M. Alkire, A. Hudetz, and G. Tononi, Consciousness and Anesthesia, Science, vol.322, issue.5903, pp.876-880, 2008.
DOI : 10.1126/science.1149213

D. Amit, Modeling brain function: The world of attactor neural networks, 1989.
DOI : 10.1017/CBO9780511623257

D. Amit and N. Brunel, Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex, Cerebral Cortex, vol.7, issue.3, pp.237-252, 1997.
DOI : 10.1093/cercor/7.3.237

B. Antkowiak, In vitro networks: cortical mechanisms of anaesthetic action, British Journal of Anaesthesia, vol.89, issue.1, pp.102-111, 2002.
DOI : 10.1093/bja/aef154

D. Bai, G. Zhu, P. Pennefather, M. Jackson, J. Macdonald et al., Distinct Functional and Pharmacological Properties of Tonic and Quantal Inhibitory Postsynaptic Currents Mediated by Gamma-Aminobutyric Acid A Receptors in Hippocampal Neurons, Mol Pharmacol, vol.59, issue.4, pp.814-824, 2001.

C. Ballard, E. Jones, N. Gauge, D. Aarsland, O. Nilsen et al., Optimised Anaesthesia to Reduce Post Operative Cognitive Decline (POCD) in Older Patients Undergoing Elective Surgery, a Randomised Controlled Trial, PLoS ONE, vol.107, issue.6, p.37410, 2012.
DOI : 10.1371/journal.pone.0037410.s002

D. Belelli, N. Harrison, J. Maguire, R. Macdonald, M. Walker et al., Extrasynaptic GABAA Receptors: Form, Pharmacology, and Function, Journal of Neuroscience, vol.29, issue.41, pp.12757-12763, 2009.
DOI : 10.1523/JNEUROSCI.3340-09.2009

M. Bieda and M. Maciver, Major Role For Tonic GABAA Conductances in Anesthetic Suppression of Intrinsic Neuronal Excitability, Journal of Neurophysiology, vol.92, issue.3, pp.1658-1667, 2004.
DOI : 10.1152/jn.00223.2004

T. Binzegger, R. Douglas, and K. Martin, A Quantitative Map of the Circuit of Cat Primary Visual Cortex, Journal of Neuroscience, vol.24, issue.39, pp.8441-8453, 2004.
DOI : 10.1523/JNEUROSCI.1400-04.2004

I. Bojak and D. Liley, Modeling the effects of anesthesia on the electroencephalogram, Physical Review E, vol.71, issue.4, p.41902, 2005.
DOI : 10.1103/PhysRevE.71.041902

M. Boly, R. Moran, M. Murphy, P. Boveroux, M. Bruno et al., Connectivity Changes Underlying Spectral EEG Changes during Propofol-Induced Loss of Consciousness, Journal of Neuroscience, vol.32, issue.20, pp.7082-7090, 2012.
DOI : 10.1523/JNEUROSCI.3769-11.2012

A. Borgeat, C. Dessibourg, V. Popovic, D. Meier, M. Blanchard et al., A194 PROPOFOL AND SPONTANEOUS MOVEMENTS, Anesthesiology, vol.73, issue.Supplement, pp.24-27, 1991.
DOI : 10.1097/00000542-199009001-00193

A. Borisyuk and J. Rinzel, Course 2 Understanding neuronal dynamics by geometrical dissection of minimal models, Proc. Les Houches Summer School, pp.19-52, 2003.
DOI : 10.1016/S0924-8099(05)80008-3

S. Brickley and I. Mody, Extrasynaptic GABAA Receptors: Their Function in the CNS and Implications for Disease, Neuron, vol.73, issue.1, pp.23-34, 2012.
DOI : 10.1016/j.neuron.2011.12.012

M. Carandini and D. Heeger, Summation and division by neurons in primate visual cortex, Science, vol.264, issue.5163, pp.1333-1336, 1994.
DOI : 10.1126/science.8191289

P. Cavelier, M. Hamann, D. Rossi, P. Mobbs, and D. Attwell, Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences, Progress in Biophysics and Molecular Biology, vol.87, issue.1, pp.3-16, 2005.
DOI : 10.1016/j.pbiomolbio.2004.06.001

S. Ching, A. Cimenser, P. Purdon, E. Brown, N. Kopell et al., Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness Tracking brain states under general anesthesia by using global coherence analysis, Proc Natl Acad Sci Proc Natl Acad Sci, vol.108, issue.21, pp.8832-8837, 2010.

S. Coombes, Neural Fields, p.1373, 2006.
DOI : 10.4249/scholarpedia.1373

B. Doiron, A. Longtin, N. Berman, and . Lmaler, Subtractive and Divisive Inhibition: Effect of Voltage-Dependent Inhibitory Conductances and Noise, Neural Computation, vol.71, issue.1, pp.227-248, 2001.
DOI : 10.1111/j.1469-7793.1998.183bo.x

M. Farrant and Z. Nusser, Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors, Nature Reviews Neuroscience, vol.18, issue.3, pp.215-229, 2005.
DOI : 10.1006/frne.1999.0188

B. Foster, I. Bojak, and D. Liley, Population based models of cortical drug response: insights from anaesthesia, Cognitive Neurodynamics, vol.21, issue.3, pp.283-296, 2008.
DOI : 10.1007/s11571-008-9063-z

J. Glykys and I. Mody, Activation of GABAA Receptors: Views from Outside the Synaptic Cleft, Neuron, vol.56, issue.5, pp.763-770, 2007.
DOI : 10.1016/j.neuron.2007.11.002

D. Goodman and R. Brette, The Brian simulator, Frontiers in Neuroscience, vol.3, issue.2, pp.192-197, 2009.
DOI : 10.3389/neuro.01.026.2009

L. Gugino, R. Chabot, L. Prichep, E. John, V. Formanek et al., Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane, British Journal of Anaesthesia, vol.87, issue.3, pp.421-428, 2001.
DOI : 10.1093/bja/87.3.421

M. Hamann, D. Rossi, and D. Attwell, Tonic and Spillover Inhibition of Granule Cells Control Information Flow through Cerebellar Cortex, Neuron, vol.33, issue.4, pp.625-633, 2002.
DOI : 10.1016/S0896-6273(02)00593-7

R. Hindriks and M. Van-putten, Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms, NeuroImage, vol.60, issue.4, pp.2323-2344, 2012.
DOI : 10.1016/j.neuroimage.2012.02.042

C. Houston, T. Mcgee, G. Mackenzie, K. Troyano-cuturi, P. Rodriguez et al., Are Extrasynaptic GABAA Receptors Important Targets for Sedative/Hypnotic Drugs?, Journal of Neuroscience, vol.32, issue.11, pp.3887-3897, 2012.
DOI : 10.1523/JNEUROSCI.5406-11.2012

A. Hutt, The population firing rate in the presence of GABAergic tonic inhibition in single neurons and application to general anaesthesia, Cognitive Neurodynamics, vol.63, issue.1, pp.227-237, 2012.
DOI : 10.1007/s11571-011-9182-9

URL : https://hal.archives-ouvertes.fr/hal-00640064

A. Hutt, The anaesthetic propofol shifts the frequency of maximum spectral power in EEG during general anaesthesia: analytical insights from a linear model, Front Comp Neurosci, vol.7, issue.2, 2013.

A. Hutt and A. Longtin, Effects of the anesthetic agent propofol on neural populations, Cognitive Neurodynamics, vol.12, issue.7, pp.37-59, 2009.
DOI : 10.1007/s11571-009-9092-2

URL : https://hal.archives-ouvertes.fr/inria-00434443

A. Hutt, J. Sleigh, A. Steyn-ross, and M. Steyn-ross, General anaesthesia, Scholarpedia, vol.8, issue.8, p.30485, 2013.
DOI : 10.4249/scholarpedia.30485

URL : https://hal.archives-ouvertes.fr/hal-00872146

C. Koch, Biophysics of Computation Extrasynaptic receptors of neurotransmitters: Distribution, mechanisms of activation, and physiological role, Oxford Kopanitsa MV Neurophysiology, vol.29, issue.6, pp.448-458, 1997.

K. Kretschmannova, R. Hines, R. Revilla-sanchez, M. Terunuma, V. Tretter et al., Enhanced Tonic Inhibition Influences the Hypnotic and Amnestic Actions of the Intravenous Anesthetics Etomidate and Propofol, Journal of Neuroscience, vol.33, issue.17, pp.7264-7273, 2013.
DOI : 10.1523/JNEUROSCI.5475-12.2013

D. Kullmann, A. Ruiz, D. Rusakov, R. Scott, A. Semyanov et al., Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why?, Progress in Biophysics and Molecular Biology, vol.87, issue.1, pp.33-46, 2005.
DOI : 10.1016/j.pbiomolbio.2004.06.003

X. Liu, S. Pillay, R. Li, J. Vizuete, K. Pechman et al., Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol, NeuroImage, vol.83, pp.581-592, 2013.
DOI : 10.1016/j.neuroimage.2013.07.003

M. London, M. Larkum, and M. Häusser, Predicting the synaptic information efficacy in cortical layer 5 pyramidal neurons using a minimal integrate-and-fire model, Biological Cybernetics, vol.521, issue.Pt 2, pp.4-5393, 2008.
DOI : 10.1007/s00422-008-0268-3

D. Longnecker, D. Brown, M. Newman, and W. Zapol, Cognitive unbinding in sleep and anesthesia, Anesthesiology Science, vol.310, issue.5755, pp.1768-1769, 2005.

M. Mccarthy, E. Brown, and N. Kopell, Potential Network Mechanisms Mediating Electroencephalographic Beta Rhythm Changes during Propofol-Induced Paradoxical Excitation, Journal of Neuroscience, vol.28, issue.50, pp.488-13504, 2008.
DOI : 10.1523/JNEUROSCI.3536-08.2008

S. Mcdougall, T. Bailey, D. Mendelowitz, and M. Andresen, Propofol enhances both tonic and phasic inhibitory currents in second-order neurons of the solitary tract nucleus (NTS), Neuropharmacology, vol.54, issue.3, pp.552-563, 2008.
DOI : 10.1016/j.neuropharm.2007.11.001

S. Mitchell and R. Silver, Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation, Neuron, vol.38, issue.3, pp.433-3445, 2003.
DOI : 10.1016/S0896-6273(03)00200-9

URL : http://doi.org/10.1016/s0896-6273(03)00200-9

I. Mody, Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances, Neuroch Res, vol.2689, pp.907-913, 2001.

M. Murphy, M. Bruno, B. Riedner, P. Boveroux, Q. Noirhomme et al., Propofol anesthesia and sleep: a high-density EEG study, Sleep, vol.34, issue.3, 2011.

P. Nunez and R. Srinivasan, Electric Fields of the Brain: The Neurophysics of EEG Differences in synaptic gabaa receptor number underlie variation in gaba mini amplitude, Neuron, vol.19, pp.697-709, 1997.
DOI : 10.1093/acprof:oso/9780195050387.001.0001

Z. Nusser, W. Sieghart, and P. Somogyi, Segregation of different gabaa receptors to synaptic and extrasynaptic membranes of cerebellar granule cells, J Neurosc, vol.18, pp.1693-1703, 1998.

B. Orser, Extrasynaptic gabaa receptors are critical targets for sedativehypnotic drugs, J Clin Sleep Med, vol.2, pp.12-20, 2006.

S. Ross, N. Brunel, D. Hansel, G. Mongillo, and C. Van-vreeswijk, Stochastic Processes (Probability and Mathematical Statistics) John Wiley and Sons Roxin A On the distribution of firing rates in networks of cortical neurons, J Neurosci, vol.31, pp.16217-16226, 1982.

A. Scimemi, A. Semyanov, G. Sperk, D. Kullmann, and M. Walker, Multiple and Plastic Receptors Mediate Tonic GABAA Receptor Currents in the Hippocampus, Journal of Neuroscience, vol.25, issue.43, pp.10016-10024, 2005.
DOI : 10.1523/JNEUROSCI.2520-05.2005

K. Sellers, D. Bennett, A. Hutt, F. Frohlich, M. Walker et al., Anesthesia differentially modulates spontaneous network dynamics by cortical area and layer Gaba uptake regulates cortical excitability via cell-type specific tonic inhibition, J Neurophysiol in press Semyanov A Nat Neurosci, vol.6, pp.484-490, 2003.

A. Semyanov, M. Walker, D. Kullmann, and R. Silver, Tonically active GABAA receptors: modulating gain and maintaining the tone, Trends in Neurosciences, vol.27, issue.5, pp.262-269, 2004.
DOI : 10.1016/j.tins.2004.03.005

J. Sleigh, L. Voss, M. Steyn-ross, D. Steyn-ross, and M. Wilson, Progress in modeling EEG effects of general anaesthesia: Biphasic response and hysteresis, 2011.

I. Song, L. Savtchenko, and A. Semyanov, Tonic excitation or inhibition is set by GABAA conductance in hippocampal interneurons, Nature Communications, vol.17, p.376, 2011.
DOI : 10.1016/S0168-0102(01)00196-1

URL : http://doi.org/10.1038/ncomms1377

N. Spruston, Pyramidal neurons: dendritic structure and synaptic integration, Nature Reviews Neuroscience, vol.27, issue.3, pp.206-221, 2008.
DOI : 10.1038/nrn2286

M. Steyn-ross, D. Steyn-ross, J. Sleigh, and L. Wilcocks, Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex. I. A thermodynamics analogy, Physical Review E, vol.64, issue.1, p.11917, 2001.
DOI : 10.1103/PhysRevE.64.011917

D. Ulrich, Differential arithmetic of shunting inhibition for voltage and spike rate in neocortical pyramidal cells, European Journal of Neuroscience, vol.422, issue.8, pp.2159-65, 2003.
DOI : 10.1073/pnas.93.23.13245

X. Wang and G. Buzsáki, Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model, J Neurosci, vol.16, issue.20, pp.6402-6413, 1996.

H. Wilson and J. Cowan, Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons, Biophysical Journal, vol.12, issue.1, pp.1-24, 1972.
DOI : 10.1016/S0006-3495(72)86068-5

D. Zhang, Y. Li, M. Rasch, and S. Wu, Nonlinear multiplicative dendritic integration in neuron and network models, Frontiers in Computational Neuroscience, vol.7, p.56, 2013.
DOI : 10.3389/fncom.2013.00056