Relational partitioning fuzzy clustering algorithms based on multiple dissimilarity matrices

Abstract : This paper introduces fuzzy clustering algorithms that can partition objects taking into account simultaneously their relational descriptions given by multiple dissimilarity matrices. The aim is to obtain a collaborative role of the different dissimilarity matrices to get a final consensus partition. These matrices can be obtained using different sets of variables and dissimilarity functions. These algorithms are designed to furnish a partition and a prototype for each fuzzy cluster as well as to learn a relevance weight for each dissimilarity matrix by optimizing an adequacy criterion that measures the fit between the fuzzy clusters and their representatives. These relevance weights change at each algorithm iteration and can either be the same for all fuzzy clusters or different from one fuzzy cluster to another. Experiments with real-valued data sets from the UCI Machine Learning Repository as well as with interval-valued and histogram-valued data sets show the usefulness of the proposed fuzzy clustering algorithms.
Type de document :
Article dans une revue
Fuzzy Sets and Systems, Elsevier, 2013, 215, pp.1-28. 〈http://www.sciencedirect.com/science/article/pii/S0165011412004216〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00917494
Contributeur : Yves Lechevallier <>
Soumis le : mercredi 11 décembre 2013 - 22:00:57
Dernière modification le : vendredi 12 janvier 2018 - 11:02:59

Identifiants

  • HAL Id : hal-00917494, version 1

Collections

Citation

Yves Lechevallier, Francisco De Carvalho, Filipe De Melo. Relational partitioning fuzzy clustering algorithms based on multiple dissimilarity matrices. Fuzzy Sets and Systems, Elsevier, 2013, 215, pp.1-28. 〈http://www.sciencedirect.com/science/article/pii/S0165011412004216〉. 〈hal-00917494〉

Partager

Métriques

Consultations de la notice

252