Parametric Modelling of Multivariate Count Data Using Probabilistic Graphical Models

Pierre Fernique 1, 2 Jean-Baptiste Durand 3, 1, * Yann Guédon 1, 2
* Auteur correspondant
1 VIRTUAL PLANTS - Modeling plant morphogenesis at different scales, from genes to phenotype
CRISAM - Inria Sophia Antipolis - Méditerranée , INRA - Institut National de la Recherche Agronomique, Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] : UMR51
3 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Multivariate count data are defined as the number of items of different categories issued from sampling within a population, which individuals are grouped into categories. The analysis of multivariate count data is a recurrent and crucial issue in numerous modelling problems, particularly in the fields of biology and ecology (where the data can represent, for example, children counts associated with multitype branching processes), sociology and econometrics. We focus on I) Identifying categories that appear simultaneously, or on the contrary that are mutually exclusive. This is achieved by identifying conditional independence relationships between the variables; II)Building parsimonious parametric models consistent with these relationships; III) Characterising and testing the effects of covariates on the joint distribution of the counts. To achieve these goals, we propose an approach based on graphical probabilistic models, and more specifically partially directed acyclic graphs.
Type de document :
Communication dans un congrès
AIGM13 - 3rd Workshop on Algorithmic issues for Inference in Graphical Models, Sep 2013, Paris, France
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00918597
Contributeur : Jean-Baptiste Durand <>
Soumis le : vendredi 13 décembre 2013 - 17:43:48
Dernière modification le : mercredi 14 juin 2017 - 01:10:03
Document(s) archivé(s) le : mardi 18 mars 2014 - 12:55:40

Fichiers

aigm2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00918597, version 1
  • ARXIV : 1312.4479

Collections

Citation

Pierre Fernique, Jean-Baptiste Durand, Yann Guédon. Parametric Modelling of Multivariate Count Data Using Probabilistic Graphical Models. AIGM13 - 3rd Workshop on Algorithmic issues for Inference in Graphical Models, Sep 2013, Paris, France. <hal-00918597>

Partager

Métriques

Consultations de
la notice

436

Téléchargements du document

194