G. I. Allen and Z. Liu, A Log-Linear Graphical Model for inferring genetic networks from high-throughput sequencing data, 2012 IEEE International Conference on Bioinformatics and Biomedicine, pp.1-6, 2012.
DOI : 10.1109/BIBM.2012.6392619

D. Chickering, Learning equivalence classes of bayesian-network structures, The Journal of Machine Learning Research, vol.2, pp.445-498, 2002.

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, issue.3, pp.432-441, 2008.
DOI : 10.1093/biostatistics/kxm045

D. Johnson and J. Hoeting, Properties of graphical regression models for multidimensional categorical data, Statistics & Probability Letters, vol.81, issue.10, pp.1471-1475, 2011.
DOI : 10.1016/j.spl.2011.05.003

D. Karlis, An EM algorithm for multivariate Poisson distribution and related models, Journal of Applied Statistics, vol.30, issue.1, pp.63-77, 2003.
DOI : 10.1080/0266476022000018510

D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques, 2009.

J. D. Lee and T. J. Hastie, Structure learning of mixed graphical models. Submitted to the Journal of Machine Learning Research Available: http://www, 2012.

P. Meyer, F. Lafitte, G. Bontempi, and . Minet, minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information, BMC Bioinformatics, vol.9, issue.1, p.461, 2008.
DOI : 10.1186/1471-2105-9-461

T. Verma and J. Pearl, An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation, Proceedings of the Eighth international conference on uncertainty in artificial intelligence, pp.323-330, 1992.
DOI : 10.1016/B978-1-4832-8287-9.50049-9