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Abstract Anaesthetic agents are known to affect extra-synaptic GABAergic recep-

tors, which induce tonic inhibitory currents. Since these receptors are very sensitive

to small concentrations of agents, they are supposed to play an important role in

the underlying neural mechanism of general anaesthesia. Moreover anaethetic agents

modulate the encephalographic activity (EEG) of patients and hence show an ef-

fect on neural populations. To understand better the tonic inhibition effect in single

neurons on neural populations and hence how it affects the EEG, the work consid-

ers single neurons and neural populations in a steady-state and studies numerically

and analytically the modulation of its firing rate and nonlinear gain with respect to

different levels of tonic inhibition. We consider populations of both type-I (Leaky

Integrate-and-Fire model) and type-II (Morris-Lecar model) neurons. The work re-

veals a strong subtractive and divisive effect of tonic inhibition in type-I neurons,

i.e. a shift of the firing rate to higher excitation levels accompanied by a change of

the nonlinear gain. Tonic inhibition shortens the excitation window of type-II neu-

rons and their populations while retaining the nonlinear gain. To bridge the single

neuron description to the population description analytically, a recently proposed sta-

tistical approach is employed which allows to derive new analytical expressions for

the population firing rate for type-I neurons. In addition, the work derives a novel

transfer function for type-I neurons as considered in neural mass models and studies

briefly the interaction of synaptic and extra-synaptic inhibition. The gained results

are interpreted in the context of recent experimental findings under propofol-induced

anaesthesia.
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1 Introduction

The neural mechanism of general anaesthesia is poorly understood. Albeit its every-

day application in hospital practice, it is far from being understood why the patients

under general anaesthesia lose consciousness (hypnosis), do not feel pain (analge-

sia), can not move (immobility) and do not remember details of the surgery (amne-

sia) (Longnecker et al, 2008). In the last decades much experimental research has

focussed on the molecular effect of the anaesthetic drugs administered on the re-

ceptor targets in the brain while less studies have been devoted to more theoretical

approaches. In the last years more and more theoretical mathematical and computa-

tional studies have been performed (Hutt et al, 2013; Foster et al, 2008) to understand

better the experimental data obtained under anaesthesia, such as single cell record-

ings (Antkowiak, 2002; Bai et al, 2001), Local Field Potentials (Sellers et al, 2013)

and electroencephalograpm (Gugino et al, 2001; Ching et al, 2010; Cimenser et al,

2011). The present work aims to link some recent insights from the experimental

research on extra-synaptic GABAergic receptors and the theoretical work on neural

populations. This link is the driving force to develop new analytical techniques to

bridge the still distinct description levels of single neuron networks and neural popu-

lations. The results gained indicate how extra-synaptic GABAergic receptor activity

modulates the neural population activity and hence affect the encephalographic aci-

tivity (EEG) measured in general anaesthesia.

Some experimental studies of the action of anaesthetic agents on neural GABAer-

gic receptors revealed the existence of extra-synaptic receptors, which induce a tonic

inhibitory current (Farrant and Nusser, 2005; Semyanov et al, 2004; Nusser et al,

1997, 1998; Brickley and Mody, 2012)). Tonic inhibition is assumed to tune the level

of excitation in neural population and is supposed to play a role, e.g. in the loss of con-

sciousness, sleep or arousal (Kopanitsa, 1997). Moreover, extra-synaptic GABAergic

receptors are very sensitive to small ambient concentrations of GABA and respond

on a much larger time scale than synaptic receptors (Cavelier et al, 2005; Hamann

et al, 2002). These specific properties pronounces their possible importance in the

context of slow consciousness phenomena (Kopanitsa, 1997; Farrant and Nusser,

2005). Further evidence for the importance of extra-synaptic receptors in anaesthesia

is their high sensitivity to various clinically relevant anaesthetic agents (Farrant and

Nusser, 2005; Orser, 2006). For instance, the anaesthetics midazolan and propofol

enhance tonic inhibition much more than phasic inhibition in the thalamus (Belelli

et al, 2009). Since the thalamus is supposed to play an important role in general

anaesthesia (Alkire et al, 2008), extra-synaptic receptors may mediate anaesthetic

effects, such as the loss of consciousness.

Tonic inhibition induced by extra-synaptic GABAA-receptors represents a per-

sistent increase in the cell membrane conductance of single cells, while they affect

the excitability of interneuron-pyramidal cell networks and thus modify network os-

cillations (Semyanov et al, 2003). To understand the effect of microscopic molecular

action of anaesthetic agents on the encephalographic activity and the behaviour, it

is necessary to bridge the gap between a microscopic description at single neuron

level and the mesoscopic level of neural populations where extracellur currents gen-
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erate the encephalographic activity. The present work presents analytic and numerical

studies showing that tonic inhibition induces both a subtractive and divisive effect in

neural population of type-I and type-II neurons, i.e. tonic inhibition shifts the fir-

ing thresholds to higher values and modulates the nonlinear of the population firing

rate function. These major effects on neural population dynamics may explain some

spectral power changes in EEG under anaesthesia.

2 Methods

Tonic inhibition occurs mainly due to the presence of extra-synaptic GABAergic re-

ceptors, see (Houston et al, 2012; Glykys and Mody, 2007; Farrant and Nusser, 2005;

Scimemi et al, 2005; Semyanov et al, 2004; Mody, 2001) and references in (Hutt,

2012). Since these receptors are found on inhibitory as well as on excitatory neurons,

tonic inhibition affects these two types of neurons and their populations in different

brain areas (Song et al, 2011; Belelli et al, 2009; Kullmann et al, 2005). Hence the

present work takes into account the effects of tonic inhibition on two different neuron

types: type-I excitatory cells whose dynamics obey a Leaky-Integrate and Fire (LIF)

neuron model and interneurons described by a type-II inhibitory cell which obeys the

Morris-Lecar model.

Moreover, frequently tonic inhibition is called shunting inhibition which occurs when

the reversal potential of the inhibitory receptor is identical to the resting potential of

the cell. Since GABAergic receptors exhibit a reversal potential close to the resting

potential in pyramidal cells, tonic inhibition resembles shunting inhibition in excita-

tory neurons. For simplicity the present work adopts this equivalence in both excita-

tory and inhibitory cells and chooses the reversal potentials correspondingly.

2.1 Single neuron models

In general, the firing activity onset of neurons may exhibit two scenarios: if the mem-

brane potential exceeds a certain threshold, the neuron firing sets in either at a very

small firing frequency or at larger a firing frequency. The former case denotes neu-

rons of type-I and the latter of type-II which are reasonable models e.g. of pyramidal

or granular cells and interneurons, respectively.

Type-I neuron

To model mathematically the membrane potential of a type-I neuron in a steady state,

we consider the Leaky Integrate-and-Fire model (Koch, 1999; London et al, 2008;

Mitchell and Silver, 2003) with excitatory (e) and inhibitory (i) receptors and corre-
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sponding conductances, respectively

C
dV

dt
= gl(El −V )+ge(t)(Ee −V )+gi(t)(Ei −V )+gton(Eton −V )+ Iapp(t)

(1)

gsyn(t) =
T

∑
n=i

wsyne−(t−ti)/τsyn , syn = e, i (2)

where C is the membrane capacitance and ti are the instances of incoming spikes

that trigger a synaptic response with amplitude wsyn and decay time τsyn, T is the

number of occured spikes at time t. Consequently gsyn(t) is a stochastic process and

for temporally uncorrelated incoming Poisson spike trains with constant rate λ its

mean and variance is (Ross, 1982)

E[gsyn](t) = wsynτsynλ
(

1− e−t/τsyn

)

(3)

Var[gsyn](t) =
w2

syn

2
τsynλ

(

1− e−2t/τsyn

)

. (4)

These expression will be very important inter alia in the context of mean field models

of a population in section 3.2.

The differential equation (1) is accompanied by the reset to the membrane poten-

tial Vr if the membrane potential crosses the firing threshold Vth. After resetting, the

model considers a refractory time interval ∆ . The constant conductance gton induces

a tonic current in the membrane induced at extra-synaptic GABAergic receptors, Eton

is the reversal potential of the receptors, gl and El is the leaky membrane conduc-

tance and the resting potential in the absence of excitation and inhibition, respectively.

Moreover Ee, Ei represent the reversal potentials of excitatory (e) and inhibitory (i)

receptors, respectively. According to the equivalence of shunting and tonic inhibition,

for single neurons and the single neural population we choose El =Ei =Eton and con-

sider granule cells with a surface of 100µm2, Ee = 0mV, El =−75mV, gl = 0.385nS

and Vr =−75mV and Vth =−49mV (Mitchell and Silver, 2003).

The neuron emits a spike if the membrane potential exceeds the threshold. For con-

stant membrane conductances ge, gton and neglecting synaptic inhibition (gi = 0), the

steady state spike rate reads

f (Vm,Vth) =
1

∆ − τ ln
Vm−Vth
Vm−Vr

, Vm ≥Vth (5)

= 0 , Vm <Vth

with

Vm(ge,gton) =
geEe +gtonEton +glEl

ge +gton +gl

, τ =C/(ge +gton +gl) . (6)

The membrane potential Vm would be reached for t → ∞ if no threshold is present, τ
is the effective membrane time constant which increases the membrane time constant

and hence slows down the neural firing activity. For simplicity, this model does not

consider nonlinear effects of dendritic integration as observed in theory and experi-

ments Zhang et al (2013).



GABAergic tonic inhibition in single neurons and neural populations 5

Type-II neuron

To model the membrane potential of a type-II neuron, we employ the Morris-Lecar

model (Borisyuk and Rinzel, 2005)

C
dV

dt
= gCam∞(V )(VCa −V )+gKw(t)(VK −V )+gL(EL −V )

+ge(t)(Ee −V )+gi(t)(Ei −V )+gton(Eton −V )+ Iapp(t)

(7)

τw

dw

dt
= φ(w∞ −w)

The functions m∞ = m∞(V ), w∞ = w∞(V ), τw(V ) = τw(V ) are given by

m∞(V ) = 0.5(1+ tanh((V −V1)/V2))

w∞(V ) = 0.5(1+ tanh((V −V3)/V4))

τw(V ) = 1/(cosh((V −V3)/(2V4)))

with constants V1 =−1.2mV,V2 = 18mV, V3 = 2mVV4 = 30mV, φ = 0.04/s. Here,

V and w are the membrane potential and the activation variable, respectively, see

(Borisyuk and Rinzel, 2005) for details of the Morris-Lecar model. Other definitions

are the reversal potential of potassium ion channels VK = −84mV and calcium ion

channels VCa = 120mV and the external current Iapp = 90µA.

The firing rate function for the Morris-Lecar model is not known analytically due

to the nonlinear nature of the underlying Hopf bifurcation at the firing onset. Hence

the present work investigates the firing activity of type-II neurons numerically only.

The model is said to generate a spike if the neuron membrane crosses the threshold

V = 0mV with dV/dt > 0.

Generalized firing rate

In biological neurons, synaptic and extra-synaptic receptors are spatially distributed

on the dendritic tree of each neuron. Their contribution to the membrane potential at

the neurons’ soma depends strongly on their spatial location (Spruston, 2008). Since

the receptor locations are different on each neuron and currently there is no exper-

imental technique that allows to extract the exact position of each receptor on each

neuron in the population, we adopt a statistical approach and consider distributions of

membrane conductances of synaptic and extra-synaptic receptors (Hutt, 2012). This

approach implies the distribution of membrane conductances in the single neuron

firing rate and the corresponding analytical model considers steady-state neural ac-

tivity neglecting transient activity. The firing rate for both type-I and type-II neurons

reads (Hutt, 2012)

Fs(G,Vth) =
∫ ∞

−∞
ps(g−G)Θ(V (g)−Vth) f (V (g),Vth)dg (8)

with the distribution ps(g) of membrane conductances g with mean value G and the

noiseless neuron firing rate f . Here Θ(x) is the Heaviside function with Θ(x) = 0
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for x < 0 and Θ(x) = 1 for x ≤ 0. In the case of type-I neurons, f is defined analyt-

ically in Eq. (5) and V (g) is the membrane potential defined in (6) dependent on the

conductances g = {ge, gton}.

Specifically, we assume Poisson-distributed independent spike trains of rate λ0

arriving at excitatory synptic receptors of number n on the dedritic tree of a single

neuron and identical constant tonic inhibition induced at extra-synaptic receptors.

In a first approximation, the position of the receptors on the dendritic branch is not

considered. Then the total rate of the excitatory spike trains at the neuron is λ =
nλ0. The synaptic receptors respond to incoming pulses according to Eq. (2) and the

excitatory conductance ge in the steady-state is a random variable with mean and

variance

GE = weτeλ and σ2
e =

1

2
w2

eτeλ , (9)

respectively, cf. Eq. (3) and (4). The constant wsyn is the synaptic weight and τe repre-

sents the decay time constant of the excitatory synaptic receptors. For a large number

of receptors n the excitatory conductances obey a Gaussian distribution according to

the central limit theorem and the inhibitory extra-synaptic conductance Gton is con-

stant leading to the probability density introduced in (8)

ps(ge −GE) =
1√

2πσe

e−(ge−GE )
2/2σ2

e . (10)

The subsequent studies of single neurons and single populations neglect synaptic

inhibition, i.e. gi = 0.

2.2 A single neural population

The population firing rate is an input-output transfer function relating the membrane

potential or synaptic activity as input and the firing rate of the neurons in the popu-

lation as output. It is a major element in neural mass models which consider a mean

potential V as the statistical average over the neuron population and a short time

window. Consequently it is coarse-grained in time. Since the population firing rate

depends on the number of neurons in the population, it is sufficient to consider the

population firing rate per neuron which is called F in the following.

In biological neural populations, properties of single neurons are not identical. For

instance, the firing threshold or resting membrane potential may vary between neu-

rons. To consider such heterogeneities, the subsequent paragraph considers a large

number of neurons in the population for which the central limit theorem guarantees

the normal distribution of the corresponding properties. Specifically, for type-I neu-

rons we assume a normal distribution N(Vth) of firing thresholds Vth with mean V̄th

and variance σ2
th (Wilson and Cowan, 1972; Amit, 1989). Here N(Vth) is the percent-

age of neurons with threshold Vth that are ready to fire, i.e. which are out of their

refractory period. Then, considering the firing rate Fs in Eq. (8) for a single stochastic
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neuron, the population firing rate reads (Hutt, 2012)

F(ḡ,V̄th) =
∫ ∞

−∞
Fs(ḡ,Vth)N(Vth −V̄th)dVth

=
∫ ∞

−∞
ps(g− ḡ)

∫ ∞

−∞
Θ(V (g)−Vth) f (V (g),Vth)N(Vth −V̄th)dVthdg .

In type-II neurons, the firing threshold is defined by the external current and hence we

assume a normal distribution of the external current Iapp with mean Īapp and variance

σ2
app yielding a distribution of the firing threshold.

In numerical simulations, the population of type-I and type-II neurons include

200 non-identical uncoupled neurons while receiving stationary uncorrelated input

spike trains.

One of the simplest single neuron models is the McCulloch-Pitts neuron whose

firing rate function f is the Heaviside-function. This standard choice yields the stan-

dard sigmoidal transfer function for populations (Wilson and Cowan, 1972; Amit,

1989; Hutt, 2012). Since McCulloch-Pitts neurons neglect important physiological

features of single neurons, such as conductance-based currents and refractory peri-

ods, the present work considers the more realistic single neuron firing rate functions

of type-I and type-II neurons. This permits to take into account tonic inhibition in the

presence of a receptor distribution on dendrites and in neural populations.

2.3 Network of networks

After the study of single neurons and neural populations, the work examines numeri-

cally tonic inhibition action on a rather realistic network of excitatory and inhibitory

neurons, see Fig. 1. Since tonic inhibition may be induced by a spill-over of neuro-

transmitters at synaptic receptors or the specific activation by anaesthetic agents such

as propofol (Farrant and Nusser, 2005; Semyanov et al, 2004), it is reasonable to

assume a global innhibitory effect affecting both excitatory and inhibitory neurons.

750

Exc

250

Inh

Iapp

tonic inhibition

(propofol)

sp=0.02

sp=0.01
sp=0.005 sp=0.05

Fig. 1 Topology of the network of networks. Arrows and dots denote excitatory and inhibitory connec-

tions, respectively, terminating at synaptic receptors with probability of connection sp (sparseness).
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2.3.1 Neuron properties

In the population of type-I neurons, we consider 750 pyramidal cells with a surface of

400µm2, the membrane capacitance is C = 33.181nF, Eton =−76mV, gL = 22.88nS,

EL =−76mV, VT =−58mV, Vr =−68mV and the refractory period ∆ = 8ms (Lon-

don et al, 2008). Their dynamics obey Eq. (2). The interneuron population exhibits

250 type-II neurons sharing the parameters Eton = −60.9mV (which is the resting

potential of the neuron), C = 20µF/cm2, V1 =−1.2mV, V2 = 18mV, gK = 8mS/cm2,

gl = 2mS/cm2, VCa = 120mV, VK = −84mV, Vl = −60mV, V3 = 2mV, V4 = 30mV,

gCa = 4mS/cm2 and ϕ = 0.04. The dynamics of the interneurons obeys Eqs. (7). In

the simulation, both excitatory and inhibitory synapses receive external input in the

presence of extra-synaptic receptors.

Stochastic input

An external input current applied during the simulations to neuron i is stochastic

Iapp,i = I0 +βi(t) , i = 1, . . . ,750

where the random values βi(t) are taken from the uniform distribution in the interval

[−2.0µA;2.0µA] for Type I neurons and for type-II neurons

Iapp,i(t) = I1 +αi(t) , i = 1, . . . ,250 (11)

with the random variable αi(t) taken from the uniform distribution in the interval

[−60.0µA;60.0µA] for Type II neurons. Here I0 = 103µA and I1 are constants fixed

for each simulation. Together with the physiological parameters of the models, I0

and I1 yield firing frequencies of the neurons between 0Hz and 17Hz, which reflects

a rather high level of noise. The input current fluctuations reflect spontaenous ion

channel activity.

Heterogeneity

Biological neural structures stipulate a certain level of randomness in the model, be in

the neurons themselves or the network. Specifically, we assume Gaussian distributed

thresholds in the neurons to reflect neuron hetereogeneity. For type-I neurons, the

threshold of neuron i is Gaussian distributed by

Vth,i =−49mV+ξi , i = 1, . . . ,750

with random values ξi of zero mean and the variance 0.0001mV. In type II-neurons

the distribution of thresholds transforms into Gaussian distributed perturbations in

the external input constant in Eq. (11)

I1,i = I2 +ηi , i = 1, . . . ,250 ,

where I2 = 97µA is constant and identical in each simulation, ηi obeys a Gaussian

distribution with zero mean and variance 1µA.
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Connectivity

The neurons in each population are randomly connected to each other as well as the

two populations. The time scales of all synapses are identically chosen to τe = 5ms

and τi = 20ms corresponding to NMDA- and GABAA-receptors, respectively. The

network coupling constants are wee = 0.005mS, wie = 0.008mS, wei = 0.4mS, wii =
0.5mS where wnm, n,m = {e, i} denotes the weight at synapse of type n on neurons

of type m. The connectivity is sparse with probabilities pii = 0.05, pie = 0.02, pei =
0.01, pee = 0.005 reflecting cortical connectivity (Binzegger et al, 2004).

Tonic inhibition

The network considers tonic conductances gton = x · 20µS for type-I neurons and

gton = x · 100µS for type-II neurons where x ∈ [0;1]. These values are physiologi-

cally reasonable for GABAA receptors (Song et al, 2011; Farrant and Nusser, 2005).

Hence the conductance of tonic inhibition in inhibitory cells may be higher than for

excitatory cells. This is consistent with the experimental observation that the tonic

GABAA currents in pyramidal cells usually is significantly smaller than those in in-

terneurons (Song et al, 2011; Scimemi et al, 2005).

All numerical simulations of neural activity were performed by utilizing the BRIAN

simulator (Goodman and Brette, 2009). Typically the network is simulated for 5s with

integration time constant 0.5ms while ensuring that transients do not affect the results.

2.3.2 Coherence Measure

Analyzing the coherence of neural activity subjected to the level of tonic inhibition,

we employ the coherence measure κ based on the normalized cross-correlation of

neuronal pairs in the network (Wang and Buzsáki, 1996). The coherence of two neu-

rons x and y is computed by the cross-correlation of their spike trains X and Y , re-

spectively, within a time bin τbin over a time interval T

κxy(τbin) =
∑

K
l=1 X(l)Y (l)

√

∑
K
l=1 X(l)∑

K
l=1 Y (l)

, 0 ≤ κxy ≤ 1 .

The spike trains are given by X(l), Y (l) ∈ {0,1}, l = 1,2, . . . ,K and K = τbin/T , i.e.

X(l) = 1 if there is at least one spike in the bin.

The present work computes the population coherence measure

κ(τbin) =
N1

∑
i=1

N2

∑
j=1

κi j(τbin)

M

which is the coherence measure of pairs averaged over M pairs of spike trains of the

numbers N1, N2. For instance, M = N(N − 1)/2 for intra-network coherence with

N1 = N2 = N neurons, while M = N1N2 for coherence measures between different
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networks of number N1, N2 neurons. When the time bin τbin is very small (as chosen

in the subsequent analysis), strong synchrony renders κ(τbin) ≈ 1 and the smaller

κ(τbin) the less synchronized is the network activity.

2.3.3 Power spectrum

Moreover, to learn more about the subthreshold activity in the neuron populations

subjected to tonic inhibition, the work considers the population membrane potential

averaged over the ensemble of neurons. The corresponding power spectra of the aver-

aged membrane potential are computed on sub-sampled data with a sample interval of

5ms applying the Welch-method with an average over 10 simulations of the network

activity. These simulations are performed with different random initial conditions of

the membrane potential and different values of temporal fluctuations, heterogeneity

and connectivity realizations. The δ−frequency band is defined in the frequency in-

terval 0− 4Hz, the θ -band in the interval 4− 8Hz, the α−band in 8− 12Hz and

the β -band in 12− 25Hz. The power in the band is the integral of the power value

function over the corresponding frequencies in the interval.

3 Results

To consider tonic inhibition in neural populations, we begin with a short study of

tonic inhibition in single neurons and afterwards utilize the insights gained to study

tonic inhibition effects on firing activity in a single population. These studies consider

type-I and type-II neurons. Finally, to understand better how tonic inhibition affects

the interaction in a network, the last part investigates a small network of excitatory

and inhibitory neurons subjected to tonic inhibition. This increase of the hierarchical

level of structures from single neurons to a network of populations allows to compare

firing activity in small and large systems.

3.1 Single neurons

First we study the firing rate of a single neuron subjected to conductance fluctuations

induced by incoming Poisson-distributed spike trains and subjected to two levels of

tonic inhibition. The subsequent study of the nonlinear gain of such neurons reveals

new insights into tonic inhibition action. Both studies consider both type-I and type-II

neurons.

3.1.1 Firing rate

In type-I neurons, it is well-known that tonic inhibition has a strong subtractive effect

on the firing rate. According to our statistical approach the single neuron firing rate

reads

Fs(GE ,Gton) =
∫ ∞

−∞
ps(ge −GE)Θ(Vm(ge,Gton)−Vth) f (Vm(ge,Gton))dge (12)
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with V defined in Eq. (6) and f taken from Eq. (5). Figure 2 affirms the subtractive

effect in the F −GE curve for two levels of tonic inhibition Gton in accordance to

previous studies (Mitchell and Silver, 2003; Ulrich, 2003). In addition, Fig. 2 affirms

the analytical description (12) by good accordance to numerical results.

0 0.5 1 1.5 2
excitatory conductance G

E
 [nS]

0

100

200

300

400

fi
ri

ng
 r

at
e 

F 
[H

z]

control 
tonic inhibition

Fig. 2 Tonic inhibition shifts the firing rate-curve to larger conductances in type-I neurons. The statistical

firing rate Fs in Eq. (8) is plotted with respect to the mean excitatory conductance GE in the absence

(control, Gton = 0nS) and presence of tonic inhibition (Gton = 1nS). The symbols denote numerical results

from simulations of the LIF-model (1) and the lines represent the analytical function Eq.(12) unter control

conditions (filled dots and solid line) and in the presence of tonic inhibition (filled diamonds and dashed

line). Synaptic inhibition is neglected, i.e. gi = 0.

The shift to larger excitatory conductances while increasing the tonic inhibition

can be understood simply by taking a close look to Eq. (6). For Vm =Vth, dge/dgi > 0

if Ee > Ei which holds in most cases, i.e. tonic inhibition increases the firing thresh-

old. Moreover, tonic inhibition increases the effective time constant τ , cf. Eq. (6), and

thus slows down the firing and decreases the firing rate.

Moreover, in Fig. 2 it seems that the slope of the Fs −GE curve is different for

the control and tonic inhibition condition. This indicates an additional divisive effect,

see below.

Considering the same distributions of synaptic and extra-synaptic activity in type-

II neurons as in type-I neurons, Fig. 3 shows the single neuron firing rate subjected
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to the mean excitatory conductance GE and reveals a rather different firing rate curve

compared to type-I neurons. First, the neuron does not fire outside a certain interval

of excitatory conductances what confirms previous findings on the effect of the ex-

ternal current Iapp in the absence of synaptic and extra-synaptic receptors as known

from isolated noiseless Morris-Lecar neurons (Borisyuk and Rinzel, 2005), cf. Fig. 3

(control condition). Moreover adding tonic inhibition shrinks the interval of excita-

tory conductances for which the neuron fires, which to our best knowledge, is a new

finding.

To understand the results better, let us consider the resting state potential of the

Morris-Lecar model Eq. (7) and its stability analytically. For the constant conduc-

tance ge the resting potential V̄ stipulates dV/dt = 0, dw/dt = 0 in Eqs. (7) leading

to the implicit equation

Iapp −geEe −gtonEton −gLEL

= gCam∞(V̄ )(V̄ −CCa)+gKw∞(V̄ )(V̄ −VK)+(ge +gton +gL)V̄ . (13)

Linearising Eqs. (7) about the resting state given by V̄ and w̄ = w∞(V̄ ) and assum-

ing τw ≈ τw(V̄ ) (Borisyuk and Rinzel, 2005) yields the condition for an oscillatory

instability

K(ge,gton) =

−φC/τw −
(

gCam′
∞(V̄ )(V̄ −VCa)+gCam∞(V̄ )+gKw∞(V̄ )+ge +gton

)

> 0 .

(14)

The condition K(gc,gton) = 0 defines the critical frequency νc = νc(gc,gton) and for

K(ge,gton)> 0 ν(ge,gton) is the frequency above the Hopf-bifurcation with which the

system oscillates close to the stationary state. Hence the analytical firing rate reads

fana(ge,gton) = ν(ge,gton)Θ(ge −g1)Θ(g2 −ge)

with the lower and higher critical conductances gc = g1 and gc = g2, respectively.

Figure 3(a) shows the fana−ge-curve (symbols) for control and tonic inhibition. Con-

sidering Poisson-distributed input spike trains to the excitatory synapses, ge and gton

are taken from the distribution (10) and the resulting firing rate (based on the linear

approximation above) is a convolution of fana(ge,gton) and ps(ge −GE ,gton)

Fs(GE ,Gton) =
∫ ∞

−∞
ps(ge −GE ,Gton) fana(ge,gton)dge (15)

Figure 3(a) shows the resulting firing rate function Fs (lines) from Eq. (15). We ob-

serve that the interval borders of the firing rate function are smoothed and increasing

tonic inhibition decreases the firing rate. Interestingly, the firing rate in the inter-

val center exhibits a slightly increased firing rate for tonic inhibition. The numeri-

cally computed mean firing rate gained from a single stochastic type-II model neuron

(Fig. 3(b)) shows good qualitative accordance to the analytical finding.
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Fig. 3 Tonic inhibition shrinks the firing interval in type-II neurons. (a) The firing rate of the linearised

model Fs, cf. Eq. (15), for non-distributed values of ge (filled circles for Gton = 0mS, open circles for

Gton = 1.0mS) and distributed values of ge (solid line for Gton = 0mS, dashed line for Gton = 1.0mS).

(b) The numerically determined firing rate subjected to mean excitatory conductance GE for Gton = 0mS

(solid line with filled dots for data points) and Gton = 1.0mS (dashed line with diamonds for data points).

However, it is important to mention that the analytical result in Fig. 3(a) is based

on the linear approximation of the Morris-Lecar model close to its stationary state,

whereas the numerical solution shown in Fig. 3(b) involves the highly nonlinear dy-

namics of the model. This difference emerges in the firing rates of simulated neuron

where it is slightly smaller compared to the analytical firing rate close to the Hopf

bifurcation. In addition, increasing tonic inhibition increases slightly the firing rate in

the interval center, whereas it decreases the firing rate in the full interval in the full

model.

To understand the difference between the analytical and numerical result, Fig. 4

shows the system trajectories in phase space below (subthreshold) and beyond (su-

perthreshold) the stability threshold for two tonic inhibition values. Most prominently

the trajectories evolve along a regular spiral close to the stationary state (spiral cen-

ters in Fig. 4, subthreshold) well below the firing threshold at V = 0mV, whereas the

trajectories perform a deformed periodic orbit far from the stationary state beyong

the stability threshold, cf. Fig. 4 (right panel). This indicates that the nonlinear orbit

has a different periodic time than the linear spirals. Since the consecutive times the

trajectory passes through the threshold with dV/dt > 0 is the interspike interval, the

firing rate is different to the critical frequency as observed in Fig. 3.

3.1.2 Nonlinear gain

The slope of the firing rate, also called the nonlinear gain, is proportional to the

neuron responsiveness to external stimuli or the afferent activity from other neurons.

It is an important parameter to understand the dynamics of neurons in a network.

Figure 5 presents the slopes for two levels of tonic inhibition in both neuron types.

Firstly, the nonlinear gain is non-symmetric to the inflection point for type-I neurons

and exhibits a maximum value for a certain level of tonic inhibition. In contrast in

type-II neurons the absolute value of the maximum gain value decreases slightky
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Fig. 4 In type-II neurons, the analytical frequency close to stability threshold is different to the spike rate.

Left panel: the subthreshold trajectories show stable foci about the stable stationary state in the control

condition (black, gE = 1.0mS, Gton = 0.0mS) and for tonic inhibition (red, gE = 1.5mS, Gton = 0.2mS).

Right panel: superthreshold trajectories exhibit spirals close to the unstable resting state but nonlinear

orbits far from the stationary states for the control condition (black, gE = 1.1mS, Gton = 0.0mS) and for

tonic inhibition (red, gE = 1.53mS, Gton = 0.2mS). The numerical firing threshold is set to V = 0mV.

with increasing tonic inhibition.

Fig. 5 The nonlinear gain of the single neuron firing rate in the presence of tonic inhibition. Tonic inhibi-

tion may increase the nonlinear gain in type-I neurons (Leaky-Integrate and Fire) but decreases its absolute

value in type-II neurons (Morris-Lecar). Parameters are taken from Fig. 2 and 3.
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To gain further insights, Fig. 6 shows the nonlinear gain of type-I neurons sub-

jected to tonic inhibition levels for some specific mean excitatory conductances. In-

creasing tonic inhibition may decrease (GE = 0.15nS) or first increase and then de-

crease (GE = 0.4nS and GE = 1.0nS) the nonlinear gain. In addition, there is an

optimal combination of excitatory and tonic inhibition conductance for which the

nonlinear gain is maximum. Analytical investigations (not shown) confirm this nu-

merical finding.

Fig. 6 The nonlinear gain of type-I neurons subjected to tonic inhibition level for different excitatory

conductances GE = 0.15nS, GE = 0.4nS and GE = 1.0nS. Increasing tonic inhibition may decrease or

increase the nonlinear gain subjected to the excitatory conductance. Parameters are taken from Fig. 2.

3.2 Single neuron population

Similar to the previous section, the subsequent paragraphs shows tonic inhibition ef-

fects on the firing rate and nonliner gain in neural populations. Moreover, the work

considers the case of sparsely-coupled neurons and shows the link to neural mass

models by deriving a new transfer function for type-I neurons subjected to tonic in-

hibition.

3.2.1 Population firing rate

Mathematically, for type-I neurons the population firing rate function reads

FI(GE ,Gton,V̄th) =
∫ ∞

−∞

∫ ∞

−∞
ps(ge −GE ,Gton)N (Vth −V̄th)

×Θ(Vm(ge,Gton)−Vth) f (Vm(ge,Gton))dgedVth . (16)
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Since the further analytical treatment of populations of type-II neurons would well

exceed the major aim of this work, the subsequent paragraphs consider numerical

simulations of type-II neural populations only.

Figure 7 shows the population firing rate of typ-I neurons for two tonic inhi-

bition levels and we observe a smoothing of the Fs −GE curve by the distributed

thresholds. Importantly, the numerical (symbols) and analytical (lines) results for the

F −GE -curve show very good accordance. Moreover, increasing the heterogeneity

by an increased variance of the firing threshold distribution σ2
th renders the F −GE -

curve more flat and hence decreases the nonlinear gain. Since the nonlinear gain

determines the response of the population to external inputs, the heterogeneity re-

duces the responsiveness of the population. The figure also reveals clearly that the

responsiveness of heterogeneous populations is well reduced in the presence of tonic

inhibition since the nonlinear gain of the population firing rate is much smaller.
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Fig. 7 Population firing rate of heterogeneous type-I neural populations subject to tonic inhibition. Tonic

inhibition induces a strong subtractive effect, while heterogeneity renders the F −GE -curve more flat and

yields a strong divisive effect. The circles (Gton = 0mS) and diamonds (Gton = 1.0mS) denote results

obtained by numerical simulations of a set of N = 200 Leaky-Integrate and Fire model neurons. The solid

(Gton = 0mS) and dashed (Gton = 1mS) lines represent the population firing rate given by the analytical

expression in Eq. (16). The two levels of heterogeneity of firing threshold distributions are color-coded

(black: σth = 0.1mV, blue: σth = 10.0mV). Black lines resemble well the results in Fig. 2 due to the low

level of heterogeneity, whereas the blue lines show the effect of hetereogeneity.
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In a population of type-II neurons, tonic inhibition is expected to shrink the fir-

ing interval similar to the previous results (Fig. 3). Figure 8 affirms this finding in

single neurons for two different levels of firing threshold heterogeneity. Moreover,

increasing the heterogeneity smoothens the F −GE -curve and thus diminishes the

population firing rate in the firing interval, augments it outside and in total diminishes

the nonlinear population gain. Mathematically this smoothing effect results from the

convolution by the distributed firing thresholds. Hence heterogeneity reduces the re-

sponsiveness of the population. In addition tonic inhibition does not seem to affect

much the nonlinear population gain and thus does change slightly the responsiveness

of the population only. Although this aspect of tonic inhibition in type-II neurons

needs a more detailed discussion, this would exceed the major aim of the present

study and we refer to future work.
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Fig. 8 Population firing rate of heterogeneous type-II neural populations subject to tonic inhibition. Tonic

inhibition shrinks the firing interval, while heterogeneity smoothens the F −GE -curve and renders it more

flat. The circle-solid line (Gton = 0mS) and diamond-dashed line (Gton = 1.0mS) denote numerical results

of simulations of a set of N = 200 Morris-Lecar model neurons. The line color denotes the levels of

heterogeneity of firing threshold distributions (black: low heterogeneity with σapp = 0.1µA; blue: high

heterogeneity with σapp = 10.0µA).
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3.2.2 Nonlinear population gain

The previous paragraphs have indicated that the nonlinear population gain may change

with increasing the tonic inhibition. To quantify this gain change, Fig. 9 presents the

nonlinear population gain for both neuron types and for two levels of tonic inhibi-

tion. For both type-I and type-II neurons, tonic inhibition decreases the nonlinear

population gain and thus diminishes the responsiveness of the populations to external

stimuli.

Fig. 9 The nonlinear gain of the population firing rate function F(GE ) for type-I (Leaky-Integrate and

Fire) and type-II (Morris-Lecar) neurons in the presence of tonic inhibition. The results for type-I neurons

are based on the analytical expression, the results of type-II neurons is gained numerically by simulating

the population firing rate from N = 200 neurons and afterwards computed numerically the derivative. For

other parameters, see Fig. 7 and 8.

A more detailed study of type-I populations (Fig. 10) reveals that the nonlinear

population gain exhibits a maximum while increasing tonic inhibition, while the gain

exhibits a global maximum at low levels of mean excitatory conductance. However,

a similar maximum gain as revealed in single type-I neurons for larger excitatory

conductances (Fig. 6) has not been found.

The nonlinear population gain may be computed analytically by taking the deriva-

tive of F in Eq. (16) with respect to GE . Here it is necessary to note that the variance

of the incoming spike trains depend on the mean firing rate and thus σe = σe(GE).
We gain the expression

F ′ =
dF(GE ,Gton,V̄th)

dGE

=
∫ ∞

−∞

∫ ∞

−∞
qs(ge,GE ,Gton)N (Vth −V̄th)Θ(Vm(ge,Gton)−Vth) f (Vm(ge,Gton))dgedVth

(17)
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Fig. 10 Tonic inhibition may maximize the nonlinear population gain dependent on the mean excitatory

conductance. For parameters see Fig. 9.

with

qs(ge,GE ,Gton) = we

(

−τe

∂ ps(x,σe)

∂x
|x=ge−GE

+

√

τe

8

∂ ps(ge −GE ,y)

∂y
|y=σe

)

(18)

which will be helpful in the next section on connected neurons.

3.2.3 Connected neural population

In the previous paragraphs, we have assumed uncoupled neurons for simplicity while

cortical neurons are sparsely connected (Binzegger et al, 2004). To render the previ-

ous analytical description more realistic, now the input to single neurons is a sum of

external uncorrelated spike trains and the single neuron activity of other neurons in

the same population. In a first approximation, the input spike rate from other neurons

of number N is

λ j =
N

∑
j=1

w jlFs,l ,

Fs,l is the spike rate (12) of neuron l in the same population and w jl > 0 is the synaptic

weight of input from neuron l to neuron j. Hence the mean input rate and its variance
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read

G j
e = GE +weτe

N

∑
l=1

w jlFs,l (19)

σ j
e =

√

√

√

√

w2
eτe

2

(

λ +
N

∑
l=1

w jlFs,l

)

≈ σ2
e +we

√

τe

8

N

∑
l=1

w jlFs,l . (20)

with the assumption of weak coupling ∑
N
l=1 w jlFs,l/GE ≪ 1 resulting either from

strong sparseness or low synaptic weights. For type-I neurons, re-writing the proba-

bility density function (10) of neuron j

ps, j(ge −G j
e,σ

j
e ) =

1√
2πσ

j
e

e−(ge−G
j
e)

2/2(σ
j

e )
2

and expanding it about the uncoupled state we gain

ps, j(ge,G
j
e) ≈ ps, j(ge −GE ,σe)

+q j(ge −GE ,σe)
N

∑
l=1

w jlFs,l (21)

with σ
j

e = σ
j

e (G
j
e) and the nonlinear gain function ql taken from (18). Then the pop-

ulation firing rate for type-I neurons F reads

F̄(GE ,Gton,V̄th) =
1

N

N

∑
j=1

Fs, j

= FI(GE ,Gton,V̄th)+
1

N

N

∑
j,l=1

Q jw jlFs,l (22)

with

Q j(G
j
e,Gton,V

j
th) =

∫ ∞

−∞
q j(ge,G

j
e,Gton)N (V j

th −V̄th)Θ(Vm(ge,Gton)−V
j

th) f (Vm(ge,Gton))dge .

and the population firing rate of uncoupled neurons (16). If the inter-neuron coupling

is weak as assumed before, then the firing rate of each neuron is the mean-field firing

rate of the population, i.e. Fs,l ≈ F̄ . For identical small weights wi j = γ/N > 0, finally

we gain

F̄(GE ,Gton,V̄th) = FI(GE ,Gton,V̄th)+ γF̄
1

N

N

∑
j=1

Q j

= FI(GE ,Gton,V̄th)+ γF̄F ′
I (GE ,Gton,V̄th)
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and consequently

F̄(GE ,Gton,V̄th) =
FI(GE ,Gton)

1− γF ′
I (GE ,Gton)

(23)

where F ′ is the nonlinear population gain taken from Eq. (17) and we used ∑ j Ql/N ≈
∫

Q(GE ,Gton,Vth)dVth which is valid for a large numnber of neurons in the popula-

tion.

Equation (23) shows that the larger the nonlinear gain the larger the deviation of

the mean-field population firing rate from the population rate of uncoupled neurons.

More detailed, if F ′ > 0 as in type-I neurons then the weak coupling of neurons

yields an enhancement of the population firing rate. Since tonic inhibition enhances

the nonlinear gain, it has a similar effect as an increased neural coupling in the net-

work. In contrast, populations of type-II neurons exhibit F ′ > 0 for smaller excitation

and F ′ < 0 for larger excitation yielding an increase and decrease of the population

firing rate by coupling of neurons. Since tonic inhibition reduces the nonlinear gain

of type-II neurons slightly only, it poorly modifies the effect of coupling.

3.2.4 Implementation in neural mass models

After studying the tonic inhibition effect in spiking neural networks, the question

arises how one can utilize the gained insights in other neural population models, such

as the neural mass or neural field models (Bressloff, 2012). A major element in neural

mass models is the nonlinear transfer function S, which is the population firing rate

subjected to the mean dendritic activity in the population. In the standard derivation

of the function (Bressloff, 2012), one assumes that the membrane potential at synaptic

receptors V (t) is always close the resting membrane potential Vrest . This assumption

implies type-I neurons in which the time constant of the neuron membrane is small

compared to the time scale of the synaptic response given by the conductance g(t).
Consequently, the voltage-gated current at the synapse I(t) = g(t)(V (t)−E) induced

by an incoming spike with the reversal potential of the corresponding ion channel at

the synaptic receptor E reads I(t)≈ g(t)(Vrest −E) and the corresponding extracellu-

lar potential is approximately U(t)∼ g(t). Considering many receptors and neurons,

the spatial and temporal mean of this potential is one of the activity variables in neu-

ral mass models. The transfer function S depends on this mean variable U which,

in a more general formulation, includes all potentials U j generated by currents at

synaptic or extra-synaptic receptors, i.e. S = S[∑ j U j]. For instance, in the presence

of excitatory and inhibitory receptors S = S[Ue −Ui].
In the presence of incoming neural spike trains, g(t) is a stochastic process with

mean and variance given in Eqs. (9). Excitatory synaptic responses and extra-synaptic

tonic inhibition lead to corresponding mean conductances Ge and Gton which are pro-

portional to the corresponding currents which are proportional to mean extra-cellular

potentials, i.e. Ue = k1GE and Uton = k2Gton with constants k1, k2 > 0. Moreover, we

identify the population firing rate in the neural mass model with the population fir-

ing rate F given by Eq. (16) derived from spiking neural networks of type-I neurons.

This identification resembles very well the original derivation of the population firing
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rate (Amit, 1989; Wilson and Cowan, 1972; Hutt, 2012) where neurons are consid-

ered as McCulloch-Pitts neurons, i.e. f (Vm(ge,Gton)) =Θ(Vm −Vth). This identifica-

tion extends neural mass models by considering type-I neurons by the specific choice

of f (Vm(ge,Gton)) as discussed in a recent work (Hutt, 2012). Consequently, the new

transfer function in neural mass models for type-I neurons reads

SI = FI [Ue/K1,Uton/k2,V̄th] (24)

However Eq. (24) is hardly useful in analytical studies since the integral involved is

not solvable in a closed form. To this end, we suggest to simplify F but retain major

features of the F −GE curve. A recent preliminary study (Hutt, 2012) has shown that

one of the most important differences of F compared to the original standard sigmoid

function is its missing symmetry to its inflection point, i.e. the nonlinear gain is not

symmetric as shown in Fig. 9. Moreover, tonic inhibition has a clear subtractive effect

and neglecting the divisive effect of tonic inhibition is a reasonable first approxima-

tion. Taking these elements into account, we suggest a new single-neuron firing rate

function fapprox

f (Vm(ge,Gton)) ≈ fapprox(ue/k1,Uton/k2,Vth)

= fmax

(

1− e−γ(ue−Uton−Vth)
)

Θ (ue −Uton −Vth) (25)

with a suitable value of γ > 0. Then the new approximated transfer function reads

SI,approx(Ue,Uton,V̄th) =
1

2πσeσth

∫ ∞

−∞

∫ ∞

−∞
e−(ue−Ue)

2/2σ2
e −(Vth−V̄th)

2/2σ2
th

× fapprox(ue,Uton,Vth)duedVth . (26)

Recall that σ2
e depends on Ge by Eqs. (9) and hence σ2

e = K3Ue with K3 = we/2K1.

The approximation (25) is motivated by its analytical simplicity and the limit case of

standard neural mass models for γ → ∞

fapprox(ue −Ue,Uton,Vth)→ fmaxΘ (Ue −Uton −Vth) , γ → ∞ . (27)

Hence, γ < ∞ reflects biological properties of type-I neurons. Computing analytically

the new transfer function (26) leads to

SI,approx(Ue,Uton,V̄th) =
fmax

2

(

1+Φ

(

Ue −Uth√
2σ(Ue)

))

− fmax

2
e−γ(Ue−Uth)+γ2σ2(Ue)/2

(

1+Φ

(

Ue −Uth − γσ2(Ue)√
2σ(Ue)

))

(28)

with the effective variance σ2(Ue) = σ2
e (Ue) + σ2

th = K3Ue + σ2
th, the mean firing

threshold Uth = Uton + V̄th and the Gaussian error function Φ (see the Apendix for

more details on the derivation). The first term in (28) represents the sigmoidal func-

tion for McCulloch-Pitts neurons subjected to Poisson noise and the second term

takes into account specifically the type-I properties for γ < ∞. We observe that the

tonic inhibition contribution Uton shifts the mean firing threshold V̄th, i.e. increasing

tonic inhibition increases the mean firing threshold of the population. For illustration,



GABAergic tonic inhibition in single neurons and neural populations 23

Fig. 11 shows the single neuron firing rate fapprox and the resulting new transfer func-

tion in the absence and presence of tonic inhibition.

Fig. 11 The reduced single neuron model and the resulting new transfer function. Panel (a) compares

the single neuron firing rate of the Leaky-Integrate and Fire model (dotted line) given in Eq. (5) and the

reduced model defined in Eq. (25). Panel (b) presents the resulting new transfer function given in Eq. (28)

with σ =
√

18mV. Please note that Ue originates from the the dendritic current, it adds up on the resting

potential without input El and the mean membrane potential in the population is El +Ue. Parameters are

γ = 1/mV, σth =
√

2mV, K3 = 0.5.

It is important to point out that the new transfer function allows to study tonic

inhibition in neural mass and neural field models Coombes (2006) that attracts much

attention to model e.g. electroencephalographic activity measured during general

anaesthesia (Bojak and Liley, 2005; Steyn-Ross et al, 2001; Sleigh et al, 2011; Hutt

and Longtin, 2009; Hutt, 2013; Hutt et al, 2013). In this context, one important hy-

pothesis states that the loss of consciousness in subjects originates from a jump of

high neural steady state activity to a neural resting state of low activity (Steyn-Ross

et al, 2001). Employing a recent neural field model (Hutt and Longtin, 2009; Hutt,

2013) involving a fully-connected network of excitatory and inhibitory neurons and

excitatory and inhibitory synapses, the spatially constant resting state potential Urest

is given implicitely by

Urest = (ae −ai p)SI,approx[Urest −Uton −V̄th] . (29)

This resting state reflects a state of spatially constant population activity where all

neurons are highly synchronized. This state contrast to the activity states in sparsely-

connected populations investigated in the sections above. For the sake of simplicity,

here we assume an identical transfer function SI,approx for excitatory and inhibitory

neurons with identical mean firing thresholds V̄th. The constants ae and ai in Eq. (29)

are the excitatory and inhibitory synaptic gain, resp., and p ≥ 1 reflects the synaptic



24 Axel Hutt, Laure Buhry

action of the anaesthetic drug propofol on synaptic receptors. The value p = 1 re-

flects the absence of propofol while p−1 is proportional to the on-site concentration

of propofol.

Propofol affects both synaptic and extra-synaptic receptor action, but the relation of

propofol on-site concentration and the level of tonic inhibition is not well-understood.

Hence a first ansatz is the linear relationship Uton = k · p for simplicity, where k > 0

represents the sensitivity of extra-synaptic receptors to propofol. Figure 12(a) presents

the resting states Urest subjected to the drug concentration factor p for three different

values of k. We observe the occurence of three resting states for smaller values of p

where the center branch is linearly unstable (dashed line, analysis not shown). For

larger p a single resting state at a low potential exist only revealing a saddle-node

bifurcation. The plot illustrates the phase transition hypothesis: starting at a high

activity level resting state before drug induction (p = 1), increasing the drug concen-

tration leads to the loss of the resting state at high activity level and the neural system

drops to the only existing stable low activity resting state reflecting the loss of con-

sciousness. Moreover, the corresponding nonlinear gain at the upper stable stationary

state (Fig. 12(b)) increases with larger tonic inhibition (k is larger with higher tonic

inhibition level) and while the system approaches the saddle-node bifurcation point.

The gain of the lower stationary state is close to zero. The gain enhancement reflects

the increasing sensitivity of extra-synaptic receptors to external stimuli or input from

other areas. Summarizing, increasing the tonic inhibition increases the nonlinear gain

of the high-activity stationary state.

Fig. 12 The resting state potential (a) and the nonlinear gain (b) subjected to the drug concentration factor

p. Solid (dashed) lines encode stable (unstable) stationary states. Parameters are ae = 0.17, ai = 0.07,

γ = 1.0/mV, σt h =
√

2mV, K3 = 0.5.

3.3 Network of networks

The anaesthetic propofol modifies GABAergic receptor dynamics and changes neu-

ral firing activity, exerting either inhibition or even excitation (Borgeat et al, 1991;
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McCarthy et al, 2008). It is also known that anesthetic agents such as propofol in-

duce changes in the electroencephalographic recordings (EEG) indicating that they

alter the subthreshold activity of excitatory neurons since EEG is known to origi-

nate from subthreshold dendritic currents on spatially aligned apical cortical den-

drites (Nunez and Srinivasan, 2006). In order to investigate how tonic inhibition af-

fects sub-threshold activity and hence induces changes in EEG and how it modifies

neural firing activity in a biologically realistic network, we perform a numerical study

of the population spiking activity and the power spectra of the subthreshold activity

in excitatory neurons.

Figure 13 presents the behavior of the network shown in Fig. 1 when tonic inhi-

bition is applied. In the absence of tonic inhibition (Fig. 13(a)), the network displays

synchronized patterns of oscillations in both networks at about 9.5Hz (α-band) vis-

ible in the raster plots of the two populations. This oscillation also shows up in the

power spectrum of the subthreshold activity of the pyramidal neuronal population.

When weak tonic inhibition is added (Fig. 13(b)), the spiking activity slows down

slightly in both networks while the synchrony visibly decreases. This can be thought

of as a right-shift of the F −GE curve of type-I neurons yielding a lower population

firing rate. In type-II neurons the excitation window becomes smaller while neurons

close to the excitation window center decrease their frequency slightly only. More-

over, the frequency of the maximum power spectral density shifts to lower values, i.e.

the amplitude of the α−activity decreases.

As the level of tonic inhibition keeps increasing (Fig 13(c)), the neurons fire less syn-

chronized accompanied by an extinction of α-activity in the excitatory neuron firing.

A detailed study on when the α−activity vanishes reveals that the frequency of the

excitatory population decreases while increasing x whereas the inhibitory population

retains its α−rhythm much longer (not shown). This is in line with the finding in

the previous sections above on single type-II neurons and their populations: tonic in-

hibition decreases the excitation window, but almost retains the firing frequency in

the window center. In addition, the subthreshold activity of the excitatory population

decreases in power as well.

Finally, when the level of tonic inhibition x increass further (x = 1.2, not shown), the

firing of excitatory neurons stops and the inhibitory neurons remain active only for

a transient period before its neuronal activity fully dies out as well. In this case the

F −GE curve for excitatory (type-I) neurons is shifted much to the right to exhibit a

low population firing rate and the excitation window for the inhibitory (type-II) neu-

rons has vanished.

To further quantify the effect of tonic inhibition on the network activity, Fig. 14(a)

presents the intra-population coherence in the excitatory and inhibitory population

and the inter-population coherence between the excitatory and inhibitory population.

The coherence in the excitatory population (dashed grey curve) decreases monotoni-

cally with the increase of tonic inhibition. In contrast the coherence of the inhibitory

population (plain black curve) exhibits a minimum at x ≈ 0.45 and increases as the

activity of the excitatory population becomes more random for x > 0.45. The co-

herence between the pyramidal and the interneuron populations (plain grey curve) is

maximum at about x = 0.16 (zoom in not shown), a further increase of tonic inhi-
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a)

b)

c)

Time(s) Time(s)

Fig. 13 Raster plots of inhibitory and excitatory populations and smoothed power spectrum of the

membrane voltage of the excitatory cells. (a) without tonic inhibition. (b) tonic inhibition, x = 0.3,

i.e. gton = 6µS and gton = 30µS in excitatory and inhibitory neurons. (c) tonic inhibition x = 0.8, i.e

gton = 16µS and gton = 80µS in excitatory and inhibitory neurons.

bition diminishes the coherence in conjunction with the reduction of the excitatory

activity. A computation of the coherence measure κ for various bin sizes τ shows

that it does not increase linearly with τ (not shown) and hence the latter interpreta-

tion holds, cf. (Wang and Buzsáki, 1996).

Moreover, Fig. 14(b) shows that the ratio between the amplitude of δ -rhythms

and the amplitude of α-rhythms (dashed black curve) increases as a sigmoid-like

function of the propofol concentration x and becomes larger than 1 from x = 0.575,

namely the quantity of α-rhythms is then smaller than the quantity of δ -rhythms.

The ratio between the amplitude of θ and α-rhythms (plain grey curve) increases for

x < 0.6, becoming larger than 1 for x > 0.49. The curve of the θ -ratio crosses the

curve of the δ -ratio at x = 0.65 where the amplitude of δ−activity remains higher.

The ratio between β− and α−activity (dotted grey line) is larger than the θ −α
ratio for x < 0.19, and larger than the δ −α ratio for x < 0.32. For larger values of

x the θ ratio then is smaller than the two other ratios reaching a maximum for x = 0.8.
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a) b)

x x

Fig. 14 Summary of the effects of tonic inhibition on the synchrony and the subthreshold activity of

the spiking neural network. (a) Coherence measure of the neuronal population as a function of propofol

concentration (x). b) Ratio of the power values in the δ -, θ− and β−band and the power in the α .

4 Discussion

4.1 Decrease of population firing rate

Tonic inhibition induces a shunting effect and inhibits firing in both type-I and type-

II neurons by a decrease of both the single neuron (cf. Figs. 2 and 3) and population

firing rate (Figs. 7, 8 and 13). Such an effect is well-known in single neurons (Koch,

1999; Mitchell and Silver, 2003; Ulrich, 2003; Brickley and Mody, 2012) but, to our

best knowledge, has not been found yet in populations. We mention that most pre-

vious studies investigate the effect of shunting inhibition on type-I neurons, whereas

the present work to our best knowledge is one of the first to consider type-II neurons

as well. The most prominent difference between type-I and type-II neurons is the

way how the diminuation of neural firing emerges. In type-I neurons tonic inhibition

decreases the neuron excitation leading to a strong subtractive effect, whereas tonic

inhibition in type-II neurons shrinks the window of excitation level of the neuron.

This latter specific effect leads to a strong diminuation of firing activity close to the

border excitations, whereas the neurons excited in the center of the excitation inter-

val decrease their firing much less. This stability towards tonic inhibition explains the

robustness of type-II tonic firing observed in Fig. 13.

4.2 Both subtractive and divisive effect by tonic inhibition

Figures 2 shows that tonic inhibition moves the firing rate curve horizontally in

single type-I neurons however synchronously affects the nonlinear gain as seen in

Figs. 5 and 9 reflecting a divisve effect. This result is in good accordance to the

literature on single type-I neurons pointing out a subtractive and divisive effect of

inhibition (Carandini and Heeger, 1994; Doiron et al, 2001). The present work con-

tributes to this discussion and extends previous results by considering neural popula-

tions. Moreover, our results reveals a maximum nonlinear gain due to tonic inhibition

in single neurons (Figs. 6) indicating an optimal level of tonic inhibition. This ef-

fect is also found in neural populations as shown in Figs. 9 and 10 and in the new

neural mass model, cf. Fig. 12(b). The nonlinear gain is proportional to the neural

firing response to small excitation variations originating from neurons in the same
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population or other neural structures. Since experimental studies indicate that tonic

inhibition is supposed to regulate the state of consciousness, e.g. via extra-synaptic

receptors (Brickley and Mody, 2012; Cavelier et al, 2005; Belelli et al, 2009) and po-

tentiate the action of anaesthetic agents (Kretschmannova et al, 2013), the optimum

gain seems to reflect one underlying neural mechansim in the regulation of anaes-

thetic action and consciousness.

Type-II neurons also exhibit such a local maximum and the absolute value of the

nonlinear gain decreases with increasing level of tonic inhibition, cf. Figs. 5 and 9.

However, in contrast to type-I neurons, increasing tonic inhibition does not maximize

the gain in type-II neurons but decreases it only.

4.3 Analytical description of firing rates

The statistical approach employed resembles a previous approach of Amit and Brunel

(1997); Roxin et al (2011) on type-I neurons, which however is strongly based on the

specific Leaky Integrate-and-Fire model. Our statistical approach promises to apply

to more models, such as the Morris-Lecar model for a type-II neuron.

The work presents both analytical and numerical simulations of tonic inhibition

in single neurons and single populations and the analytical results match the numer-

ical simulation results very well in the case of type-I neurons. For type-II neurons,

the statistical approach is also valid but more difficult to apply since the single neu-

ron firing rate is not known analytically due to the nonlinear dynamical nature for

most models. However the first attempt to consider the firing rate based on a linear

approaximation yields reasonable accordance to the nonlinear firing rate, cf. Fig. 3.

These results point out the power of the statistical approach given in equations (12)

and (16). The present work does not proceed the study of these new analytical models

since this would exceed the major aim of the work, i.e. the study of tonic inhibition,

the analytical insight promise a new avenue of analysis of population firing statistics.

In order to study the impact of tonic inhibition, the first analytical description of

population activity neglects the interaction of neurons. A subsequent analytical study

of the population firing rate of sparsely connected neurons in section 3.2.3 reveal

that the sparse coupling affects the firing rate mainly about the maximum nonlinear

gain, cf. Eq. 23, whereas low and high firing rate are poorly affected.

Moreover the new population firing rate allows to re-derive the transfer function ap-

plied in neural mass and neural field models and gain a novel transfer function taking

into account tonic inhibition. This bridge to neural mass models is supposed to have

a strong impact on such models due to their growing popularity in computational

neuroscience and the growing insight into the importance of tonic inhibition effects

in biological neural structures. A first insight gives the study of stationary states in

the presence of both phasic and tonic inhibition in the context of propofol anaesthe-

sia, cf. Fig.12(a). We observe that tonic inhibition lowers the propofol concentration

(encoded by the factor p) for which a high-activity stationary state exists, i.e. the

stronger the tonic inhibition the more probable is a low-activity stationary state in

neural populations. In addition the increased sensitivity modeled by the nonlinear

gain (Fig.12(b)) is accompanied by an earlier destruction of the high-activity resting
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states. Hence tonic inhibition facilitates the destruction of high-activity resting states

and the drop of neural activity to lower activity. Taking up the idea of the loss of

consciousness in general anaesthesia caused by a jump from high to low activity as

proposed by Steyn-Ross et al. (Steyn-Ross et al, 2001), the previous results indicate

that the tonic inhibition facilitates the loss of consciousness.

4.4 Anaesthetic action

On the microscopic level, extra-synaptic receptors are sensitive to anaesthetic drugs

such as propofol (Bai et al, 2001; McDougall et al, 2008; Bieda and MacIver, 2004)

and induce tonic currents at inhibitory GABAA-receptors. On the macroscopic level,

one of the major non-invasice indicators for the depth of anaesthesia in patient is

the electroencephalogram (EEG) (Ballard et al, 2012; Sleigh et al, 2011) which is

known to originate from electric population activity (Nunez and Srinivasan, 2006).

To learn more about the impact of tonic inhibition on EEG (see also (Kretschman-

nova et al, 2013)), Fig. 13 shows the power spectrum of the mean membrane potential

which is supposed to be linked to EEG (Nunez and Srinivasan, 2006). In the excita-

tory population, we observe a clear diminuation of spectral power in the α−band

with increasing tonic inhibition (Fig. 13) similar to previous experimental findings in

occipital EEG-electrodes under propofol-anaesthesia (Cimenser et al, 2011; Gugino

et al, 2001). Synchronously the decrease of α-power and the enhancement of spectral

power in the δ−band in excitatory neurons (Fig. 14) reflect the experimental finding

in occipital EEG-electrodes (Cimenser et al, 2011; Gugino et al, 2001).

In frontal EEG-electrodes, the spectral power in the α−band increases at lower

doses of propofol (sedation phase) and hence shows the opposite spectral power evo-

lution. This enhancement can be understood by an increase of the nonlinear gain at

the upper stationary state caused by propofol-induced phasic inhibition as shown in

a previous study of a neural mass model (Hutt, 2013). Figure 12(b) reveals that tonic

inhibition further increases the nonlinear gain in addition to the phasic inhibition and

hence augments the sensitivity to incoming activity.

Since the neural mechanism during the loss of consciousness is unknown, sev-

eral hypothesis have been put forward (Hutt et al, 2013). Besides the hypothesis of

Steyn-Ross et al discussed above, one other prominent hypothesis explains the loss

of consciousness by a loss of functional connectivity between brain areas as revealed

experimentally (Boly et al, 2012; Mashour, 2005; Murphy et al, 2011; Alkire et al,

2008; Liu et al, 2013). Similar model results are found in our spiking neural network

revealing clear effects of tonic inhibition of the inter-neuron coherence (Fig. 14):

tonic inhibition diminished coherence between neurons in the excitatory population

reflecting cortico-cortical interactions (Fig. 14) what has been found between the

frontal and parietal cortex in a Bayesian model extracted from experimental EEG

data (Boly et al, 2012).

At a first glance the different EEG-spectral features and their explanations seems

to contracdict each other. However we point out that frontal and occipital EEG is

generated in different brain areas involving different neural structures and possible

neuron interactions as revealed in a recent experimental animal study on the anaes-
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thetic effect in prefrontal and occipital visual cortex (Sellers et al, 2013). Our results

reveal an initial increase and then decrease of the nonlinear gain in single type-I neu-

rons and their sparsely-connected populations while increasing tonic inhibition and a

gain increase in fully-connected and synchronized populations. The numerical sim-

ulations of sparsely-connected networks show a clear diminuation of spectral power

in the excitatory population which can be explained by the loss of coherence in the

population. In contrast successful neural mass models of EEG (Hindriks and van

Putten, 2012; Hutt, 2013) explain the power increase by an enhanced nonlinear gain.

Consequently the connectivity type of neuron networks and their ability to synchro-

nize may decide whether tonic inhibition yields a diminuation or enhancement of the

population gain.

5 Conclusion

The obvious importance of extra-synaptic GABA-receptors for the information pro-

cessing in neural populations triggered the current theoretical work. It elaborates a

recently proposed statistical approach that allows to traverse the scales from single-

neuron level to mesoscopic population level. This analytical link permits to derive

analytical expressions for the steady-state population firing rate based on the steady-

state single neuron firing rate and hence allows to study analytically the effect of

extra-synaptic tonic inhibition in neural populations. This link is examined for both a

type-I (Leaky Integrate-and-Fire) and a type-II (Morris-Lecar) model. Extra-synaptic

GABA-receptors are highly sensitive to anaesthetic drugs and the present work re-

veals a strong effect of tonic inhibition on the nonlinear gain in single neurons and

neural populations. Our work explains different spectral features observed in EEG

under anaesthesia by the tonic inhibition effect on the nonlinear gain in line with pre-

vious studies on phasic inhibition (Hindriks and van Putten, 2012; Hutt, 2013). We

conclude that one of the major effects of tonic inhibition is the control of sensitivity

and network interactions by tuning of the nonlinear gain. Future work will extend

the analysis of population firing statistics to nonlinear dendritic integration effects of

tonic inhibition in single neurons Zhang et al (2013) and further elaborate this as-

pect in the context of populations to explain better different EEG-spectral features

measured under anaesthesia and validate hypthesis on the loss of consciousness.
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