S. Abramsky and A. Jung, Domain theory, Handbook of Logic in Computer Science, pp.1-168, 1994.

R. Samuel and . Buss, The polynomial hierarchy and intuitionistic bounded arithmetic, Structure in Complexity Theory, Proceedings of the Conference hold at the University of California, pp.77-103, 1986.

S. A. Cook and B. M. Kapron, Characterizations of the basic feasible functionals of finite type, Foundations of Computer Science IEEE Annual Symposium on, vol.0, pp.154-159, 1989.

S. Cook and A. Urquhart, Functional interpretations of feasibly constructive arithmetic, Annals of Pure and Applied Logic, vol.63, issue.2, pp.103-200, 1993.
DOI : 10.1016/0168-0072(93)90044-E

A. Stephen, A. Cook, and . Urquhart, Functional interpretations of feasibly constructive arithmetic (extended abstract), Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pp.107-112, 1989.

J. M. Hyland, C. H. Luke, and . Ong, On Full Abstraction for PCF: I, II, and III, Information and Computation, vol.163, issue.2, pp.285-408, 2000.
DOI : 10.1006/inco.2000.2917

R. Irwin, B. Kapron, and J. Royer, On characterizations of the basic feasible functionals, 2002.

R. J. Irwin, J. S. Royer, and B. M. Kapron, On characterizations of the basic feasible functionals, Part I, Journal of Functional Programming, vol.11, issue.1, pp.117-153, 2001.
DOI : 10.1017/S0956796800003841

M. Bruce, S. A. Kapron, and . Cook, A new characterization of mehlhorn's polynomial time functionals (extended abstract) In A New Characterization of Mehlhorn's Polynomial Time Functionals (Extended Abstract), pp.342-347, 1991.

M. Bruce, S. A. Kapron, and . Cook, A new characterization of type-2 feasibility, SIAM J. Comput, vol.25, issue.1, pp.117-132, 1996.

A. Kawamura, On function spaces and polynomial-time computability, 2011.

A. Kawamura and S. A. Cook, Complexity theory for operators in analysis, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp.5-8, 2010.

A. S. Kechris, Classical Descriptive Set Theory, 1995.
DOI : 10.1007/978-1-4612-4190-4

S. Kleene, Countable functionals, Constructivity in Mathematics, pp.81-100, 1959.

K. Ko, Complexity Theory of Real Functions, Birkhauser Boston Inc, 1991.
DOI : 10.1007/978-1-4684-6802-1

D. Kunkle and M. Schröder, Some Examples of Non-Metrizable Spaces Allowing a Simple Type-2 Complexity Theory, Electronic Notes in Theoretical Computer Science, vol.120, pp.111-123, 2005.
DOI : 10.1016/j.entcs.2004.06.038

K. Mehlhorn, Polynomial and abstract subrecursive classes, Journal of Computer and System Sciences, vol.12, issue.2, pp.147-178, 1976.
DOI : 10.1016/S0022-0000(76)80035-9

D. Normann, Chapter 8 the continuous functionals, Handbook of Computability Theory of Studies in Logic and the Foundations of Mathematics, pp.251-275, 1999.

M. Schröder, Extended admissibility, Theoretical Computer Science, vol.284, issue.2, pp.519-538, 2002.
DOI : 10.1016/S0304-3975(01)00109-8

M. Schröder, Spaces allowing Type-2 Complexity Theory revisited, MLQ, vol.50, issue.45, pp.443-459, 2004.
DOI : 10.1002/malq.200310111

A. Seth, Turing Machine Characterizations of Feasible Functionals of All Finite Types, Feasible Mathematics II, pp.407-428, 1995.
DOI : 10.1007/978-1-4612-2566-9_14

K. Weihrauch, Computable Analysis, 2000.

K. Weihrauch, Computational complexity on computable metric spaces, MLQ, vol.49, issue.1, pp.3-21, 2003.
DOI : 10.1002/malq.200310001