Subdifferential and Properties of Convex Functions with Respect to Vector Fields

Abstract : We study properties of functions convex with respect to a given family χ of vector fields, a notion that appears natural in Carnot-Carathéodory metric spaces. We define a suitable subdifferential and show that a continuous function is χ-convex if and only if such subdifferential is nonempty at every point. For vector fields of Carnot type we deduce from this property that a generalized Fenchel transform is involutive and a weak form of Jensen inequality. Finally we introduce and compare several notions of χ-affine functions and show their connections with χ-convexity.
Type de document :
Article dans une revue
Journal of Convex Analysis, Heldermann, 2014, 21 (3), pp.785--810
Liste complète des métadonnées

https://hal.inria.fr/hal-00916081
Contributeur : Estelle Bouzat <>
Soumis le : lundi 9 décembre 2013 - 17:05:45
Dernière modification le : lundi 21 mars 2016 - 11:30:54

Identifiants

  • HAL Id : hal-00916081, version 1

Collections

Citation

Martino Bardi, Federica Dragoni. Subdifferential and Properties of Convex Functions with Respect to Vector Fields. Journal of Convex Analysis, Heldermann, 2014, 21 (3), pp.785--810. 〈hal-00916081〉

Partager

Métriques

Consultations de la notice

159