insert li d e;

insert li f e;

if length !li > 5 then

if g = (next !li c) then

insert li g e

else

insert li h e

(* iterate through the list by adding element e at every position. This doubles

the size of the list *)

let double_size (li : ref list) (e : element_type) =

requires { not (is_empty !li) }

ensures { length !li = 2 * (length (old !li)) }

let c = ref (first !li) in

’Loop_Entry:

while has_element !li !c do

invariant {

(((has_element (at !li ’Loop_Entry) !c /\ has_element !li !c) \/
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!c = no_element) /\

length (left !li !c) = 2 * (length (left (at !li ’Loop_Entry) !c)) /\

equal_lists (right !li !c) (right (at !li ’Loop_Entry) !c))

}

insert li !c e;

c := next !li !c

done

(* Removes some elements from li, stores them in removed *)

function fun_test element_type : bool

let filter_one (li:ref list) (removed:ref list) (c:ref cursor) =

requires { has_element !li !c }

ensures {

((has_element (old !li) !c /\ has_element !li !c) \/

!c = no_element) /\

(length (left !li !c)) + (length !removed) =

(length (left (old !li) !c)) + (length (old !removed)) /\

equal_lists (right !li !c) (right (old !li) !c) /\

!c = next (old !li) (old !c

}

let c_int = next !li !c in

append removed (element !li !c);

delete li !c;

c := c_int

let filter (li:ref list) (removed:ref list) =

requires { not (is_empty !li) /\ is_empty !removed }

ensures { (length !li) + (length !removed) = length (old !li) }

let c = ref (first !li) in

’Loop_Entry:

while has_element !li !c do

invariant {

(((has_element (at !li ’Loop_Entry) !c /\ has_element !li !c) \/

!c = no_element) /\

(length (left !li !c)) + (length !removed) =

length (left (at !li ’Loop_Entry) !c) /\

equal_lists (right !li !c) (right (at !li ’Loop_Entry) !c))

}

if fun_test(element !li !c) then

filter_one li removed c

done
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(* the usual implementation of contains indeed computes the awaited result *)

let my_contain (s:list) (e:element_type) =

ensures { result = True <-> contains s e }

let c = ref (first s) in

let res = ref False in

try

while has_element s !c do

invariant {

((has_element s !c \/ !c = no_element) /\

(not contains (left s !c) e)) }

if equal_elements e (element s !c) then

raise Return

else c:=next s !c

done

with Return -> res := True end;

! res

(* the usual implementation of find indeed computes the awaited result *)

let my_find (s : list) (e : element_type) (f : cursor) =

requires { has_element s f }

ensures { result = find s e f }

let c = ref f in

try

while has_element s !c do

invariant {

(has_element (right s f) !c \/ !c = no_element) /\

find (left (right s f) !c) e no_element = no_element

}

if equal_elements e (element s !c) then

raise Return

else c := next s !c

done

with Return -> () end;

!c

{ result = find s e f }

(* after map l s, every element in s has been transformed through f *)

function f element_type : element_type

let map_f (s : ref list) (cu : cursor) =

ensures { forall cu : cursor. has_element !s cu ->

element !s cu = f (element (old !s) cu) }

’Loop_Entry :
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let c = ref (first !s) in

while !c <> no_element do

invariant {

(has_element !s !c /\ has_element (at !s ’Loop_Entry) !c \/

!c = no_element) /\

(forall cu : cursor. has_element (left !s !c) cu ->

element !s cu = f (element (at !s ’Loop_Entry) cu)) /\

equal_lists (right (at !s ’Loop_Entry) !c) (right !s !c)

}

replace_element s !c (f(element !s !c));

c := next !s !c

done
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