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Sample Complexity of Dictionary Learning

and other Matrix Factorizations
Rémi Gribonval, IEEE Fellow, Rodolphe Jenatton, Francis Bach, Martin Kleinsteuber, Matthias Seibert

Abstract—Many modern tools in machine learning and sig-
nal processing, such as sparse dictionary learning, principal
component analysis (PCA), non-negative matrix factorization
(NMF), K-means clustering, etc., rely on the factorization of
a matrix obtained by concatenating high-dimensional vectors
from a training collection. While the idealized task would
be to optimize the expected quality of the factors over the
underlying distribution of training vectors, it is achieved in
practice by minimizing an empirical average over the considered
collection. The focus of this paper is to provide sample complexity
estimates to uniformly control how much the empirical average
deviates from the expected cost function. Standard arguments
imply that the performance of the empirical predictor also
exhibit such guarantees. The level of genericity of the approach
encompasses several possible constraints on the factors (tensor
product structure, shift-invariance, sparsity . . . ), thus providing
a unified perspective on the sample complexity of several widely
used matrix factorization schemes. The derived generalization

bounds behave proportional to
√

log(n)/n w.r.t. the number of
samples n for the considered matrix factorization techniques.

Index Terms—Dictionary learning, sparse coding, principal
component analysis, K-means clustering, non-negative matrix
factorization, structured learning, sample complexity.

I. INTRODUCTION

THE fact that a signal x ∈ R
m which belongs to a certain

class has a representation over some class dependent

dictionary D ∈ R
m×d is the backbone of many successful

signal reconstruction and data analysis algorithms [1]–[3].

That is, x is the linear combination of columns of D,

referred to as atoms. Formally, this reads as

x = Dα, (1)
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where the coefficient vector α ∈ R
d as well as the dic-

tionary D are subject to some constraints. Such a setting

covers prominent examples like Principal Component Analysis

(PCA), where D has orthogonal columns, thus representing

the subspace where the signal in the given class is contained.

Another example is the sparse synthesis model, also known

as sparse coding, where typically D consists of normalized

columns that form an overcomplete basis of the signal space,

and α ∈ R
d is assumed to be sparse.

The task of learning such dictionaries from a given set

of training data is related to matrix factorization problems.

Important examples include Higher-Order SVD (also known

as multilinear SVD) [4], sparse coding also called dictionary

learning [5]–[11], its variants with separable [12] or sparse

[13] dictionaries, Non-negative Matrix Factorization (NMF)

[14], K-means clustering [15], sparse PCA [16]–[18], and

more. The learning task is expressed formally as follows.

Let X = [x1, . . . ,xn] ∈ R
m×n be the matrix containing

the n training samples arranged as its columns, and let A =
[α1, . . . ,αn] ∈ R

d×n contain the corresponding n coefficient

vectors, a common approach to the dictionary learning process

is the optimization problem

minimize
A,D

1
2‖X−DA‖2F +

n
∑

i=1

g(αi) s. t. D ∈ D. (2)

Therein, g : Rd → R is a function that promotes the constraints

for the coefficient vectors, e.g., sparsity or positivity, and D is

some predefined admissible set of solutions for the dictionary.

Note that for PCA there are no constraints on the coefficient

vectors, which implies the penalty function g ≡ 0 in this case.

A fundamental question in such a learning process is the

sample complexity issue. Assuming that the training samples

are drawn according to some distribution P representing the

class of signals of interest, one would ideally like to select the

dictionary D⋆ yielding the minimum expected value of (2).

However, having only access to n training samples, one can

at best select an empirical minimizer D̂. Is this empirical

minimizer useful beyond the training set from which it has

been selected? This depends on how much the empirical cost

function deviates from its expectation.

State of the art sample complexity estimates [19], [20]

primarily consider the case where g is the indicator function of

a set, such as an ℓ1 or an ℓ0 ball, D is the set of all unit norm

dictionaries or a subset with a restricted isometry property,

and the distribution P is in the class P of distributions on the

unit sphere of Rm. We generalize these results to:

• General classes of penalty functions. Examples covered
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by our results include: the ℓ1 penalty and its powers; any

mixed norm [21] or quasi-norm [22]; the characteristic

function of the ℓ1-ball, of the set of k-sparse vectors [20],

or of non-negative vectors [14].

• Various classes of dictionaries D that can incorporate

structures. Examples covered include: dictionaries with

unit norm atoms which are used in many dictionary

learning schemes, e.g., K-SVD [8]; sparse dictionar-

ies [13]; shift-invariant dictionaries [23]; tensor product

dictionaries [12]; orthogonal dictionaries; non-negative

dictionaries [14]; topic models [24]; and tensor products

of Stiefel matrices used for Higher-order SVDs [4], [25].

• Various classes P of probability distributions P. Ex-

amples include distributions on the unit sphere which

are tackled in [20], but also certain distributions built

using sub-Gaussian random variables [26]. For more

information on sub-Gaussian random variables, see [27].

After formalizing the problem and setting our notations

in Section II, we state our main results in Section III and

illustrate them with families of examples in Section IV.

The obtained sample complexity estimates depend on the

Lipschitz constant of the optimized cost function (2), seen

as a function of the unknown dictionary D. This Lipschitz

constant is essentially driven by the penalty function g, as

discussed in Section V. Our results rely on the assumption

that the distributions P in the class P satisfy a concentration

of measure property, and the structured constraint set D plays

a role in the sample complexity estimates through its covering

number, as discussed in Section VI where the main theoretical

results are established. Covering numbers for a number of

structure sets D are considered in Section VII. Section VIII

gathers worked examples in relation to previous work. Finally,

Section IX discusses sharper sample complexity estimates in

the high-dimensional setting m ≫ d.

II. NOTATIONS

Sets are denoted with gothic face as D,P,A. Matrices are

written as boldface capital letters like X,D, column vectors

are denoted by boldfaced small letters, e.g., α,d whereas

scalars are either capital or small letters like n,N . By vi
we denote the ith element of the vector v, vij denotes the

ith element in the jth column of a matrix V, while the ith

column is referred to by vi. The Frobenius norm for matrices

is denoted ‖ ·‖F and the corresponding inner product between

matrices is denoted 〈·, ·〉F . The operator norm ‖ · ‖1→2 of an

m×d matrix ∆ = [δ1, . . . , δd] is

‖∆‖1→2 , sup
‖α‖1≤1

‖∆α‖2 = max
1≤i≤d

‖δi‖2.

Finally, log is the natural logarithm so that elog t = t for t > 0.

Given a dictionary D ∈ R
m×d that fulfills certain structural

properties and a signal x ∈ R
m, a representation vector α ∈

R
d is typically obtained by solving the minimization problem

α̂ ∈ arg min
α∈Rd

1
2‖x−Dα‖22 + g(α),

where g : Rd → R
+ ∪{+∞} is a penalty function promoting

constraints for the coefficient vector. For our purposes, the

question of whether a minimizer α̂ actually exists is irrelevant,

and we define the quality of how well a signal x can be coded

by a dictionary D by

fx(D) , inf
α∈Rd

Lx(D,α),

with

Lx(D,α) , 1
2‖x−Dα‖22 + g(α).

Given n training samples X = [x1, . . . ,xn] ∈ R
m×n, the

average quality of how well a dictionary allows a representa-

tion for X while considering the constraints imposed on the

coefficients is

FX(D) , 1
n

n
∑

i=1

fxi
(D).

The cost function FX can be written in short form as

FX(D) = infA∈Rd×n LX(D,A) with

LX(D,A) , 1
2n‖X−DA‖2F +G(A)

where A , [α1, . . . ,αn] and G(A) , 1
n

∑n
i=1 g(αi).

III. MAIN RESULTS & OUTLINE OF OUR APPROACH

The main contribution of this paper is a general framework

to establish the uniform convergence of the function FX(·)
to its expectation when the samples xi are all drawn indepen-

dently according to an unknown probability distribution P. We

show in this work that

sup
D∈D

|FX(D)− Ex∼Pfx(D)| ≤ ηn(g,D,P).

holds with “overwhelming” probability (that will be con-

trolled explicitly in due time as well as the precision bound

ηn(g,D,P) ∝
√

logn/n).

A particular consequence is in terms of generalization

bound. An ideal objective in dictionary learning and related

matrix factorization problems would be to select the optimal

dictionary for the underlying distribution P of training sam-

ples,

D⋆ ∈ arg min
D∈D

Ex∼Pfx(D).

In practice, one can at best access an empirically optimal

dictionary D̂n ∈ D, which minimizes FX(D) given n training

samples gathered in X. How close is its performance to that

of D⋆? A consequence of our main result is a generalization

bound for the empirical optimum D̂n: with controlled high

probability,

Ex∼Pfx(D̂n) ≤ Ex∼Pfx(D
⋆) + 2ηn.

Note that the uniform convergence result holds for all

dictionaries D ∈ D, and not only at the global optimum

of the learning problem. Moreover, even though finding the

empirical minimizer D̂n often means facing a difficult non-

convex optimization problem, recent work on sparse dictionary

learning establishes that certain polynomial time algorithms

can provably find it with high probability in certain scenarii

[28]–[30]. Uniform convergence results as established here
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should enable further investigation of the finite sample analysis

of such algorithms.

The main result, formally stated in Theorem 1 in Sec-

tion III-E, combines a standard argument based on covering

numbers with an estimation of the expected Lipschitz constant

of the function D 7→ FX(D). Our main technical contribution

is the estimation of this Lipschitz constant, which is summa-

rized in Theorems 2 and 3 in Section V-B. To prove the main

result, we first show that D 7→ FX(D) is Lipschitz with a

constant expressed in terms of X and g. To be more precise,

we prove the property |FX(D)−FX(D′)| ≤ L ·‖D−D′‖1→2

for all admissible dictionaries D,D′ ∈ D, where L is

dependent on X and g. In the course of our work we provide

more tangible bounds for the Lipschitz constant. However,

this requires certain assumptions on the penalty function g.

These assumptions will be motivated and introduced in the

remainder of this section. Therefore, we refrain from present-

ing the concrete bounds at this point. They can be found in

Corollary 3 and Lemma 6. The discussion is concluded using

an argument based on covering numbers and concentration of

measure. While the latter technique is fairly standard, a major

contribution of this paper lies in the identification of two large

classes of penalty functions for which the desired Lipschitz

property holds and is nicely controlled. In the following, we

will give a detailed insight into the required components to

provide the generalization bound. Furthermore, we motivate

the assumptions that we enforce on the penalty function g
(these are labeled with A), or jointly on the penalty function

g and the set of admissible dictionaries D (labeled with B),

and on the probability distribution (labeled with C).

A. Role of the constraint set D

The structure of the constraint set D is incorporated in the

analysis by employing a standard ǫ-net argument. A compact

constraint set D ⊂ R
m×d can be covered with a finite number

of balls of small radius, i.e., it has a finite covering number

N (D, ǫ) , min{♯Q : Q ⊂ R
m×d,D ⊂

⋃

q∈Q

Bǫ(q)}

where ♯ denotes the cardinality of a set. For further background

about covering numbers, we refer the reader to [31] and

references therein. In our setting the ǫ-balls Bǫ(·) are defined

with respect to the metric ‖ · ‖1→2 since the unit ball in this

metric is closely connected with the common constraint that

a dictionary has unit norm columns.

We postpone explicit estimates of covering numbers to

Section VII, but notice that covering numbers for all the

considered classes satisfy the generic upper bound

N (D, ǫ) ≤ (C/ǫ)
h
, ∀ 0 < ǫ ≤ 1 (3)

where h ≥ 1 is a measure of the “dimension” of D, and

C ≥ 1. In particular, for the set of all dictionaries in R
m×d

with unit-norm columns, which is one of the most common

constraint sets, these constants take the values h = md and

C = 3. The sample complexity will be essentially driven

by the “dimension” h, while the constant C will only play

a logarithmic role.

B. Lipschitz property for “norm-like” penalty functions g

In short, we will prove in Section V that under assumptions

• A1: g is non-negative;

• A2: g is lower semi-continuous;

• A3: g is coercive: g(α) → ∞ as ‖α‖ → ∞;

the function D 7→ FX(D) is Lipschitz over R
m×d with

controlled constant. With the additional assumption

• A4: g(0) = 0;

the Lipschitz constant is bounded by

LX(ḡ) , 1
n

n
∑

i=1

‖xi‖2 · ḡ(‖xi‖22/2) (4)

where we define the auxiliary function ḡ as follows.

Definition 1. For penalty functions g satisfying A1-A3,

ḡ(t) , sup
α∈R

d

g(α)≤t

‖α‖1, t ≥ 0.

The presence of the ℓ1 norm in this definition results from the

choice of the metric ‖ · ‖1→2 to measure covering numbers. It

will become clearer in the proof of Lemma 5 where we need

to control ‖α‖1 where α is a (near) minimizer of Lx(D, ·).
The following properties of this function will be useful.

Lemma 1. The function ḡ as defined in Definition 1 is non-

increasing and takes its values in R
+.

Proof of Lemma 1: The sublevel sets of g are nested,

hence ḡ is non-decreasing. Since g is coercive, its sublevel

sets are bounded, hence ḡ takes its values in R
+.

Note that Assumption A4 is a convenience that should not

be taken too literally, as penalty functions that fulfill A1-A3

and have a global minimum at 0 can be manipulated to fulfill

A4 by subtracting the value of g at 0.

C. Lipschitz property under joint assumptions on g and D

While Assumptions A1-A4 cover a wide range of penalty

functions, they do not cover popular penalties related to the

ℓ0 quasi-norm, such as the indicator function (also called

characteristic function) of k-sparse vectors:

χk-sparse(α) ,

{

0, if ‖α‖0 ≤ k,

+∞, otherwise;

Vainsencher et al. [20] deal with the latter case under an

incoherence assumption on D, i.e., by restricting D to be

the class of dictionaries with small (cumulative) coherence.

A careful study of their technique shows that the results are

actually valid under an assumption related to the well-known

restricted isometry property (RIP) [3], [32]. In fact, while the

RIP is usually expressed in its symmetric form, only its lower

bound actually plays a role in the considered context. This

justifies the following definition.

Definition 2 (Lower RIP). For k ≤ min(m, d), we denote

δk(D) the smallest 0 < δ ≤ 1 such that for all k-sparse

vectors α

(1− δ)‖α‖22 ≤ ‖Dα‖22.
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For k ≤ min(m, d) and 0 < δ < 1 we define the compact set

DLRIP(k, δ) ,
{

D ∈ R
m×d : δk(D) ≤ δ

}

. (5)

Similarly, Assumptions A1-A4 do not cover the indicator

function of non-negative coefficients,

χNMF(α) ,

{

0, if αi ≥ 0, ∀1 ≤ i ≤ d,

+∞, otherwise;

which is typically used in conjunction with a non-negativity

constraint on D as well, namely D ∈ DNMF, where

DNMF ,
{

D ∈ R
m×d : dij ≥ 0, ∀i, j

}

. (6)

To unify the treatment of such penalty functions not covered

by Assumptions A1-A4, we develop complementary results

based on joint assumptions on g and the constraint set D:

• B1: g = χK is the indicator function of a set K;

• B2: there is κ > 0 such that for any α ∈ K and D ∈ D,

κ‖α‖21 ≤ ‖Dα‖22
• B3: K contains the origin: 0 ∈ K.

Note that B2 is a type of restricted eigenvalue condition, see

e.g., [33, Equation (30)].

These assumptions hold for g = χk-sparse and D =
DLRIP(k, δ) with κ = (1 − δ)/d, and they will be shown

to also hold for g = χNMF and D = DNMF(κ) ⊂ DNMF where

DNMF(κ) ,
{

D ∈ R
m×d : dij ≥ 0, ‖dj‖22 ≥ κd, ∀i, j

}

.

(7)

Under Assumptions B1-B3 we show that the function

D 7→ FX(D) is Lipschitz over D. Its Lipschitz constant can

be expressed as LX(ḡ) (see Eq. (4)) where ḡ is defined in the

context of assumptions B1-B3 as:

Definition 3. For penalty functions g and D satisfying B1-B3,

we define

ḡ(t) , 2
√

2t/κ

Occasionally, an additional assumption will be helpful:

• B4: D is convex.

D. Role of the class P of probability distributions

Finally, the results rely on two assumptions on the proba-

bility distribution P from which the training samples xi are

assumed drawn i.i.d.:

• first, we need to control the Lipschitz constant LX(ḡ)
when the sample size n is large.

• second, given D, we need to control the concentration of

the empirical average FX(D) around its expectation;

By the law of large numbers, the first condition holds under

assumption

• C1: bounded moment

LP(ḡ) , Ex∼P‖xi‖2ḡ
(

‖xi‖2
2

2

)

< +∞.

We will see on many examples (Table I) that tḡ(t2/2) ∝ t2 or

tḡ(t2/2) ∝ t3, hence this is a relatively mild condition. From

a quantitative perspective our results will be expressed using

Λn(L, ḡ) , P

(

1
n

n
∑

i=1

‖xi‖2ḡ
(

‖xi‖2
2

2

)

> L

)

. (8)

By abuse of notation we will simply write Λn(L) and will

exploit the fact that limn→∞ Λn(L) = 0 for L > LP(ḡ).
The second condition is measured through

Γn(γ) , sup
D∈D

P

(∣

∣

∣

∣

∣

1
n

n
∑

i=1

fxi
(D)− Efx(D)

∣

∣

∣

∣

∣

> γ

)

. (9)

As discussed in Section VI, our main results exploit C1 and

• C2: there are c > 0 and T ∈ (0,+∞] such that

Γn(cτ) ≤ 2 exp(−nτ2), ∀0 ≤ τ ≤ T, ∀n.
As shown in Section VI, this covers the case of probability

distributions on the unit sphere in R
m (see, e.g., [20]),

Sm−1 , {x ∈ R
m : ‖x‖2 = 1},

and more generally on Euclidean balls BR of given radius R,

Definition 4 (Probability distributions on a ball). The set of

probability distribution within a ball of radius R is given by

PBR
, {P : P(‖x‖2 ≤ R) = 1} .

For P ∈ PBR
, C2 holds with c = R2/

√
8, T = +∞, and C1

holds, with Λn(L) = 0 for L = Rḡ(R2/2) (Lemma 11).

Assumption C2 also covers the following classes which

contain the sub-Gaussian sparse signal model proposed in [26].

More details will be given in Section IV.

Definition 5. A distribution is in PA, A > 0 if

P(‖x‖22 ≥ At) ≤ exp(−t), ∀t ≥ 1. (10)

For P ∈ PA, C2 holds with c = 12A, T = 1 (Lemma 12),

and C1 holds as soon as ḡ has at most polynomial growth.

E. Main result

Our main result is obtained using a standard union bound

argument. The details are in Section VI. In short, under

assumptions A1-A4 or B1-B3, together with C1-C2, we show:

Theorem 1. Consider L > LP(ḡ) and define

β , h ·max
(

log 2LC
c , 1

)

, (11)

ηn(g,D,P) , 3c

√

β logn
n + c

√

β+x
n . (12)

Then, given 0 ≤ x ≤ nT 2 − β logn we have: except with

probability at most Λn(L) + 2e−x,

sup
D∈D

|FX(D)− Exfx(D)| ≤ ηn(g,D,P). (13)

Note that Λn(L) is primarily characterized by the penalty

function g and the class of probability distributions P

(see (8)), while the constants C, h ≥ 1 depend on the class of

dictionaries D, see (3), and c > 0, 0 < T ≤ ∞ depend on

the class of probability distributions P, see C2.
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The constant 3c in the first term of the right hand side of (12)

is improved to 2c for penalties that satisfy A1-A4 or B1-B4,

see Lemma 10 in Section VI where Theorem 1 is proved.

IV. EXAMPLES

We now discuss concrete settings covered by our results.

More detailed worked examples will be given in Section VIII.

A. Penalty functions satisfying A1-A4

Many classical penalty functions are covered by Assump-

tions A1-A4: norms, quasi-norms, their powers, indicator

functions of compact sets containing the origin, and more.

As a side note, if the penalty function g is invariant by

sign flips (this is the case, e.g., for standard norms, mixed

norms, etc.), one may notice that ḡ(t) is related to the Fenchel

conjugate [34] of the function h(α) = χg(α)≤t, which reads

as

h⋆(q) , sup
α

(〈q,α〉 − h(α))

since ḡ(t) = h⋆(1) where 1 is the vectors with all ones.

1) Norms and quasi-norms: All standard ℓp norms (1 ≤
p ≤ ∞), quasi-norms (0 < p < 1), and mixed ℓp,q norms

used in structured sparse regularization satisfy A1-A4, and

we have ḡ(t) = Cgt with

Cg = sup
α6=0

‖α‖1
g(α)

< ∞

For example, for g(α) = ‖α‖p with α ∈ R
d, we have

Cg = d(1−1/p)+

where (·)+ , max(·, 0). We let the reader check that for mixed

ℓ1,2 norms, ‖α‖1,2 =
∑

i ‖αJi
‖2, where the sets Ji partition

the index set J1; dK, we have Cg = j1/2 where j = maxi ♯Ji.
2) Indicator functions of compact sets: Assumptions A1-

A3 also hold for the indicator function of a compact set K,

g(α) = χα∈K ,

{

0, if α ∈ K,

+∞, otherwise.

For such penalties we have ḡ(t) = sup
α∈K ‖α‖1 for all t ≥ 0.

Assumption A4 further requires that the compact set contains

the origin, 0 ∈ K.

In particular, assumptions A1-A4 hold for the indicator

function of a ball defined by a (quasi-)norm, i.e., with

K = {α : ‖α‖ ≤ λ}. For an ℓp (quasi-)norm, we have

ḡ(t) = d(1−1/p)+λ.

3) More examples: Assumptions A1-A4 hold when g is a

power of a (quasi-)norm, g(α) = ‖α/λ‖rp, with r > 0, leading

to ḡ(t) = d(1−1/p)+λt1/r . Note that the indicator function of

K = {α : ‖α‖ ≤ λ} reads as the limit when r → ∞.

There are of course measures that do not fit in our frame-

work, such as the arctangent sparsity measure, which mimics

the ℓ0 one [35] and is defined as

gatan(α) ,
d
∑

j=1

arc tan2 (αj) .

It is not coercive and does thereby not meet assumption A3.

B. Penalty functions and constraint sets that satisfy B1-B3

Consider g(α) = χk-sparse(α) = χK with the set K =
{α : ‖α‖0 ≤ k} and D = DLRIP(k, δ). Assumptions B1

and B3 obviously hold since K is a finite union of subspaces.

Moreover, by definition of DLRIP(k, δ), for any α ∈ K and

D ∈ D we have

‖Dα‖22 ≥ (1 − δ)‖α‖22 ≥ 1−δ
k ‖α‖21

where the rightmost inequality follows from the fact that α is

k-sparse. Hence assumption B2 holds with κ = (1− δ)/k.

Consider now g(α) = χNMF(α) = χK with K = {α :
αi ≥ 0, 1 ≤ i ≤ d}, and D = DNMF(κ). Assumptions B1

and B3 obviously hold since K is an orthant. Moreover, since

D ∈ D has non-negative entries1, for any α ∈ K we have

‖Dα‖22 =

d
∑

i,j=1

αiαj〈di,dj〉 ≥
d
∑

i=1

α2
i ‖di‖22

≥ ‖α‖22 · min
1≤j≤d

‖dj‖22 ≥ ‖α‖21 · min
1≤j≤d

‖dj‖22/d.

Hence assumption B2 holds.

Table I summarizes, for standard penalty functions satisfy-

ing either A1-A4 or B1-B3, the expression of ḡ and that of

tḡ(t2/2) which appears in the expression of LX(ḡ) (see (4)).

C. Covering numbers

Table II summarizes the covering numbers of the structured

classes of dictionaries considered in Section VII. The provided

covering numbers all depend on the signal dimension m,

which may lead to sub-optimal sample complexity estimates

for high-dimensional problems, i.e., when m ≫ d. This issue

is discussed in section Section IX.

D. Probability distributions

While previous work [19], [20] only covers distributions on

the unit sphere or in the volume of the unit ball, our results

cover more complex models, such as the model of sparse

signals with sub-Gaussian non-zero coefficients introduced in

[26].

Definition 6 (Sub-Gaussian model of sparse signals). Given

a fixed reference dictionary D0 ∈ D, each noisy sparse signal

x ∈ R
m is built from the following steps:

1) Support generation: Draw uniformly without replacement

k atoms out of the d available in D0. This procedure thus

defines a support J , {j ∈ J1; dK : δ(j) = 1} whose

size is |J | = k, and where δ(j) denotes the indicator

function equal to one if the j-th atom is selected, zero

otherwise. Note that E[δ(j)] = k
d and for i 6= j we further

have E[δ(j)δ(i)] = k(k−1)
d(d−1) .

2) Coefficient generation: Define a sparse vector α0 ∈ R
d

supported on J whose entries in J are generated i.i.d.

according to a sub-Gaussian distribution: for j not in J ,

[α0]j is set to zero; otherwise, we assume there exists

some σ > 0 such that for j ∈ J we have, for all t ∈
1In fact, as in [19] we observe it is sufficient to have 〈di,dj〉 ≥ 0, i 6= j
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TABLE I
PENALTY FUNCTIONS g : Rd → R AND ASSOCIATED ḡ (FROM EITHER DEFINITION 1 OR DEFINITION 3)

g(α) remark ḡ(t) tḡ(t2/2)

(quasi)norm g(α) Cg , sup
α6=0 ‖α‖1/g(α) Cgt

Cg

2
· t3

‖α/λ‖rp , 0 < p ≤ ∞, 0 < r < ∞ d(1−1/p)+ · λ · t1/r d(1−1/p)+ · λ · t · (t2/2)1/r
χ‖α‖p≤λ, 0 < p ≤ ∞ d(1−1/p)+ · λ d(1−1/p)+ · λ · t
χk-sparse(α) on DLRIP(k, δ), see (5) 2

√

k/(1− δ)
√
2t 2t2

√

k/(1− δ)

χNMF(α) on DNMF(κ), see (7) 2
√

2t/κ 2t2/
√
κ

TABLE II
CLASSES OF STRUCTURED DICTIONARIES D WITH COVERING NUMBERS N (D, ǫ) ≤ (C/ǫ)h , 0 < ǫ ≤ 1. SEE SECTION VII

D exponent h constant C
Unit norm D(m, d) md 3

Separable Dsep
∑

i midi 3

Sparse Dsparse(m, d) sd 3
(m
s

)1/s

Orthogonal Dorth(m) m(m− 1)/2 3πeπ

Stiefel DSt(m, d) md − d(d + 1)/2 3πeπ

Stiefel Tensor D⊗St
∑

i midi − di(di + 1)/2 3πeπ

R, E{exp(t[α0]j)} ≤ exp(σ2t2/2) . We denote σα the

smallest value of σ such that this property holds. For

background on sub-Gaussianity, see [27], [36].

3) Noise: Eventually generate the signal x = D0α0 + ǫ,

where the entries of the additive noise ǫ ∈ R
m are

assumed i.i.d. sub-Gaussian with parameter σε.

Remark 1. The model in [26] is more restricted: it assumes

that, for j ∈ J , |[α0]j | ≥ α almost surely, where α > 0.

The distribution P of this sub-Gaussian sparse signal model

belongs to PA with A = kσ2
α + mσ2

ε , as shown below (the

argument can be originally found in [26]).

Lemma 2 (From [37]). Let us consider z ∈ R
m a random

vector of independent sub-Gaussian variables with parameters

upper bounded by σ > 0. Let A ∈ R
m×p be a fixed matrix.

For any t ≥ 1, we have

P

(

‖Az‖22 > 5σ2‖A‖2F t
)

≤ exp(−t).

Corollary 1. Let x be a signal following the model of

Definition 6. For any t ≥ 1 we have

P
(

‖x‖22 > 5(kσ2
α +mσ2

ε)t
)

≤ exp(−t).

Proof: The considered norm can be expressed as follows

‖x‖22 =

∥

∥

∥

∥

∥

[

σα[D0]J σεId
]

( 1
σα

[α0]J
1
σε
ǫ

)

∥

∥

∥

∥

∥

2

2

.

The result is a direct application of Lemma 2 conditioned to

the draw of J , and the observation that

∥

∥

[

σα[D0]J σεId
]∥

∥

2

F
= ‖[D0]J‖2F ·σ2

α+mσ2
ε = kσ2

α+mσ2
ε .

The bound being independent of J , the result is also true

without conditioning.

Section VIII will detail worked examples with results for

specific combinations of dictionary class D, penalty g, and

probability distribution P, relating our results to prior work.

V. LIPSCHITZ CONTINUITY OF FX

Under appropriate assumptions on the penalty function

g, we prove below that the function FX(D) is Lipschitz

continuous with a controlled constant LX(ḡ). We begin by

a one-sided Lipschitz property with an additional quadratic

term that we will soon get rid of.

Lemma 3. Let ‖ · ‖ be some norm for m×d matrices and

‖ · ‖⋆ its dual norm2. For any ǫ > 0, the set

Aǫ(X,D) = {[α1, . . . ,αn] : αi ∈ R
d,

Lxi
(D,αi) ≤ fxi

(D) + ǫ}.

is not empty, and for any D′ we have

FX(D′) ≤ FX(D)+LX(D)·‖D′−D‖+CX(D)·‖D′−D‖2.

with

LX(D) , inf
ǫ>0

sup
A∈Aǫ

1
n · ‖(X−DA)A⊤‖⋆, (14)

CX(D) , inf
ǫ>0

sup
A∈Aǫ

C
2n

n
∑

i=1

‖αi‖21. (15)

The constant C in (15) depends only on the norm ‖ · ‖ and

the dimensions m, d. When ‖ · ‖ = ‖ · ‖1→2 we have C = 1.

When A0 6= ∅, LX(D) and CX(D) are suprema over A0.

The choice of the ℓ1 norm in the bound (15) is an arbitrary

convenience with no impact on the nature of the results to

follow. More important will be the choice of the metric ‖ · ‖
which will be related to how we measure covering numbers

for D. This will be discussed later.

Proof: Fix ǫ > 0 and A ∈ Aǫ. From the identity

LX(D′,A) = LX(D,A) + 1
n 〈X−DA, (D′ −D)A〉F

+ 1
2n‖(D′ −D)A‖2F (16)

2‖U‖⋆ , supD,‖D‖≤1〈U,D〉F with 〈·, ·〉F the Frobenius inner product.
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and the definition of the dual norm we have

|〈X−DA, (D′ −D)A〉F |
‖D′ −D‖ ≤

∥

∥(X−DA)A⊤∥
∥

⋆
.

Moreover, by the equivalence of all norms on the finite

dimensional space of m × d matrices, there is a constant C
(equal to one when ‖ · ‖ = ‖ · ‖1→2) such that

1
2n‖(D′ −D)A‖2F ≤ ‖D′ −D‖21→2 · 1

2n

n
∑

i=1

‖αi‖21

≤ ‖D′ −D‖2 · C
2n

n
∑

i=1

‖αi‖21.

Therefore, we deduce from (16) that

FX(D′) = inf
A

LX(D′,A) ≤ sup
A∈Aǫ

LX(D′,A)

≤ sup
A∈Aǫ

LX(D,A)

+ sup
A∈Aǫ

1
n‖(X−DA)A⊤‖⋆ · ‖D′ −D‖

+ sup
A∈Aǫ

C
2n

n
∑

i=1

‖αi‖21 · ‖D′ −D‖2 (17)

By definition, supA∈Aǫ
LX(D,A) ≤ FX(D)+ǫ. We conclude

by taking the infimum of (17) over all ǫ > 0.

Corollary 2. Let ‖ · ‖ be some norm for m×d matrices and

‖ · ‖⋆ its dual norm, and D a class of dictionaries. If

sup
D∈D

LX(D) ≤ LX(D); (18)

sup
D∈D

CX(D) ≤ CX(D), (19)

then for any D 6= D′ ∈ D we have

|FX(D′)− FX(D)|
‖D′ −D‖ ≤ LX(D) ·

(

1 + CX(D)
LX(D)‖D′ −D‖

)

.

In particular, if we can establish the bounds (18) and (19)

then FX is uniformly locally Lipschitz (with respect to ‖ · ‖)

over the class D for any constant L > LX(D).

A. Uniform local Lipschitz constants

Given Corollary 2 we now bound LX(D) and CX(D) when

the norm ‖ · ‖ is the operator norm ‖ · ‖1→2. This is motivated

by the fact that standard sparse coding is often performed

with dictionaries constrained to have unit ℓ2 norm, which are

closely connected with the unit sphere of this norm. With this

choice, the shape of ḡ in Definition 1 should appear natural

in the context of the proof of Lemma 5 below.

Extensions to other definitions of ḡ can be envisioned if

we change the metric. In particular, when g itself is a norm,

one could consider the operator norm ‖ · ‖g→2, at the price of

possibly more tricky estimates of covering numbers.

1) Penalty functions satisfying A1-A3, with arbitrary D:

Lemma 4. If g satisfies Assumptions A1-A3, then the set A0

is not empty, and it is bounded.

Proof: By the non-negativity (A1) and coercivity (A3) of

g(·), LX(D,A) is non-negative and limk→∞ LX(D,Ak) =
∞ whenever limk→∞ ‖Ak‖ = ∞. Therefore, the function

A 7→ LX(D,A) has bounded sublevel sets. Moreover, since

g is lower semi-continuous (A2), then so is A 7→ LX(D,A),
therefore it attains its infimum value.

Lemma 5 (Penalty functions that satisfy A1-A3). Under

Assumptions A1-A3, for any training set X and dictionary

D, the constants defined in (14) and (15) with the norm

‖ · ‖ = ‖ · ‖1→2 satisfy the bounds

LX(D) ≤ 1
n

n
∑

i=1

√

2fxi
(D) · ḡ(fxi

(D)) (20)

CX(D) ≤ 1
2n

n
∑

i=1

[ḡ(fxi
(D))]2. (21)

Proof: By Lemma 4 the set A0 is not empty, and by

definition, for any A , [α1, . . . ,αn] ∈ A0,

1
2‖xi −Dαi‖22 + g(αi) ≤ fxi

(D). (22)

Therefore, A1 (non-negativity of g) implies

0 ≤ g(αi) ≤ fxi
(D) (23)

‖xi −Dαi‖2 ≤
√

2fxi
(D), (24)

for i = 1, . . . , n. Combined with Definition 1, (23) implies

‖αi‖1 ≤ ḡ(fxi
(D)), (25)

CX(D) ≤ 1
2n

n
∑

i=1

[ḡ(fxi
(D))]2, (26)

which proves the bound in (21). We now prove the inequal-

ity (20). For any m×d matrix ∆ we have

〈X−DA,∆A〉F =

n
∑

i=1

〈xi −Dαi,∆αi〉

≤
n
∑

i=1

‖xi −Dαi‖2 · ‖∆αi‖2

≤
n
∑

i=1

‖xi −Dαi‖2 · ‖∆‖1→2 · ‖αi‖1.

(27)

This allows us to provide an upper bound for the dual norm

by exploiting Equations (24) and (25)

1
n‖(X−DA)A⊤‖⋆ ≤ 1

n

n
∑

i=1

√

2fxi
(D) · ḡ(fxi

(D)) (28)

which shows (20).

Corollary 3 (Penalty functions that satisfy A1-A4). Under

Assumptions A1-A4, for any training set X and dictionary D,
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the constants defined in (14) and (15) with the norm ‖ · ‖ =
‖ · ‖1→2 satisfy the bounds

LX(D) ≤ 1
n

n
∑

i=1

‖xi‖2 · ḡ(12‖xi‖22) , LX(ḡ) (29)

CX(D) ≤ 1
2n

n
∑

i=1

[ḡ(‖xi‖22/2)]2 , CX(ḡ). (30)

Proof: If the condition A4 (g(0) = 0) is fulfilled, we can

extend Equations (23,24) to

0 ≤ g(αi) ≤ fxi
(D) ≤ Lxi

(D,0) = 1
2‖xi‖22 (31)

‖xi −Dαi‖2 ≤
√

2fxi
(D) ≤ ‖xi‖2, (32)

for i = 1, . . . , n. Due to the fact that ḡ is non-decreasing, the

inequality in (30) follows directly from Equation (26).

It remains to show the inequality in (29), which is verified

by plugging Equations (31,32) in (28). This yields the upper

bound

1
n

n
∑

i=1

√

2fxi
(D) · ḡ(fxi

(D)) ≤ 1
n

n
∑

i=1

‖xi‖2 · ḡ(12‖xi‖22)

which is independent of the constraint set D.

2) Penalty functions and constraint sets that satisfy B1-B3:

Lemma 6 (Penalty functions g and constraint sets D that

satisfy B1-B3). Under assumptions B1-B3, for any training

set X and dictionary D ∈ D, the constants defined in (14)

and (15) with the norm ‖ · ‖ = ‖ · ‖1→2 satisfy the bounds

LX(D) ≤ 2
n
√
κ
‖X‖2F , LX(ḡ) (33)

CX(D) ≤ 2
nκ‖X‖2F , CX(ḡ). (34)

Proof: Fix ǫ > 0 and consider αi, i = 1, . . . , n such

that A , [α1, . . . ,αn] ∈ Aǫ. One can check that by B1,

Equations (22)-(24) hold up to an additive O(ǫ) term3 on the

right hand side, as well as (27). By B3 we also have (31)-(32)

with a similar additive term, yielding

‖Dαi‖2 ≤ ‖xi‖2 + ‖xi −Dαi‖ ≤ 2‖xi‖+O(ǫ). (35)

Moreover, by B2, we have

‖αi‖21 ≤ ‖Dαi‖2
2

κ ≤ 4‖xi‖22
κ

+O(ǫ). (36)

Taking the infimum over ǫ > 0 shows (34).

To prove (33) we combine (27) with (32) and (36), yielding

an upper bound to 1
n‖(X−DA)A⊤‖⋆:

1
n

n
∑

i=1

‖xi −Dαi‖2 · ‖αi‖1 ≤ 2

n
√
κ

n
∑

i=1

‖xi‖22 +O(ǫ). (37)

Observe the similarity between the expressions (33) and (4).

It justifies Definition 3 which yields the identity LX(D) =
LX(ḡ). With this notation we will be able to jointly cover the

different penalty functions dealt with so far.

3f(ǫ) = O(ǫ) if there exists C < ∞ such that |f(ǫ)| ≤ Cǫ.

B. Main results on Lipschitz properties

We are ready to state the main results on the Lipschitz prop-

erty of FX(D). First we go for a global Lipschitz property.

Note that Theorem 2 below is expressed over a convex class

of dictionaries: under assumptions A1-A4 the result is valid

uniformly over D ∈ R
m×d (in particular, it is not restricted

to dictionaries with unit norm columns)4; under assumptions

B1-B3, we add the explicit assumption B4 that D is convex.

Theorem 2. Assume either A1-A4 or B1-B4. Then, for any

X, and any D,D′ ∈ D,

|FX(D) − FX(D′)| ≤ LX(ḡ) · ‖D−D′‖1→2. (38)

Proof: Fix ǫ > 0. By Corollaries 2 and 3 (resp. Lemma 6):

|FX(D′)− FX(D)| ≤ (1 + ǫ)LX(ḡ) · ‖D′ −D‖1→2 (39)

whenever δ = ‖D′ −D‖1→2 ≤ ǫLX(ḡ)
CX(ḡ) .

When δ exceeds this bound, we choose an integer k ≥ 1
such that δ/k ≤ ǫLX(ḡ)

CX(ḡ) and define Di = D+ i(D′ −D)/k,

0 ≤ i ≤ k. Note that this sequence is a priori constructed

in the surrounding space of D. Under assumptions B1-B4, the

convexity of D (B4) ensures Di ∈ D. Under assumptions A1-

A4, the local Lipschitz constant LX(ḡ) defined in (29) actually

holds independently of a particular dictionary structure D.

Hence, in both cases, since ‖Di+1 − Di‖1→2 ≤ ǫLX(ḡ)
CX(ḡ) for

i = 0, . . . , k − 1, the bound we just obtained yields:

|FX(Di+1)− FX(Di)| ≤ (1 + ǫ) LX(ḡ) ‖Di+1 −Di‖1→2

≤ (1 + ǫ) LX(ḡ) ‖D′ −D‖1→2/k

|FX(D′)− FX(D)| ≤ ∑k−1
i=0 |FX(Di+1)− FX(Di)|

≤ (1 + ǫ) LX(ḡ) ‖D′ −D‖1→2.

Thus, the bound (39) can be extended to any pair D,D′ ∈ D.

Since the choice of ǫ > 0 is arbitrary, Equation (38) follows.

As an example, consider NMF expressed with g = χNMF

and DNMF&ℓ1 the class of non-negative dictionaries with ℓ1
normalized columns, used in topic models [24],

DNMF&ℓ1 , {D : di ∈ R
m; ‖di‖1 = 1; dij ≥ 0},

which is convex (B4) as it is the Cartesian product of d
copies of the simplex. Since D ⊂ DNMF(κ) with κ = 1/md,

assumptions B1-B3 hold.

A slightly weaker result expressed in terms of uniform local

Lipschitz property holds under B1-B3 for non-convex D.

Theorem 3. Under assumptions B1-B3, for any training set

X and any dictionaries D′ 6= D ∈ D we have

|FX(D′)− FX(D)|
‖D′ −D‖1→2

≤ LX(ḡ) ·
(

1 +
√

1
κ‖D′ −D‖1→2

)

.

Proof: This is the direct result of Lemma 3. The upper

bounds for CX(D), LX(D) provided in Lemma 6 yield the

factor
CX(ḡ)
LX(ḡ) =

√

1
κ .

4This requirement will only arise from the need to have a finite covering
number for the sample complexity estimate
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Remark 2. The reader may wonder why we state a global

Lipschitz property in Theorem 2 but only a uniform local one

in Theorem 3. First, the triangle inequality argument does not

seem to extend: the line joining D to D′ cannot be cut in

small segments so that each intermediate pair remains in D.

In fact, there may even be several connected components in

the class. Moreover, even in a given connected component,

it is not clear what the length of the geodesics that would

mimic such a triangle inequality argument is. Answering such

questions would require a deeper investigation of the topology

and geometry of D. Since Theorem 3 is sufficient for our

needs, we leave them to future work.

C. Lipschitz-continuity for high-dimensional settings

When the signal dimension m is larger than the number

d of dictionary elements, then the Lipschitz-continuity studied

above is not appropriate as it leads to sample complexities that

grow with m. Instead, we may consider Lipschitz-continuity

with respect to D⊤D and D⊤X, which we show below and

use in Section IX to sketch improved results in such high-

dimensional settings.

Lemma 7. Under the same assumptions as in Lemma 3, for

any D′, we have

FX(D′) ≤ FX(D)+C
(1)
X (D)·‖(D′)⊤D′−D⊤D‖F+C

(2)
X (D)·‖X⊤D′−X⊤D‖F .

with

C
(1)
X (D) , inf

ǫ>0
sup
A∈Aǫ

1
2n · ‖AA⊤‖F ,

C
(2)
X (D) , inf

ǫ>0
sup
A∈Aǫ

1
n · ‖A‖F .

Proof: We follow the same principle as in the proof of

Lemma 3, but we use the following equality

LX(D′,A) = LX(D,A) + 1
2n 〈(D′)⊤D′ −D⊤D,AA⊤〉F − 1

n 〈(D′)⊤X−D⊤X,A〉F .
Note that we use the Frobenius norm for this lemma, but that

we could use any norm on matrices.

D. Other losses

One can envision extensions of Lemmata 3 and 7 and their

consequences to matrix factorization problems where the ℓ2
data-fidelity term, 1

2‖x−Dα‖22, is replaced by a more general

loss ℓ(x,Dα). In particular, Lemma 3 can be extended to

losses ℓ(·, ·) satisfying for any x,y

ℓ(x,y + h) ≤ ℓ(x,y) + 〈∇yℓ(x,y),h〉 + C‖h‖22,
i.e., with a local quadratic behavior. This would be reminiscent

of the work of Negahban et al [33] which covers M-estimation

problems where the loss, which is convex in the unknown

parameter is regularized with a convex decomposable penalty.

Here the considered problem is intrinsically non convex in D.

A generalization of Corollary 3 would further require as-

suming that ℓ(x,y) ≥ 0 for any x,y, to replace (31) with 0 ≤
g(αi) ≤ ℓ(x,0), and identifying conditions on the loss ensur-

ing that for some function B(.), an analogue of the bound (32)

holds: ‖∇yℓ(xi,Dαi)‖2 ≤ B(xi). The resulting Lipschitz

constant would read LX = 1
n

∑n
i=1 B(xi)ḡ(ℓ(xi,0)). The

full characterization of such extensions and of the families of

losses that can be considered is, however, beyond the scope

of this paper.

VI. SAMPLE COMPLEXITY (PROOF OF THEOREM 1)

Given the global (resp. uniform local) Lipschitz property

of FX, a standard route (see, e.g., [19], [20]) to control the

sample complexity via a uniform convergence result is to rely

on concentration of measure and covering numbers for the

considered class of dictionaries (see Section VII for details on

covering numbers).

A. Lipschitz property of the expected cost function

Mild assumptions on the quantities Λn(L) and Γn(γ) as

defined in (8) and (9) are sufficient to control the Lipschitz

constants of FX and of its expectation:

Lemma 8. Under assumptions A1-A4 or B1-B4, and C1:

1) the function D → FX(D) is Lipschitz with constant L ,

with probability at least 1− Λn(L).
2) the expected cost function D 7→ Efx(D) is Lipschitz with

constant L as soon as L > LP(ḡ) and:

C2’ there exists a sequence γn such that

lim
n→∞

γn = 0; lim
n→∞

Γn(γn) = 0

Proof: The first result trivially follows from Section V

and the definition of Λn(L). For the second one, given D,D′,
consider an i.i.d. draw X of n samples from P. We have

|Efx(D′)− Efx(D)| ≤ |Efx(D′)− FX(D′)|
+ |FX(D′)− FX(D)|
+ |FX(D) − Efx(D)|

≤ L‖D′ −D‖1→2 + 2γn

except with probability at most Λn(L) + 2Γn(γn). The limit

for large n yields the desired bound with probability one.

Remark 3. Under B1-B3 only (without the convexity as-

sumption on D), an analogon of Lemma 8 holds where

the conclusion that D 7→ FX(D) (resp. its expectation) is

“Lipschitz with constant L” is replaced with:

|FX(D′)− FX(D)|
‖D−D′‖1→2

≤ L ·
(

1 +
√

1
κ‖D−D′‖1→2

)

. (40)

(resp. (40) holds with FX(·) replaced by Efx(·)).
We are now ready to state a first uniform convergence result.

B. Abstract uniform convergence result

Lemma 9. Assume C1-C2. For any ǫ, γ > 0 we have, except

with probability at most

Λn(L) +N (D, ǫ) · Γn(γ) (41)

• under A1-A4 or B1-B4:

sup
D∈D

|FX(D)− Efx(D)| ≤ 2Lǫ+ γ (42)
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• under B1-B3 only:

sup
D∈D

|FX(D)− Efx(D)| ≤ 2Lǫ ·
(

1 +
√

1
κ ǫ

)

+γ (43)

Proof: We only give the proof under A1-A4 or B1-B4. A

straightforward adaptation yields the proof under B1-B3 only.

Fix ǫ > 0 and consider an ǫ-cover of D with respect to the

‖ · ‖1→2 metric with at most N = N (D, ǫ) elements {Dj}.

Fixing D ∈ D there is an index j such that ‖Dj−D‖1→2 ≤ ǫ,
hence

|FX(D)− Efx(D)| ≤ |FX(D)− FX(Dj)|
+ |FX(Dj)− Efx(Dj)|
+ |Efx(Dj)− Efx(D)|

≤ |FX(D)− FX(Dj)|
+ sup

1≤j≤N
|FX(Dj)− Efx(Dj)|

+ Lǫ

where we used the Lipschitz property of the expected cost

function (Lemma 8). By a union bound, for any γ > 0 we

obtain the bound (42) except with probability at most (41).

C. Main uniform convergence result

The above sample complexity estimate is not quite explicit

since it combines covering numbers and concentration bounds.

In the following, we give more explicit sample complexity

estimates under more specific assumptions on N (D, ǫ) and

Γn(γ). The assumption on N (D, ǫ) is justified by the fact

that all examples of classes D developed in Section VII have

covering numbers with bounds of the type expressed in (3).

The assumption C2 on Γn(γ) is further discussed at the end

of this section.

Lemma 10. Assume C1-C2 holds and that N (D, ǫ) satisfy

the bound (45), i.e., for c > 0, T ∈ (0,∞], and C, h ≥ 1:

Γn(cτ) ≤ 2 exp(−nτ2), ∀0 ≤ τ ≤ T ; (44)

N (D, ǫ) ≤
(

C

ǫ

)h

, ∀0 < ǫ ≤ 1. (45)

Define

β , h ·max(log 2LC
c , 1)

and D = 1 (under A1-A4 or B1-B4) or D = max(1/κ, 1)
(under B1-B3). Assume that the sample size n satisfies

n

logn
≥ max

(

8, β
T 2 , D ·

(

c
2L

)2
β
)

. (46)

Then, for any

0 ≤ x ≤ nT 2 − β logn (47)

we have, except with probability at most Λn(L) + 2e−x

sup
D∈D

|FX(D)− Efx(D)| ≤ ηn(L,C, h, c).

In the case of A1-A4 or B1-B4, we have

ηn , 2c

√

β log n
n + c

√

β+x
n ,

whereas for B1-B3, we obtain

ηn , 3c
√

β logn
n + c

√

β+x
n .

Note that Theorem 1 follows from Lemma 10.

Proof: First we observe that the condition C2 on Γn

implies C2’ (defined in Lemma 8), and since we assume C1

we can apply Lemma 9. Notice that (46) implies that one can

indeed find x that satisfies assumption (47). We set

ǫ = c
√
β

2L

√

logn
n ,

τ =

√

h[logC/ǫ]+x
n =

√

h[log(2LC/c
√
β)]+

h
2 log

n
log n+x

n .

Since (46) implies n ≥ 8, hence logn
2 ≥ 1, we have

0 ≤ x ≤ nT 2 − β
2 logn− β

2 logn ≤ nT 2 − h
2 logn− β.

By definition of β and h we have β ≥ h ≥ 1 hence

nτ2 − h
2 log n

logn = h log 2LC
c
√
β
+ x ≤ h log 2LC

c + x

≤ β + x ≤ nT 2 − h
2 log

n
logn .

This shows that 0 ≤ τ ≤ T . Moreover, by (46) we further

have 0 < ǫ ≤ 1, hence we can apply (44) and (45) to obtain

N (D, ǫ) · Γn(cτ) ≤ 2 · (C/ǫ)h · exp(−nτ2) = 2 · e−x.

Using A1-A4 or B1-B4 we conclude as follows: since β ≥ 1
and logn ≥ 1 we have

2Lǫ+ cτ = c
√

β logn
n

+ c ·
√

h log 2LC
c
√
β
+ h

2 log n
logn + x · 1√

n

≤ c

√

β logn
n + c ·

√

β
2 logn+ β + x · 1√

n

≤ c

√

β logn
n · (1 + 1√

2
) + c ·

√

β + x ·
√

1
n

≤ 2c
√

β log n
n + c

√

β+x
n .

Under B1-B3, the definition of D and assumption (46) imply

0 <
√

1
κ ǫ ≤ 1 hence we get similarly:

2Lǫ ·
(

1 +
√

1
κ ǫ

)

+ cτ ≤ 3c

√

β logn
n + c

√

β+x
n .

D. On assumptions C1 and C2

Assumptions C1-C2 are actually satisfied under rather stan-

dard hypotheses:

Lemma 11. Assume that P ∈ PRSm−1 . Then

Γn(R
2τ/

√
8) ≤ 2 exp(−nτ2), ∀n, ∀τ ≥ 0 (48)

Λn(R ḡ(R2/2)) = 0, ∀n.
In other words, C2 holds with c = R2/

√
8 and T = +∞, and

C1 holds with LP(ḡ) ≤ Rḡ(R2/2)).

Proof: For any D, the random variables yi = fxi
(D)

satisfy 0 ≤ yi ≤ 1
2‖x‖22 ≤ R2

2 almost surely. Applying Ho-

effding’s inequality yields (48). We conclude by observing that
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since ‖xi‖2 ≤ R almost surely, we have LX(ḡ) ≤ R ḡ(R2/2)
almost surely.

Lemma 12. Assume there is a constant A > 0 such that

P ∈ PA and that the penalty function g satisfies A1 (non-

negativity) and A4 (g(0) = 0). Then

Γn(12Aτ) ≤ 2 exp(−nτ2), ∀0 ≤ τ ≤ 1.

In other words, C2 holds with c = 12A and T = 1.

Moreover, in all examples of penalties g considered in Ta-

ble I, the growth of tḡ(t2/2) for large t is at most polynomial,

so that LP(ḡ) < +∞, and C1 holds.

Proof: We follow the argument in [26]. This primarily

results from Bernstein’s inequality, see, e.g., [38].

Lemma 13 (Bernstein’s Inequality). Let {zj}j∈J1;nK be inde-

pendent, zero-mean random variables. If there exist v,M > 0
such that for any integer q ≥ 2 and any j ∈ J1;nK, it holds

E[|zj |q] ≤
q!

2
M q−2v2,

then we have for any γ ≥ 0,

P

(

1
n

n
∑

j=1

zj > γ
)

≤ exp
(

− nγ2

2(v2 +Mγ)

)

.

In particular, for any τ ≤ v
2M , we have

P

(

1
n

n
∑

j=1

zj > 2vτ
)

≤ exp
(

− nτ2
)

.

We can now state a simplification of [26, Lemma 24].

Lemma 14. Let y be a random variable and assume there is

a constant B > 0 such that, for any t ≥ 1,

P (|y| > Bt) ≤ exp(−t). (49)

Then, for any u ≥ 1, any integer q ≥ 1, and 0 < p ≤ 1, we

have

E

[

|y|pq
]

≤ q!
[

Bpu
]q

[1 + exp(3− u)] (50)

E

[∣

∣

∣|y|p − E
[

|y|p
]

∣

∣

∣

q]

≤ q!
[

2Bpu
]q

[1 + exp(3− u)]. (51)

To keep the flow of the paper we postpone the proof to the

appendix. We now have the tools to state a simplified version

of [26, Corollary 6] which suits our needs.

Corollary 4. Consider n independent draws {yi}i∈J1;nK sat-

isfying the hypothesis (49) for some B > 0. Then, for any

0 < p ≤ 1 and 0 ≤ τ ≤ 1, we have

E{|yi|p} ≤ 6Bp (52)

P

(

∣

∣

∣

1
n

n
∑

i=1

(|yi|p − E |yi|p)
∣

∣

∣ ≥ 24Bp · τ
)

≤ 2 exp(−nτ2)

(53)

Proof: We apply Lemma 14 with u = 3. For q = 1,

Equation (50) yields (52). For q ≥ 2, Equation (14) shows

that we can apply Bernstein’s inequality (Lemma 13) with

zi = |yi|p − E |yi|p, M = 2Bpu = 6Bp and v =

√
2M

√
1 + e3−u = 2M = 12Bp. This shows that for

0 ≤ τ ≤ v/2M = 1 we have (53).

We are now ready to prove Lemma 12. First, we notice that

for any D, 0 ≤ yi = fx(D) ≤ 1
2‖x‖22, hence we have

sup
D∈D

P
(

fx(D) ≥ A
2 t
)

≤ exp(−t), ∀t ≥ 1.

Applying Corollary 4 with B = A/2 and p = 1 yields

Γn(12Aτ) ≤ 2 exp(−nγ2) for 0 ≤ τ ≤ 1.

VII. CONSTRAINT SET STRUCTURES AND COVERING

NUMBERS

Dictionaries learned with standard methods are unstructured

matrices D ∈ R
m×d that allow factored representations of

the signals of interest. However, in practice the dimension

of the signals which are being represented and consequently

the possible dictionaries’ dimensions are inherently restricted

by limited memory and limited computational resources. Fur-

thermore, when used within signal reconstruction algorithms

where many matrix vector multiplications have to be per-

formed, those dictionaries are computationally expensive to

apply. In the following we first describe various classes of

dictionaries and their motivation in signal processing. Then

we turn to the estimation of their covering numbers.

A. Unstructured Dictionaries with Unit Norm Atoms

Imposing unit norm on the atoms is a common technique to

avoid trivial solutions for the learning problem. An exemplary

learning algorithm that employs this kind of restriction is

the famous K-SVD algorithm proposed in [8]. All following

dictionary structures base upon this restriction. The class of

dictionaries of this form is a product of spheres defined as

D(m, d) , {D ∈ R
m×d : ddiag(D⊤D) = Id}.

The operator ddiag maps matrices R
d×d to R

d×d by leaving

the diagonal entries unaltered while setting all others to zero.

In NMF, this dictionary structure is further limited by requir-

ing non-negative entries, yielding the class DNMF ∩D(m, d),
or DNMF&ℓ1 if the ℓ1 normalization is preferred.

Lemma 15 (Covering number bound for D(m, d)). For the

Euclidean metric, Sm−1 the unit sphere in R
m and for any

ǫ > 0, we have

N (Sm−1, ǫ) ≤
(

1 + 2/ǫ
)m

.

Moreover, for the metric induced on R
m×d by ‖ · ‖1→2, and

for any ǫ > 0, we have

N (D(m, d), ǫ) ≤
(

1 + 2/ǫ
)md

.

Proof: Lemma 2 in [36] gives the first conclusion for the

sphere in R
m. As for the second result, remember that the set

D(m, d) is a Cartesian product of d (m−1)-spheres.
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B. Sparse Dictionaries

The authors of [13] propose a technique to learn so-called

sparse dictionaries. A sparse dictionary is the representation

of a learned dictionary D and a given base dictionary Θ

(e.g., DCT, ODCT, Wavelet) with the sparse matrix D̄ via

D = ΘD̄. This learning algorithm offers a reduction in

training complexity while aiming at maintaining the data

modeling abilities of unconstrained dictionary learning. We

show in the appendix that:

N (Dsparse(m, d, s,Θ), ǫ) ≤
((

m
s

)

(1 + 2/ǫ)s
)d

.

C. Orthogonal Dictionaries

Orthogonal dictionaries are square matrices belonging to

Dorth(d) , {D ∈ R
d×d : D⊤D = Id, det(D) = 1}. (54)

They represent the simplest form of dictionaries that allow

a unique representation of the signal. Computing the inner

product of the signal and the atoms of the dictionary provides

the representation coefficients. We show in the appendix that:

N (Dorth(d), ǫ) ≤ (3πeπ/ǫ)
d(d−1)/2

.

D. Stiefel manifold

In PCA (see Section VIII), the dictionary is a matrix

consisting of d orthonormal columns where d ≤ m, i.e., D is a

tall matrix. This constraint set is the so called Stiefel manifold

DSt(m, d) , {D ∈ R
m×d : D⊤D = Id}. (55)

We show in the appendix that:

N (DSt(d,m), ǫ) ≤ (3πeπ/ǫ)
md−d(d+1)/2

.

E. Separable Dictionaries

In [12] a dictionary learning scheme is developed that learns

a separable dictionary for sparse image representations: instead

of sparsely representing x = vec(Y) as x = Dα, where Y

is a matrix containing an image, one directly represents Y

sparsely as B via two dictionaries D1, D2 by the equation

Y = D1BD⊤
2 . (56)

Note that in order to relate this method to standard dictionary

learning techniques Equation (56) can be rewritten as

vec(Y) = (D2 ⊗D1) · vec(B).

We show in the appendix that:

N (Dsep, ǫ) ≤ (3/ǫ)
∑

i
midi .

F. Other Tensor Dictionaries

Similar to the structure of Separable dictionaries we can

define other constraint sets that are combinations of dictionary

structures. Examples for this are tensor products of Stiefel

matrices defined as

D⊗St , DSt(m1, d1)⊗ . . .⊗DSt(mz, dz) (57)

which are used for Higher-order SVD. For the sake of read-

ability the dimensions are omitted in this definition.

We show in the appendix that:

N (D⊗St, ǫ) ≤ (3πeπ/ǫ)
∑

i midi−di(di+1)/2 .

VIII. WORKED EXAMPLES

In this section we propose some settings that fit to our

framework and provide the corresponding sample complexity

estimates, i.e., the value of β.

Example 1 (PCA). PCA can be expressed as the optimization

problem

min
A;D∈DSt(m,d)

1
2‖X−DA‖2F + 1

n

∑

g(αi)

with the penalty function g = χd-sparse. Since αi ∈ R
d, the

penalty function is equivalent to 0. Its sole purpose is to shape

the problem in a way that fits into the general framework (2).

The constraint set is DSt(m, d), the set of m×d-matrices with

orthonormal columns.

a) Training data in the unit ball: Initially, we consider

a distribution P in the unit ball (R = 1, therefore, c = 1/
√
8,

cf. Lemma 11). Since DSt(m, d) ⊂ DLRIP(k, δ) with k = d
and δ = 0, the Lipschitz constant is L = 2

√
d, cf. Table I.

Table II yields h = md− d(d+ 1)/2 and C = 3πeπ. Hence,

the constant driving the sample complexity is

βPCA =
(

md− d(d+1)
2

)

· log(12πeπ
√
8d).

Compared to existing sample complexity results for PCA

[39], [40], this seems rather pessimistic: in [40] the sample

complexity is driven by β ∝ d, and we lose a large dimension-

dependent m factor5 as well as an additional mild logn factor.

In fact, the assumption that the data is distributed in the unit

ball is crucial in the results of [39], [40] as it allows the

use of the McDiarmid concentration inequality, while, in our

general context, we exploit a standard but somewhat crude

argument using union bounds and covering numbers. This

however means we can handle data distributions not restricted

to live on the unit ball, as we will see next.

b) Sub-Gaussian training data: The sub-optimality of

our results for PCA with respect to state of the art is probably

the price to pay for the generality of the approach. For exam-

ple, in contrast to previous work, our approach provides results

for other distributions. For example, given the distribution

P ∈ PA, we obtain the constant c = 12A (Lemma 12), while

all other constants remain the same. Thus, we get

βPCA =
(

md− d(d+1)
2

)

·max
(

log
(

πeπ
√
d

A

)

, 1
)

, (58)

Example 2 (Sparse coding, training data in the unit ball).

Consider P a distribution in the unit ball (R = 1). We have

c = 1/
√
8 (Lemma 11), and Table I immediately provides

values of the Lipschitz constant L = ḡ(1/2) such that

Λn(L) = 0. For example, for 0 < p < ∞
• for gχp

(α) = χ‖α‖p≤λ, we have Lp = d(1−1/p)+λ;

• for gχ0
(α) = χ‖α‖0≤k, we have L0 = 2

√

k
1−δ

For D = D(m, d) (resp. D = DLRIP(k, δ)), Table II

provides h = md and C = 3, and Theorem 1 yields

βχp
= md ·max

(

log 6
√
8λd(1−1/p)+ , 1

)

,

βχ0
= md · log 12

√

8k/(1− δ).

5See Section IX for techniques to handle this high-dimensional scaling.
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The cases gχ1
and gχ0

are dealt with by Vainsencher et al.

[20, Theorem 7] who provide a comparable result, however

restricted to distributions on the unit sphere whereas our

framework allows for more complex distributions. Moreover

while they make assumptions on the cumulative coherence of

D for their results with the ℓ0 constraint, we only rely on the

restricted isometry property.

The bound of Maurer and Pontil [19] for gχp
, p ≥ 1, λ = 1,

is of the order β′
p ∝ d4−2/p. We extend it to p < 1 as well,

and improve the case p = 1 as soon as m ≤ d.

In addition to the above penalty functions associated to the

indicator functions of the ℓ1 (resp. ℓ0) ball, our results allow

dealing with the ℓ1 norm itself –a very popular proxy for the ℓ0

“norm”– or its powers as penalty functions. For D = D(m, d)
(resp. D = DLRIP(k, δ)), the sparsity measures

• gℓ1(α) = ‖α‖1/λ, yielding L = λ
2 ;

• g(ℓ1)2(α) = ‖α‖21/λ2, yielding L = λ√
2

;

are associated to the sample complexities

βℓ1 = md ·max
(

log 3
√
8λ, 1

)

β(ℓ1)2 = md ·max (log 12λ, 1)

for probability distributions in the unit ball.

Example 3 (Sparse coding, sub-Gaussian training data). For a

distribution P satisfying assumption (10) we have c = 12A.

For D = D(m, d) we again have the constants C = 3, h = md
and Theorem 1 then yields sample complexity for g(ℓ1)2

β = md ·max
(

log λ
2
√
2A

, 1
)

.

Example 4 (“Doubly sparse” coding, training data in the unit

ball). Our results also allow to deal with other classes of struc-

tured dictionaries, such as the sparse dictionary Dsparse(m, d)
defined in Equation (65), yielding h = sd and C =

3
(

m
s

)1/d
. With gχ1

(respectively gχ0
with a restriction to

Dsparse(m, d)∩DLRIP(k, δ)), using Stirling’s approximation,

Theorem 1 yields

βs
χ1

≤ sd ·max
(

log 6
√
8λ+ log me

s , 1
)

βs
χ0

≤ sd ·
(

log 12
√

8k/(1− δ) + log me
s

)

.

Example 5 (Non-negative Matrix Factorization, training data

in the unit ball). In Non-negative Matrix Factorization (NMF)

(cf. [14]) a matrix X ∈ R
m×n is decomposed into a product

of two matrices with non-negative entries. It can be expressed

as the optimization problem

min
A;D∈D

NMF&ℓ1

1
2‖X−DA‖2F +

n
∑

i=1

χNMF(αi). (59)

Since the constraint set DNMF&ℓ1 is a subset of DNMF(1/md),
the penalty g = χNMF and the set DNMF&ℓ1 satisfy B1-B3

with κ = 1/md, and Table I gives the Lipschitz constant

L = 2
√
md. Moreover, since DNMF&ℓ1 ⊂ Dball(m, d), where

Dball(m, d) , {D ∈ R
m×d : ‖di‖2 ≤ 1}

has the same covering number as D(m, d), we get N (D, ǫ) ≤
(

3
ǫ

)md
as a direct consequence of the covering number bound

for the product of spheres. This yields the constants C = 3
and h = md, and together with the constant c = 1/

√
8, which

we get for distributions on the unit sphere, we obtain

βNMF = md · log 12
√
8md. (60)

In a similar setting Maurer and Pontil [19] obtain a sample

complexity estimate β ∝ d3 which has the advantage of being

independent of the signal dimension m. Yet, our result seems

sharper unless the signal dimension m exceeds d2, in which

case the approach sketched in Section IX could be followed to

recover improved estimates in this high-dimensional scaling.

Example 6 (K-means clustering, training data in the unit ball).

Given a set of n data points K-means clustering algorithms

learn a dictionary with K columns and assign each data point

to one of these columns while minimizing the sum of squared

distances. These atoms represent the K distinct classes. In

our notation so far d = K . Then the problem of K-means

clustering can be expressed as the minimization problem

min
A;D∈Rm×K

1
2‖X−DA‖2F +

n
∑

i=1

g(αi) (61)

with the penalty function

g(α) = χ‖α‖0=1 + χ∑
k
αk=1. (62)

This penalty function ensures that all columns of A have

exactly one entry with the value 1. The centers of the clusters

are represented in the columns of D.

This penalty function fulfills A1-A3, and its auxiliary

function is ḡ(t) ≡ 1 for all t ∈ R. However, g does

not fulfill A4. This has the consequence that we cannot

merely apply Corollary 3. Instead, we have to rely on the

preceding Lemma 5 which leaves us with the upper bound
1
n

∑n
i=1

√

2fxi
(D) · ḡ(fxi

(D)) = 1
n

∑n
i=1

√

2fxi
(D) for

the Lipschitz constant. To proceed, we recall the definition

fx(D) = infα
1
2‖x − Dα‖22 + g(α). For the function

1
2‖x − Dα‖22 + g(α) to be finite, the coefficient vector α

has to fulfill g(α) = 0. Due to the construction of g, there is

only a finite number of possible choices for α (namely α is

a standard basis vector in R
d), and the Lipschitz constant can

be upper bounded by

LX(D) ≤ 1
n

n
∑

i=1

max
j=1,...,K

‖xi − dj‖2 ≤ max
i,j

‖xi − dj‖2.

Restricting our analysis to the case of data samples xi lying

within the unit ball (‖xi‖2 ≤ 1), the optimum dictionary

coincides with the optimum where the matrix D is constrained

to belong to Dball(m,K). It follows that the Lipschitz constant

is simply bounded by L = 2. Moreover, Dball(m,K) has

the same covering number as D(m,K). From the structural

constraints to the dictionary and the signal distribution we

obtain the constants L = 2, C = 3, h = mK , c = 1/
√
8. The

above implies the constant

βK−means = mK · log(12
√
8).

The literature on the sample complexity of K-means is

abundant. Following the early work of Pollard [41], a series

of authors have established worst-case lower bounds on the
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excess risk decaying at best as 1/
√
n [42]–[44], as well as

upper bounds of the order of O(1/
√
n) (for a given dimension

m) [45]. More concrete estimates, where the role of K and

m is explicated, are needed to compare with our sample

complexity estimate. Bartlett et al. [43] bound the excess risk

by a constant times min
(

√

Km/n,
√

K1−2/mm logn/n
)

which, for large m and arbitrary K , is essentially matched

by our estimate. Estimates independent of the dimension m
have been obtained by Biau et al. [46] (see also [19]) of the

order K/
√
n. These correspond to β ∝ K2, hence our result

seems sharper when m . K , i.e., when the number of clusters

exceeds the dimension.

Example 7 (Higher-order SVD). A natural extension of PCA

is the so called Higher-order SVD (HOSVD) or multilinear

SVD introduced in [25]. Let the training signals xi be real z-

tensors, i.e., X is an element of Rm1×m2×...×mz×n with X =
[X1 . . . Xn] where Xi ∈ R

m1×m2×...×mz . The HOSVD X

is obtained by solving the minimization problem

min
A,D∈D⊗St

1
2

n
∑

i=1

‖Xi −D ◦Ai‖2F .

In this equation D is an element of the constraint set D⊗St as

defined in (57) and therefore a concatenation of Stiefel ma-

trices D1, . . . ,Dz with Di ∈ DSt(mi, di), and the coefficient

tensor A ∈ R
d1×...dz×n has the form A = [A1 . . . An] with

Ai ∈ R
d1×...dz . The operator ◦ denotes the operation

D ◦Ai , Ai ×1 D1 ×2 D2 . . .×z Dz ,

where ×N denotes the so-called N -mode product introduced

in [25]. Just as for PCA the trivial penalty G(A) ≡ 0 can be

written using g(α) = χ‖α‖0≤
∏

z
i=1 di

where αi is the vector

resulting from the unfolding of the i-th component of A, 1 ≤
i ≤ n, along its rightmost dimension.

Table II yields the constants C = 3πeπ and h =
∑z

i=1 midi−di(di+1)/2. To obtain the Lipschitz constant L
we unfold the tensor A to the matrix R

(
∏z

i=1
di)×n and then

use a penalty definition similar to the one used for PCA. This

yields the constant L = 2 ·
√
∏z

i=1 di. For distributions P in

the ball with R = 1, Theorem 1 provides

βHOSVD =

(

z
∑

i=1

midi − di(di+1)
2

)

· log



12πeπ

√

√

√

√8

z
∏

i=1

di



 .

In light of state of the art results [40] on PCA, this apparently

new sample complexity estimate is probably quite pessimistic.

IX. HIGH-DIMENSIONAL SETTINGS

When m gets larger, the reasoning in Section VI based

on covering numbers of the set of admissible dictionaries D

leads to unfavorable scaling with respect to m. This factor is

introduced through the ǫ-net argument following Lemma 9.

In order to avoid the issues that arise in the high-dimensional

setting, we could envision using an alternative to Lemma 3

which served as a precursor to the discussion of the Lipschitz

property. Such an alternative is proposed in Lemma 7, where

we derive a Lipschitz property of FX w.r.t. the Frobenius

norms of D⊤D and D⊤X which are in R
d×d and R

d×n,

respectively. Covering net arguments revolving around these

quantities clearly become independent of the signal dimension

m, but would yield difficulties due to their dependence on the

draw of X. Providing concrete results for this cases is beyond

the scope of this paper, instead, we sketch below an alternative

approach.

Another option to handle the high-dimensional setting is to

extend the approach proposed in [19]. We provide a rough

outline below. First, recall that the initial problem is to provide

an upper bound for the expression

sup
D∈D

(

1
n

n
∑

i=1

fxi
(D) − Exfx(D)

)

.

We can use McDiarmid’s inequality in combination with a

symmetrization argument and Rademacher averages to provide

the upper bound

sup
D∈D

(

1
n

n
∑

i=1

fxi
(D)− Exfx(D)

)

=C1 ·
[

Eη sup
D∈D

AD(η)

]

+ C2 ·
√

2t/n

with probability at least 1 − e−t and the Gaussian pro-

cess AD(η) = 1
n

∑n
i=1 ηifxi

(D) where the variables ηi
are i.i.d. standard Gaussian. Therefore, it remains to find

an upper bound for Eη supD∈D AD(η). Slepian’s Lemma

states that for any Gaussian process BD that fulfills the

condition Eη|AD(η)−AD′(η)|2 ≤ Eξ|BD(ξ)−BD′(ξ)|2 the

bound Eη[supD∈D AD(η)] ≤ Eξ[supD∈D BD(ξ)] holds. In

the case at hand we can observe that Eη|AD(η)−AD′(η)|2 =
1
n2

∑n
i=1 |fxi

(D) − fxi
(D′)|2. Lemma 7 yields the upper

bound

|fx(D)− fx(D
′)| ≤C

(1)
X ‖D⊤D− (D′)⊤D′‖F
+ C

(2)
X ‖(D−D′)⊤x‖2, (63)

which implies that the Gaussian process

BD(ξ) = C′〈D⊤D, ξ(1)〉F + C′′〈D⊤x, ξ(2)〉2 (64)

fulfills the condition of Slepian’s Lemma for appropriate

choices of the scalars C′, C′′. Here, the first scalar product

operates in R
d×d, whereas the second one is defined on R

d.

Thus, computing the supremum over all D would result in an

expression which is independent of the signal dimension m.

Especially in the case of PCA, the final sample complexity

result would benefit since the first term in Equation (63),

and thereby the first term in (64), vanishes, yielding a tighter

bound. However, it is not within the scope of this work to

provide concrete results for this alternative approach.

X. CONCLUSION AND DISCUSSION

We proposed a general framework to determine the sample

complexity of dictionary learning and related matrix factor-

ization problems. The generality of the framework makes

it applicable for a variety of structure constraints, penalty

functions, and signal distributions beyond previous work. In

particular, it covers formulations such as principal compo-

nent analysis, sparse dictionary learning, non-negative matrix
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factorization, or K-means clustering, for which we provide

sample complexity bounds in the worked examples section.

To keep the exposition of our results simple, we focused on

matrix factorization where the data fidelity term is expressed

with squared ℓ2 norm. A straightforward adaptation of the

computation of the Lipschitz constant of Section V can easily

be made to achieve similar results with the plain ℓ2 norm [20],

and easy adaptations can be envisioned when the data fidelity

term is ℓ(x−Dα) where the gradient ∇ℓ(·) is Lipschitz. More

general loss functions are briefly discussed in Section V-D.

The obtained sample complexity results applied to sparse

coding extend those of Maurer and Pontil [19] and Vainsencher

et al. [20] in primarily two ways.

First, we relax the assumption that the training data lives

in the unit ball [19] or even the unit Euclidean sphere [20]

by showing that it is sufficient to have sufficient decay

of the probability of drawing training samples with “large”

norm. This is essentially achieved by replacing Hoeffding’s

inequality with a more refined Bernstein inequality argument.

Second, and more importantly, we handle penalty functions

g beyond indicator functions of compact sets [19, Theorem

1], or of sets K such that supD∈D,α∈K ‖Dα‖2 < ∞ [19,

Theorem 2], or of ℓ1 or ℓ0 balls [20]. Indeed, the first generic

case dealt with in this paper involves penalty functions that

only need to be non-negative, lower semi-continuous, coercive

(and for convenience be minimum at zero). The second generic

case also covers as particular cases the indicator function

of k-sparse vectors and that of non-negative vectors, with

restrictions on D.

Beyond sparse coding, our results provide apparently new

sample complexity estimates for K-means. Compared to state

of the art results [43] and [46] we pay an additional logn factor

in our excess risk analysis, but improve the sample complexity

estimate when the number of clusters K exceeds the ambient

dimension m. A brief discussion on possible strategies of how

to obtain results independent of m is provided in Section IX.

Similarly, our results provide new sample complexity esti-

mates for NMF improving over state of the art results [19]

unless the ambient dimension m exceeds the order d2. Again,

we refer to Section IX for a discussion of the high-dimensional

setting.

Despite its successes, the main limitation of the proposed

approach seems to be in the rather crude use of union bounds

and covering numbers. One can envision sharper sample

complexity estimates using more refined concentration tools.

For example, sample complexity results for PCA for signal

distributions in the unit ball were studied in [40]. Although

our approach achieves results for more general distributions

such as the class PA, the sample complexity results we obtain

for this setting seem disappointingly pessimistic, both paying

an additional logn factor and overestimating the sample com-

plexity as md−d(d+1)/2 rather than d. We expect this may be

due to the use by the authors in [40] of more refined tools such

as McDiarmid’s bounded difference concentration inequality

for the supremum of the deviation, and more importantly of

a clever dimension-independent bound (i.e., independent of

m) on the expectation of the supremum of the deviation. We

dedicated Section IX to a brief discussion of how we would

envision to apply these tools to the more general context

considered here, to obtain dimension-independent results.

The reader may have noticed that the rate of convergence

of our estimates is in 1/
√
n, which is typical when using

techniques based on empirical processes. In certain settings

it is possible with substantially more work to achieve fast

rates in 1/n, see, e.g., [47] in a much simpler setting, or the

discussions of fast rates in [19], [20], [40], [46]. It is not clear

at this stage whether it is a realistic objective to achieve fast

rates in the investigated general setting. In any case this is

expected to require well chosen “margin conditions” to hold,

see, e.g., [48], [49] for the case of K-means.

Improving the estimate of Lipschitz constants is another

avenue for improvement, although its role in our sample

complexity estimates is already only logarithmic. In fact, the

generality of our approach comes at a price. The bound on

LX(D) in Lemma 5 (resp. Lemma 6) is a worst case estimate

given the bounds (24) and (25) (resp. (36)), and therefore

rather crude. In a probabilistic setting, where the training

samples xi are drawn i.i.d. according to some distribution P,

one can envision much sharper bounds for 1
n‖(X−DA)A⊤‖⋆

using matrix concentration inequalities. A key difficulty will

come from the control of A which is dependent on X and

D. Moreover, while we concentrated on the exploitation of

Lemma 3 and its corollary for the special metric ‖ · ‖1→2 on

dictionaries, better choices may be possible, including metrics

defined in terms of the penalty g when applicable (potentially

leading to alternate definitions of ḡ), or metrics dependent on

the data distribution P.

The reader may object that the role of the Lipschitz constant

L in our final results (see, e.g., Theorem 1) is only logarithmic

so the added value of such technicalities might be limited.

Here, we notice that for the sake of simplicity we expressed

Corollary 3 with a uniform Lipschitz constant independent

of D. Clearly, some intermediate steps yield finer estimates

LX(D) that depend on the considered dictionary D, i.e., local

Lipschitz constants. In certain scenarii these may provide more

precise estimates that may turn out to be useful especially

in the analysis of local properties of FX(D). This is best

illustrated with an example.

Example 8. When g(α) = λ‖α‖21, we have ḡ(t) =
√

t/λ hence LX(D) = 1
n

∑n
i=1

√

2fxi
(D) ·

√

fxi
(D)/λ =

FX(D)
√

2/λ. As a result, Corollary 2 implies that we locally

have FX(D′)/FX(D) ≤ 1 +
√

2/λ‖D′ − D‖1→2. This

implies that logFX(D) is uniformly Lipschitz with constant

L =
√

2/λ. In other words, FX(D) is more regular where it

takes small values.

This is likely to have an impact when performing a local

stability analysis of sparse coding with the penalty λ‖α‖21
rather than λ‖α‖1, in the spirit of [26], see also [50]–[52].

Finally, observing that this paper provides sample complex-

ity estimates of matrix factorization with penalties g(α) much

beyond indicator functions of (often compact) sets, it is natural

to wonder if we could also replace the constraint D ∈ D, i.e.,

the penalty χD(D), by a more general penalty on D promoting

certain dictionaries. This would somehow lead to a model

selection process where one could envision, e.g., adapting the
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effective number of nonzero columns of D, but would raise

hard questions regarding the usability of covering numbers.
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APPENDIX A

PROOF OF LEMMA 14

To begin with, let us notice that by invoking twice the

triangle inequality, we have

(E {||y|p − E {|y|p}|q})1/q ≤ (E {|y|pq})1/q

+ (E {(E {|y|p})q})1/q ,

so that by using Jensen’s inequality, we obtain

E {||y|p − E [|y|p]|q} ≤ 2qE [|y|pq] ,

thus proving (51) provided that (50) holds. We now focus on

these raw moments. Let us fix some u ≥ 1. We introduce the

event

K , {ω : |y(ω)|/B ≤ u} ,

and define lu as the largest integer such that u ∈ [lu, lu + 1).
We can then “discretize” the event Kc as

Kc ⊆ ∪∞
l=luKc

l , with Kc
l = {ω : |y(ω)|/B ∈ [l, l + 1)} .

We have

E{|y|pq} = E{1K|y|pq}+ E{1Kc |y|pq}
≤
(

Bu
)pq

+
∑∞

l=lu
E{1Kc

l
|y|pq}

≤ Bpq ·
[

upq +
∑∞

l=lu
(l + 1)pq · E{1Kc

l
}
]

≤ Bpq ·
[

uq +
∑∞

l=lu
(l + 1)pq · E[1{ω; |y(ω)|≥Bl}]

]

where in the last line we used up ≤ u since u ≥ 1 and p ≤ 1.

Using the hypothesis (49), we continue

E{|y|pq} ≤ Bpq ·
[

uq +
∑∞

l=lu
(l + 1)pq exp(−l)

]

.

Upper bounding the discrete sum by a continuous integral, we

recognize here the incomplete Gamma function [53],

∑∞
l=lu

(l + 1)pqe−l =
∑∞

l=lu

∫ l+1

l (l + 1)pqe−ldt

≤∑∞
l=lu

∫ l+1

l (t+ 1)pqe−(t+1)+t+1−ldt

≤ e2
∑∞

l=lu

∫ l+1

l
(t+ 1)pqe−(t+1)dt

= e2
∫∞
lu

(t+ 1)pqe−(t+1)dt

= e2
∫∞
lu+1 t

pqe−tdt ≤ e2
∫∞
u tqe−tdt

= e2Γ (q + 1, u)

where again we used tpq ≤ tq for t ≥ 1. A standard

formula [53, equation (1.3)] leads to, for u ≥ 1,

Γ(q + 1, u) = q! exp(−u)
∑q

j=0
uj

j! ≤ e q! exp(−u)uq.

Putting all the pieces together we reach the conclusion.

APPENDIX B

COVERING NUMBERS

To estimate covering numbers in Lemma 15 we used

implicitly the following Lemma, which follows directly from

the definition of covering numbers and will serve to extend

this result to other constraint sets.

Lemma 16. Consider compact constraint sets D1, . . . ,Dk

with respective covering number bounds N1, . . . , Nk with re-

spect to metrics ρ1(·, ·), . . . , ρk(·, ·). Then the covering number

of the Cartesian product D , D1 × . . .×Dk (with respect to

the maxi ρi(Di,D
′
i) metric) has the upper bound

N (D, ǫ) ≤
k
∏

i=1

Ni.

In order to further extend these results to more elaborate

constraint sets we resort to a result from [54].

Lemma 17. Given a constraint set D with distance measure

ρ1, a normed space M with distance measure ρ, and a

mapping Φ: M → D that fulfill the conditions

1) There exists an r ∈ R, r > 0 such that Φ(Br) ⊃ D where

Br is a ball around 0 ∈ M with radius r with respect to

the distance metric ρ (Surjectivity).

2) There exists an L ∈ R such that ρ1(Φ(D1),Φ(D2)) ≤
L · ρ(D1,D2) for D1,D2 ∈ Br (Lipschitz property).

Then the covering number of D has the upper bound

N (D, ǫ) ≤ (3rL/ǫ)
h

where the exponent h is the dimension of the constraint set D

in the sense of its manifold structure.

These lemmata imply covering number bounds for all the

constraint sets introduced in the previous section.

1) Sparse dictionaries: The class of s-sparse dictionaries

Dsparse(m, d, s,Θ) with Θ ∈ Dorth(m) is the Cartesian product

of d copies of

Dsparse(m, 1, s,Θ) , {Θd : d ∈ R
d, ‖d‖0 ≤ s}. (65)

By Lemma 16 its covering number with the ‖ · ‖1→2 metric is

N (Dsparse(m, d, s,Θ), ǫ) ≤ (N (Dsparse(m, 1, s,Θ), ǫ))d .

Since the set Dsparse(m, 1, s,Θ) is isometric to

Dsparse(m, 1, s, Im), we have N (Dsparse(m, 1, s,Θ), ǫ) =
N (Dsparse(m, 1, s, Im), ǫ) these covering numbers are

with respect to the Euclidean metric). Now, observe

that Dsparse(m, 1, s, Im) is simply the set of normalized

s-sparse vectors in R
m, which is a union of

(

m
s

)

(s− 1)-
spheres from as many subspaces. Hence, we obtain

N (Dsparse(m, 1, s, Im), ǫ) ≤
(

m
s

)

(1 + 2/ǫ)
s
, yielding

N (Dsparse(m, d, s,Θ), ǫ) ≤
((

m
s

)

(1 + 2/ǫ)
s)d

.
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2) Orthogonal Dictionaries: The orthogonal dictionaries as

defined in Equation (54) are the group of special orthogonal

matrices. The special orthogonal group is a Lie group, and

the corresponding Lie algebra is the vector space of skew

symmetric matrices so(d), i.e., exp: so(d) → Dorth(d) is

a surjective map. Furthermore, it can be shown that it is

sufficient to restrict so(d) to a ball around 0 with radius π
in order to obtain a surjective map. The exponential mapping

is Lipschitz since it holds that

ρ(exp(S1), exp(S2)) ≤ ea‖S1 − S2‖, (66)

with S1,S2 ∈ Bπ and a = max (‖S1‖, ‖S2‖) ≤ π and we

obtain the Lipschitz constant L = eπ. Finally, the dimension

of Dorth(d) is d(d − 1)/2 which yields the covering number

bound

N (Dorth(d), ǫ) ≤ (3πeπ/ǫ)
d(d−1)/2

.

3) Stiefel matrices: The Stiefel manifold, defined in

Equation (55), can also be defined as the quotient space

Dorth(m)/Dorth(m−d), cf. [55]. In the previous section, we

already mentioned that the Lie algebra of Dorth(m) is given

by so(m). Now, we define the function

Φ: so(m) → DSt(d,m),

Φ , q ◦ exp,

where q : Dorth(m) → Dorth(m)/Dorth(m− d) denotes the

quotient mapping. The Lipschitz constant for the exponential

mapping has been previously established in Equation (66). The

function q is a quotient map and therefore a contraction, and as

the mapping Φ is a combination of two Lipschitz mappings it

is Lipschitz itself. Thus, conditions (1) and (2) in Lemma 17

are fulfilled and taking into account that dim(DSt(d,m)) =
md− d(d+ 1)/2 we obtain the covering number bound

N (DSt(d,m), ǫ) ≤ (3πeπ/ǫ)md−d(d+1)/2 .

4) Separable Dictionaries: The mapping

Φ: D(m1, d1)× . . .×D(mz, dz) → Dsep,

(D1,D2, . . . ,D2) 7→ D1 ⊗D2 ⊗ . . .⊗Dz

is surjective and Lipschitz with a Lipschitz constant smaller

than one. Thus, Lemmata 17 & 16 yield

N (Dsep, ǫ) ≤ (3/ǫ)
∑

i midi .

5) Tensor Product of Stiefel matrices: Analogous to above

we introduce the mapping

Φ: DSt(m1, d1)× . . .×DSt(mz, dz) → D⊗St,

(D1, . . . ,Dz) 7→ D1 ⊗ . . .⊗Dz.

As this is just a special case of the mapping in the previous

constraint set, this mapping is surjective as well as a con-

traction. Hence, according to Lemmata 17 and16 the covering

number bound is given by

N (D⊗St, ǫ) ≤ (3πeπ/ǫ)
∑

i midi−di(di+1)/2 .
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