Reconciling "priors" and "priors" without prejudice?

Rémi Gribonval 1 Pierre Machart 1
1 PANAMA - Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio
Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : There are two major routes to address linear inverse problems. Whereas regularization-based approaches build estimators as solutions of penalized regression optimization problems, Bayesian estimators rely on the posterior distribution of the unknown, given some assumed family of priors. While these may seem radically different approaches, recent results have shown that, in the context of additive white Gaussian denoising, the Bayesian conditional mean estimator is always the solution of a penalized regression problem. The contribution of this paper is twofold. First, we extend the additive white Gaussian denoising results to general linear inverse problems with colored Gaussian noise. Second, we characterize conditions under which the penalty function associated to the conditional mean estimator can satisfy certain popular properties such as convexity, separability, and smoothness. This sheds light on some tradeoff between computational efficiency and estimation accuracy in sparse regularization, and draws some connections between Bayesian estimation and proximal optimization.
Type de document :
Communication dans un congrès
Advances in Neural Information Processing Systems, Dec 2013, South Lake Tahoe, United States. 2013, 〈http://papers.nips.cc/paper/4868-reconciling-priors-priors-without-prejudice〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00918008
Contributeur : Pierre Machart <>
Soumis le : jeudi 12 décembre 2013 - 17:43:00
Dernière modification le : mercredi 16 mai 2018 - 11:24:07
Document(s) archivé(s) le : vendredi 14 mars 2014 - 11:40:49

Fichier

NIPS2013_4868.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00918008, version 1

Citation

Rémi Gribonval, Pierre Machart. Reconciling "priors" and "priors" without prejudice?. Advances in Neural Information Processing Systems, Dec 2013, South Lake Tahoe, United States. 2013, 〈http://papers.nips.cc/paper/4868-reconciling-priors-priors-without-prejudice〉. 〈hal-00918008〉

Partager

Métriques

Consultations de la notice

949

Téléchargements de fichiers

102