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We show how to provide a structure of probability space to the set of execution traces on a non-

confluent abstract rewrite system, by defining a variant of a Lebesgue measure on the space of traces.

Then, we show how to use this probability space to transform a non-deterministic calculus into

a probabilistic one. We use as example λ+, a recently introduced calculus defined through type

isomorphisms.

1 Introduction

Many probabilistic calculi has been developed in the pasts years, e.g. [1, 9, 11, 14, 20]. In particular, the

algebraic versions of λ -calculus [5,24] are extensions to λ -calculus where a linear combination of terms,

e.g. α.r+β .s, is also a term. One way to interpret such a linear combination is that it represents a term

which is the term r with probability α , or the term s with probability β . However, endowing such a

calculus with a non-restrictive type system is a challenge [3, 4].

A simpler framework is that of non determinisitic calculi which can be seen as algebraic calculi

withouth scalars. They have been studied, for instance in [8,10,12,13,15–18,21], however moving back

from non-determinism to probabilities is not trivial. In this paper we propose, instead of changing these

models, to define a probability measure on reductions in non-deterministic systems. In fact, as we shall

see, such a probability measure can be defined on any abstract non-deterministic transition systems, or

non-confluent abstract rewrite systems (ARS) (cf. [23, Chapter 1]). Our goal is to show that explicit

probabilities are not needed in the syntax, and that the simpler non-deterministic calculi are as powerful

as the more complicated probabilistic calculi.

a

�� ��
b c

�� ��
d e

Consider for example the following non-confluent ARS

a → b , a → c , c → d , c → e ,

we want to associate a probability to events such as

a →∗ b , a →∗ c , a →∗ d , a →∗ e .

In this example, assuming equiprobability, we have P(a →∗ b) = 1
2
, P(a →∗ c) = 1

2
, P(a →∗ d) = 1

4
,

P(a →∗ e) = 1
4
. Notice that these events are not disjoints and that their sum is larger than 1. In particular,

a →∗ d implies a →∗ c. Defining the elements of the set Ω of elementary events is not completely

straightforward, in particular because we want to make it general enough to also consider infinite cases.

For example, in the following system

ai → ai+1, ai → a′i+1 ,

we naturally would like that P(a0 →
∗ an) =

1
2n .
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Besides defining the elements of the set Ω, we need to define a notion of a measurable subset of Ω

and endow such a subset with a probability distribution verifying the Kolmogorov axioms.

Our idea is to follow Lebesgue: define first the probability of rectangles, or boxes, then the probability

of any set and finally measurable sets as those that verify Lebesgue’s property. Thus besides defining the

set Ω, we need to define a subset of P(Ω) of boxes.

The first intuition would be to take paths as elements of the set Ω, for instance assigning the prob-

ability 1
2

to the paths a → b, 1
4

to a → c → d and 1
4

to a → c → e. In fact it seems more convenient to

extend such paths to strategies prescribing one reduct for each non normal object. Boxes are then defined

as sets of strategies agreeing on a finite domain. We show in this paper that this is sufficient to define a

probability space on strategies, consistent with the intuitive probability of events of the form a →∗ b.

Our study is generic enough to be applicable to several settings, such as automatons, or any other

kind of transition systems. We use the nomenclature of abstract rewrite systems, but that of states and

transitions could be used as well. Finally, we apply this construction to λ+ [15, 16].

Plan of the paper. Section 2 introduces the basic concepts of strategies and boxes, it defines the

Lebesgue measures. Section 3 proves that the space of strategies forms a probability space. Finally,

in section 4 we show how to modify the calculus λ+ into a probabilistic calculus λ
p
+. Also, we provide

an encoding of an algebraic λ -calculus into λ
p
+ and, to some extend, the inverse translation.

2 Preliminaries

Let Λ be a set of objects and → a function from Λ×Λ to N such that for all a the set {b | → (a,b) 6= 0}
is finite. We write a → b if → (a,b) 6= 0. We allow a term to be written to the same symbol more than

once, so its probability increases, e.g. if → (a,b) = 2 and → (a,c) = 1, then the probability of getting

b will be the double than the probability of getting c. Think for example in a non-deterministic choice

between two objects, which happen to be equal, then there would be two ways to get such an object by

doing the choice. For a given object a ∈ Λ, we denote by ρ(a) its degree, that is, the number of objects

to which it can be rewritten to in one step. Definition 2.1 formalises this.

Definition 2.1 (Degree of an object). ρ : Λ → N is a function defined by ρ(a) = ∑b → (a,b).

An object is normal if its degree is 0. We denote by Λ+ = {a | a ∈ Λ and ρ(a) ≥ 1} to the set of

non-normal objects, that is, objects that can be rewritten to other objects.

A strategy prescribing one reduct for each non-normal object is defined as a function from Λ+ to Λ

(cf. [23, Def. 4.9.1]).

Definition 2.2 (Strategy). A strategy is a total function f : Λ+ → Λ such that f (a) = b implies a → b.

For instance, if a → b and a → b′, there are two functions, f and f ′ assigning different results to a. We

denote by Ω the set of all such functions.

A box is a set of strategies agreeing on a finite domain.

Definition 2.3 (Box). A box B ⊆ Ω is a set of the form { f | f (a1) = a′1, . . . , f (an) = a′n} for some objects

ai, a′i. We write B(Ω) the subset of P(Ω) containing all the boxes.

Example 2.4. Continuing with the example given at the introduction, Λ+= {a,c}. Let f1(a)= b, f1(c)=
d and f2(a) = b, f2(c) = e be two of the four strategies of Ω. Then the box { f | f (a) = b, f (c) = d} =
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{ f1}, and the box { f | f (a) = b} is { f1, f2}.







f1 =

a

��

b c

��

d

; f2 =

a

��

b c

��
e







=

Box

a

��

b

A probability distribution can be defined in term of boxes, and then be extended to arbitrary sets of

strategies.

Definition 2.5 (Probability function). Let p : B(Ω) → [0,1] be a total function defined over boxes as

follows. If B = { f | f (a1) = a′1, . . . , f (an) = a′n}, then

p(B) =
n

∏
i=1

→ (ai,a
′
i)

ρ(ai)
.

By convention, if no condition is given in B (i.e. B = Ω), we have n = 0, and we consider the product of

zero elements to be 1, the neutral element of the product.

Then we define the probability measure P : P(Ω)→ [0,1] for arbitrary sets of strategies as follows

P(S) =

{
0 if S = /0

inf{∑B∈C p(B) | C is a countable family of boxes s.t. S ⊆
⋃

B∈C B} in other case

Example 2.6. Consider the ARS a → b with multiplicity 2 and a → c with multiplicity 1.

Let B be the box B= { f | f (a)=b}. Then we have p(B)= →(a,b)
ρ(a) = 2

3
. Intuitively,

a
�� ����

b b cP(B) is the same as p(B) (this will be later formalised in Lemma 3.10), because B is

the minimum cover of B, that is, {B} is the minimum family of boxes such that B is

in its union. Hence P(B) = 2
3
.

Example 2.7. We continue with the same running example depicted in the introduc-

tion. Let f1(a) = b, f1(c) = d and f3(a) = c, f3(c) = e be two strategies. Then the set

S = { f1, f3} is minimally covered by the boxes B1 = { f1}= { f | f (a) = b, f (c) = d}
and B2 = { f3}= { f | f (a) = c, f (c) = e}. So we have P(S) = p(B1)+p(B2) =

1
2×2

+ 1
2×2

= 1
2
.

S =







f1 =

a

��

b c

��

d

; f3 =

a

��
c

��
e







Now we can define the Lebesgue measure in terms of the given probability measure.

Definition 2.8 (Measurable). Let A be an element of P(Ω), we write A∼ for the complement of A, that

is Ω\A. The set A is Lebesgue measurable if ∀S ∈ P(Ω), we have P(S) = P(S∩A)+P(S∩A∼).
We define A= {A | A is measurable}.

3 A probability space of strategies

The aim of this section is to prove that (Ω,A,P) is a probability space. That is, the sample space Ω (the

set of all possible strategies), the set of events A, which is the set of the Lebesgue measurable sets of
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strategies, and the probability measure P, form a probability space. Our proof follows [7]. We proceed by

proving that this triplet satisfies the Kolmogorov axioms, that is the probability of any event is between 0

and 1, the probability of Ω is 1, and the probability of any countable sequence of pairwise disjoint (that

is incompatible) events, is the sum of their probabilities. In order to do so, we need first to prove several

properties.

Lemma 3.1 establishes several known properties of Lebesgue measurable sets.

Lemma 3.1.

1. Let A ∈ A and S ∈ P(Ω). If A∩S = /0, then P(A∪S) = P(A)+P(S).

2. Let A1,A2 ∈ A. If A1 ⊆ A2, then P(A1)≤ P(A2).

3. /0, the empty set, is Lebesgue measurable.

4. A is Lebesgue measurable if and only if A∼ is Lebesgue measurable.

5. If A1,A2 are Lebesgue measurable, then A1 ∪A2 is Lebesgue measurable.

Proof.

1. P(A∪S) = P((A∪S)∩A)+P((A∪S)∩A∼) = P(A)+P(S).

2. First notice that by definition, P(S) ≥ 0 for any S ∈ P(Ω). Hence, P(A2) = P(A2 ∩A1)+ P(A2 ∩
A∼

1 ) = P(A1)+P(A2 ∩A∼
1 )≥ P(A1).

3. Notice that P( /0) = 0. Then, ∀S ∈ P(Ω), P(S) = P(S∩ /0)+P(S∩Ω), so /0 is Lebesgue measurable.

4. Let A be Lebesgue measurable, then ∀S ⊆ Ω, P(S) = P(S∩A)+ P(S∩A∼) = P(S∩A∼)+ P(S∩
A∼∼), so A∼ is Lebesgue measurable.

5. Let A1,A2 be Lebesgue measurable, then ∀S ⊆ Ω, we have

P(S) = P(S∩A1)+P(S∩A∼
1 ) (1) and P(S) = P(S∩A2)+P(S∩A∼

2 ) (2)

From set theory S∩ (A1 ∪A2) = S∩ (A1 ∪ (A∼
1 ∩A2)) = (S∩A1)∪ (S∩A∼

1 ∩A2) (3)

Using S∩A∼
1 for S in (2) gives

P(S∩A∼
1 ) = P(S∩A∼

1 ∩A2)+P(S∩A∼
1 ∩A∼

2 ) = P(S∩A∼
1 ∩A2)+P(S∩ (A1 ∪A2)

∼) (4)

From (3), using items 1 and 2, we have P(S∩ (A1 ∪A2)) = P(S∩A1)+ P(S∩A∼
1 ∩A2). Adding

P(S ∩ (A1 ∪A2)
∼) to both sides gives P(S ∩ (A1 ∪A2) + P(S ∩ (A1 ∪A2)

∼) = P(S ∩A1) + P(S ∩
A∼

1 ∩A2)+P(S∩ (A1 ∪A2)
∼) Using (4) and (1) we obtain P(S∩ (A1 ∪A2))+P(S∩ (A1 ∪A2)

∼) =
P(S∩A1)+P(S∩A∼

1 ) = P(S).

The concept of algebra (Definition 3.2) gives a closure property of subsets. As a corollary of the

Lemma 3.1 we can show that the set A of Lebesgue measurable sets form an algebra (Corollary 3.3).

Definition 3.2 (Algebra). Let X be a set. We say that a set A ∈ P(X) is an algebra over X if for all

A,B ∈ A, A∪B, A∼ and X itself are also in A.

Corollary 3.3. A is an algebra over Ω.

Proof. A∈P(Ω). Let A,B ∈A, then by Lemma 3.1(5), A∪B ∈A. By Lemma 3.1(4), A∼ ∈A. Finally,

by Lemma 3.1(3) and (4), Ω ∈ A.
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Moreover, we can show that A is a σ -algebra, that is an algebra, completed to include countably

infinite operations. Definition 3.4 formalises it.

Definition 3.4 (σ -algebra). Let X be a set. We say that a set Σ ∈ P(X) is a σ -algebra over X if it is an

algebra and it is closed under countable unions, that is, if A1,A2,A3, . . . are in Σ, then so is
⋃

Ai.

Theorem 3.7 states that the set A of Lebesgue measurable sets is a σ -algebra. We need to prove two

properties of Lebesgue measurable sets first (Lemmas 3.5 and 3.6).

Lemma 3.5. Let S ⊆ Ω and A1, . . . ,An ∈ A be a disjoint family. Then

P

(

S∩

(
n⋃

i=1

Ai

))

=
n

∑
i=1

P(S∩Ai) .

Proof. We proceed by induction on n. If n = 1 it is trivial. Assume it is true for n−1. Notice that

S∩

(
n⋃

i=1

Ai

)

∩An = S∩An (5) and S∩

(
n⋃

i=1

Ai

)

∩A∼
n = S∩

(
n−1⋃

i=1

Ai

)

(6)

Equation (5) is clear, and (6) follows since (
⋃n

i=1 Ai)∩A∼
n =

⋃n
i=1(Ai ∩A∼

n ) = (
⋃n−1

i=1 (Ai ∩A∼
n ))∪

(An ∩A∼
n ) =

⋃n−1
i=1 (Ai ∩A∼

n ).

Thus, since An is measurable, we have that

P

(

S∩

(
n⋃

i=1

Ai

))

= P

(

S∩

(
n⋃

i=1

Ai

)

∩An

)

+P

(

S∩

(
n⋃

i=1

Ai

)

∩A∼
n

)

and from (5) and (6) this is equal to P(S∩An)+P
(
S∩
(⋃n−1

i=1 Ai

))
, which by the induction hypothesis is

equal to ∑
n
i=1P(S∩Ai).

Lemma 3.6. Let S1,S2, · · · ⊆ Ω. Then

P

(
∞⋃

i=1

Si

)

≤
∞

∑
i=1

P(Si) .

Proof. If P(Si) = ∞ for some i, then we are finished. Therefore, assume P(Si)< ∞ for each i ∈ N.

Without lost of generality, assume Si 6= /0, for all i. Indeed, since P( /0) = 0, an empty set would not

add anything to any side of the equation. For a given ε > 0 and i, there is a sequence {Bi j | i = 1, . . . , j =
1, . . .} of boxes such that Si ⊆

⋃∞
j=1 Bi j and ∑

∞
j=1p(Bi j) < P(Si)+ 2−iε , by the definition of P. Now,

#{Bi j | i, j} ≤ ℵ0 and
⋃∞

i=1 Si ⊆
⋃∞

i=1

⋃∞
j=1 Bi j. Therefore, using the definition of P,

P

(
∞⋃

i=1

Si

)

≤
∞

∑
i=1

∞

∑
j=1

p(Bi j)≤
∞

∑
i=1

P(Si)+ ε
∞

∑
i=1

1

2i
=

∞

∑
i=1

P(Si)+ ε

Since this is true for each ε , the lemma holds.

Using these properties, we can prove that A is a σ -algebra (Theorem 3.7).

Theorem 3.7. A is a σ -algebra over Ω.
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Proof. By Corollary 3.3, A is an algebra. We only have to prove that A is closed under any countable

unions. That is, if B1,B2, · · · ∈ A, then
⋃∞

i=1 Bi ∈ A. Since A is an algebra (Corollary 3.3), there is

a disjoint family A1,A2, · · · ∈ A such that A =
⋃∞

i=1 Bi =
⋃∞

i=1 Ai. For example, we can take A1 = B1,

A2 = B2 \B1,A3 = B3 \ (B1∪B2), . . . . Let Cn =
⋃n

i=1 Ai, so Cn ∈A again using that A is an algebra. Also

notice that A∼ ⊆C∼
n because Cn ⊆ A.

Since Cn is measurable, take any S⊆Ω and, using Lemma 3.1(2), we can calculate P(S)= P(S∩Cn)+
P(S∩C∼

n ) ≥ P(S∩Cn)+ P(S∩A∼). Since P(S∩Cn) = P(S∩ (
⋃n

i=1 Ai)), using Lemma 3.5, we obtain

P(S) ≥ ∑
n
i=1P(S∩Ai)+ P(S∩A∼) and, since the left-hand side is independent of n, P(S) ≥ ∑

∞
i=1P(S∩

Ai)+P(S∩A∼). Thus, by Lemma 3.6, P(S)≥ P(S∩ (
⋃∞

i=1 Ai))+P(S∩A∼) = P(S∩A)+P(S∩A∼).

For the converse inequality, notice that S = (S∩A)∪ (S∩A∼), so using Lemma 3.6 we have P(S) =
P((S∩A)∪ (S∩A∼))≤ P(S∩A)+P(S∩A∼). Hence, A ∈ A.

As intuited in Example 2.6, the probability of a box B is p(B). Lemma 3.10 formalises it. Before

proving this lemma, we need two auxiliary ones (Lemmas 3.8 and 3.9). For short, we use the notation

B∩a = b for B∩{ f | f (a) = b}.

Lemma 3.8. Let N ⊆N and for all i ∈ N, let B,Bi ⊆ Ω be boxes s.t. B ⊆
⋃

i∈N Bi and p(B)> ∑i∈N p(Bi).
Then for every object a, there exists an object b such that, p(B∩a = b)> ∑i∈N p(Bi ∩a = b).

Proof. Let a → bi, with i = 1, . . . ,n. Hence notice that p(B) = ∑
n
j=1p(B∩a = b j), and this happens for

any B. Then, from p(B)> ∑i∈N p(Bi), we have ∑
n
j=1p(B∩a = b j)> ∑i∈N ∑

n
j=1p(Bi ∩a = b j)

=∑
n
j=1 ∑i∈N p(Bi∩a= b j). Therefore, there must be at least one h such that p(B∩a= bh)>∑i∈N p(Bi∩

a = bh).

Lemma 3.9. Let N ⊆N and for all i ∈ N, let B,Bi ⊆ Ω be boxes s.t. B ⊆
⋃

i∈N Bi and p(B)> ∑i∈N p(Bi).
Then for all family {a j} of objects, there exists a family {b j} such that, for every k, p(B∩a1 = b1 ∩·· ·∩
ak = bk)> ∑i∈N p(Bi ∩a1 = b1 ∩·· ·∩ak = bk).

Proof. We proceed by induction on k. For k = 1, use Lemma 3.8. By the induction hypothesis, we

have p(B∩ a1 = b1 ∩ ·· · ∩ ak−1 = bk−1) > ∑i∈N p(Bi ∩ a1 = b1 ∩ ·· · ∩ ak−1 = bk−1). We conclude by

Lemma 3.8.

Lemma 3.10. Let B ⊆ Ω be a box, then P(B) = p(B).

Proof. Let B = { f | f (a1) = a′1, . . . , f (an) = a′n}. Since B ⊆ B, by definition of P, we have P(B)≤ p(B).
We must prove p(B) ≤ P(B) = inf{∑i∈N p(Bi) | B ⊆

⋃

i∈N Bi}. In other words, we must prove that

B ⊆
⋃

i∈N Bi implies p(B)≤ ∑i∈N p(Bi). We proceed by induction on n.

• If n = 0, p(B) = 1. Notice that, without restrictions in B, B = Ω. We prove this case by contradic-

tion. Let p(F)> ∑i∈N p(Bi). Then by Lemma 3.9, there exists g such that for all k,

p(a1 = g(a1)∩·· ·∩ak = g(ak))> ∑
i∈N

p(Bi ∩a1 = g(a1)∩·· ·∩ak = g(ak)) (7)

Since g∈Ω⊆
⋃

i∈N Bi, there exists j such that g∈B j. Let B j be defined with constraints on objects

a j1 , . . . ,a jq . Let k = q and from equation (7),

p(a1 = g(a1)∩·· ·∩aq = g(aq))> ∑
i∈N

p(Bi ∩a1 = g(a1)∩·· ·∩aq = g(aq)) (8)
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We know that p(a1 = g(a1)∩ ·· · ∩ aq = g(aq)) = ∏
q

h=1
→(ah,g(ah))

ρ(ah)
, and since g ∈ B j, we know

that this is also equal to p(B j ∩ a1 = g(a1)∩ ·· · ∩ aq = g(aq)). Hence equation (8) leads to a

contradiction.

• Consider the case n− 1. Let B′ = { f | ∃g ∈ B s.t. ∀a 6= an, f (a) = g(a)}. Then if B′ ⊆
⋃

i∈N′ B′
i

we have p(B′) ≤ ∑i∈N′ p(B′
i). Notice that either B′

i = Bi or Bi has a constraint on an and so
→(an,g(an))

ρ(an)
p(B′

i) = p(Bi). In any case,
→(an,g(an))

ρ(an)
p(B′

i) ≤ p(Bi). Then p(B) = →(an,g(an))
ρ(an)

p(B′) ≤

∑i∈N′
→(an,g(an))

ρ(an)
p(B′

i)≤ ∑i∈N′ p(Bi).

Theorem 3.11 (Space of strategies). (Ω,A,P) is a probability space.

Proof. We prove it satisfies the Kolmogorov axioms.

1st axiom: ∀A ∈ A, 0 ≤ P(A)≤ 1.

Since P is defined as an inf of sums of p, and p is always positive, so P cannot be negative. By

the second Kolmogorov axiom P(Ω) = 1. Notice that A is measurable and A ⊆ Ω, so 1 = P(Ω) =
P(Ω ∩ A) + P(Ω \ A) = P(A) + P(Ω \ A), hence 1 − P(Ω \ A) = P(A). Since P is not negative,

P(A)≤ 1.

2nd axiom: P(Ω) = 1.

Notice that Ω is the box including all the functions. Hence, there is no condition on the functions

and so n = 0. Then p(Ω) = 1. By Lemma 3.10, P(Ω) = p(Ω) = 1.

3rd axiom: Any countable sequence of pairwise disjoint (i.e. incompatible) events A1,A2 · · · ∈ A, satis-

fies P(A1 ∪A2 . . .) = ∑
∞
i=1P(Ai).

Let /0 6= I (N. Since the sets Ai are in A, consider n ∈ N\ I and we have

P




⋃

i∈N\I

Ai



= P








⋃

i∈N\I

Ai



∩An



+P








⋃

i∈N\I

Ai



∩A∼
n





Notice that
(
⋃

i∈N\I Ai

)

∩An = An and since the Ai’s are pairwise disjoint
(
⋃

i∈N\I Ai

)

∩A∼
n =

⋃

i∈N\(I∪{n}) Ai. Therefore, considering that this is valid for any I and n /∈ I, we have

P

(
∞⋃

i=1

Ai

)

= P(A1)+P

(
∞⋃

i=2

Ai

)

= P(A1)+P(A2)+P

(
∞⋃

i=3

Ai

)

= · · ·=
∞

∑
i=1

P(Ai).

Example 3.12. Consider the non-strongly-normalising non-confluent rewrite system described in the

introduction ai → ai+1, ai → a′i+1, where each reduction is equiprobable and each symbol is different

from each other. It can be depicted as follows.

a0
//

""

a1

""

// a2

""

//

a′1 a′2 a′3

The probability that this rewrite system stops after exactly n steps, starting from term a0 is P(B), with

B = { f | f (a0) = a1, . . . f (an−2) = an−1 and f (an−1) = a′n}), and since B is a box, by Lemma 3.10 it is

the same to P(B) = p(B) =
1

ρ(a0) . . .ρ(an−1)
=

1

2n
.
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The probability of stopping at the step n or before, starting at any point before an−1, is just the

probability of the box { f | f (an−1) = a′n}, which is
1

2
.

The probability of stopping at the step n or m, starting at any point before an−1 and am−1 is the

probability of the union of two boxes, however they are not independent events (its intersection is not

empty). Hence let B1 = { f | an−1 = a′n} and B2 = { f | am−1 = a′m}. The probability P(B1 ∪B2) =

P((B1 \B2)∪B2) = P(B1 \B2)∪P(B2) = P({ f | an−1 = a′n,am−1 = a′m)+P(B2) =
1

4
+

1

2
=

3

4
.

Finally, the probability of not stopping at all, is the probability of the set S = { f | f (ai) = ai+1 for

i ∈ N}, which is not a box, since there is an infinite number of conditions. It is easy to check that we

need an infinite number of boxes to cover such a set, however we can chose boxes as small as we want

(that is, with a big number of conditions), which makes the infimum of their sums to be 0, and so the

probability of not stopping is, as expected, 0.

In other words, P(S) ≤ { f | f (ai) = ai+1, i ∈ [0,n]} = 1
2n , for any n. Hence when n tends to ∞, P(S)

tends to 0.

4 Transforming a non-deterministic into a probabilistic calculus

4.1 The calculus λ+

In [15, 16] we have introduced a non-deterministic calculus called λ+, which is a simplification of an

earlier probabilistic calculus by keeping non-determinism but removing explicit probabilities. Now we

can transform this calculus into a probabilistic one.

The full calculus is depicted in Table 1. Typing judgements are of the form r : A. A term r is

typable if there exists a type A such that r : A. Following [19, 22], we use a presentation of typed

lambda-calculus without contexts and where each variable occurrence is labelled by its type, such as.

λxA.xA or λxA.yB. We sometimes omit the labels when they are clear from the context and write, for

example, λxA.x for λxA.xA. We use different letters for different variables and the type system forbids

terms such as λxA.xB when A and B are different, by imposing preconditions to when the typing rules

apply. Let S = {x
A1

1 , . . . ,xAn
n } be a set of declarations, we write S f when this set is functional, that is when

xi = x j implies Ai = A j. For example {xA,yA⇒B}
f
, but not {xA,xA⇒B}

f
. Typing rules have the following

structure:

[Preconditions]
Hypotheses

Derived judgement
(Rule name)

The α-conversion and the sets FV (r) of free variables of r and FV (A) of free variables of A are de-

fined as usual in the λ -calculus (cf. [6, §2.1]). For example FV (xAyB) = {xA,yB}. We say that a term r is

closed whenever FV (r) = /0. If FV (r) = {x
A1

1 , . . . ,xAn
n }, we write Γ(r) = {A1, . . . ,An}. FV ({A1, . . . ,An})

is defined by
⋃n

i=1 FV (Ai). Given two terms r and s we denote by r[s/x] the term obtained by simulta-

neously substituting the term s for all the free occurrences of x in r, subject to the usual proviso about

renaming bound variables in r to avoid capture of the free variables of s. Analogously A[B/X ] denotes

the substitution of the type B for all the free occurrences of X in A, and r[B/X ] the substitution in r. For

example, (xA)[B/Y ] = x(A[B/Y ]), (λxA.r)[B/X ] = λxA[B/X ].r[B/X ] and (πA(r))[B/X ] = πA[B/X ](r[B/X ]).
Simultaneous substitutions are defined in the same way. Finally, terms and types are considered up to

α-conversion.

Each term of the language has a main type associated, which can be obtained from the type annota-

tions, and other types induced by the type equivalences.
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The operational semantics of λ+ is also given in Table 1, where there are two distinct relations

between terms: a symmetric relation ⇄ and a reduction relation →֒. We write ⇄
∗ and →֒∗ for the

transitive and reflexive closures of ⇄ and →֒ respectively. In particular, notice that ⇄∗ is an equivalence

relation. We just write → when we do not want to make the distinction between these relations. We write

n.r in λ+ as a shorthand for r+ · · ·+ r
︸ ︷︷ ︸

n times

.

This calculus has a non-deterministic projector. Indeed, the rule “If r : A, then πA(r+ s) →֒ r” is

not-deterministic because the symbol + is commutative, so if s : A, this rule can produce either r or

s non-deterministically. In any case, both reducts are valid proofs of A, and so the proof system is

consistent. Refer to [15] for details.

Grammar of types and terms

A,B,C, . . . ::= X | A ⇒ B | A∧B | ∀X .A .

r,s, t ::= xA | λxA.r | rs | r+ s | πA(r) | ΛX .r | r{A} .

Equivalence between types

A∧B ≡ B∧A , (A∧B)∧C ≡ A∧ (B∧C) , A ⇒ (B∧C) ≡ (A ⇒ B)∧ (A ⇒C) .

Rewriting system

Symmetric relation:

r+ s ⇄ s+ r , (r+ s)t ⇄ rt+ st , If r : A ⇒ (B∧C), then

(r+ s)+ t ⇄ r+(s+ t) , λxA.(r+ s)⇄ λxA.r+λxA.s , πA⇒B(r)s ⇄ πB(rs) .

Reductions:

(λxA.r) s →֒ r[s/x] , (ΛX .r){A} →֒ r[A/X ] , If r : A, then πA(r+ s) →֒ r .

Typing system

[A≡B]
r : A
r : B

(≡)
xA : A

(ax)
[(FV (r)∪{xA})

f
]

r : B

λxA.r : A ⇒ B
(⇒i) [FV (rs) f ]

r : A ⇒ B s : A
rs : B

(⇒e)

[FV (r+s) f ]
r : A s : B
r+ s : A∧B

(∧i)
r : A∧B

πA(r) : A
(∧e) [X /∈FV (Γ(r))]

r : A
ΛX .r : ∀X .A

(∀i)
r : ∀X .A

r{B} : A[B/X ]
(∀e)

Table 1: The non-deterministic calculus λ+

4.2 From non-determinism to probabilities (or from λ+ to λ
p
+)

Consider the following example (cf. [16, Example 5]). Two possible reduction paths can be fired from

(ΛX .(πA(x
A + yX))){A}: Reducing first the projection, (ΛX .xA){A} →֒ xA, or reducing first the beta

πA(x
A + yA) →֒ xA. The former path is deterministic and will always reduce to xA, on the contrary, the

latter can non-deterministically chose between xA and yA. However, in both cases a proof of A is obtained.

Hence, the non-determinism is present not only due to the projector, but also by a combination of not

defining a reduction strategy and the polymorphism, which can turn a deterministic projection into a non-

deterministic one. We want to associate a probability to the second case, that is, to the non-deterministic

projector (the π reduction). With this aim, we consider the following ARS, called λ
↓
+. The closed normal

terms of λ+ are objects of λ
↓
+. If r1, . . . ,rn are objects, then it is also an object. The function → is
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given by the relations ⇄ and →֒. In particular, if r : A, then πA(r+ r) → r, with multiplicity 2, i.e.

→ (πA(r+ r),r) = 2.

Theorem 4.1. Let (Ω,A,P) be a probability space over λ
↓
+. Let Bri

= { f | f (πA(∑
n
j=1 m j.r j)) = ri} be

a box. Then P(Bri
) = mi

∑
n
j=1 m j

.

Proof. Notice that ρ(πA(∑
n
i=1 mi.ri))=∑r → ( πA(∑

n
i=1 mi.ri),r)= ♯[

m1 times
︷ ︸︸ ︷
r1, · · · ,r1, . . . ,

mn times
︷ ︸︸ ︷
rn, · · · ,rn] =∑

n
j=1 m j

And → (πA(∑
n
i=1 mi.ri),ri) = mi. Hence, P(Bri

) = p(Bri
) = mi

∑
n
j=1 m j

.

Definition 4.2 (The probabilistic calculus λ
p
+). Let λ

p
+ be the language of Table 1, with the following

modification:

Replace rule “If r : A, then πA(r+ s) →֒ r” by

“For i = 1, . . . ,n, let ri : A and s 6 : A, be closed normal terms. Then

πA(
n

∑
i=1

mi.ri + s) →֒ ri with probability
mi

∑
n
j=1 m j

” .

Remark 4.3. Notice that by Theorem 4.1 the probabilistic reduction is well defined.

4.3 The calculus Alg
p
F

The calculus Alg
p
F is inspired from [5, 24]. We restrict the algebraic calculus to only have probabilistic

superpositions, and we type it with a simple extension of System F (cf. [2, Def. 5.1]). The grammar of

terms ensures that the linear combinations of terms are probability distributions, however the type system

allows typing pseudo-terms, that is, terms that are not probability distributions. A term in this language,

is a term produced by the grammar of terms, and typed. The full calculus is depicted in Table 2.

4.4 From Alg
p
F to λ

p
+

We give a translation from the probabilistic calculus Alg
p
F , including scalars, to the probabilistic calculus

λ
p
+.

JxAK = xA JrsK = JrKJsK Jr{A}K = JrK{A}

JλxA.rK = λxA.JrK JΛX .rK = ΛX .JrK J∑
n
i=1

ni

di

.riK = πA(∑
n
i=1 mi.JriK)

where ri : A,di ∈ N∗,mi = ni(
n

∏
k=1
k 6=i

dk), for i = 1, . . . ,n.

Example 4.4. Let r : A, t : A and s : A. J
3

4
.r+

1

8
.t+

1

8
.sK = πA (192.JrK+32.JtK+32.JsK). By Theo-

rem 4.1, this last term reduces to JrK with probability 192
192+32+32

= 3
4
, to JtK with probability 32

192+32+32
=

1
8
, and to JsK with probability 32

192+32+32
= 1

8
.

Lemma 4.5.

1. JrK[A/X ] = Jr[A/X ]K. 2. JrK[JsK/x] = Jr[s/x]K.

Proof.

1. We proceed by induction on r.

• Let r = xB. JxBK[A/X ] = xB[A/X ] = xB[A/X ] = JxB[A/X ]K = JxB[A/X ]K.
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Grammar of types

A,B,C, . . . ::= X | A ⇒ B | ∀X .A .

Grammar of pseudo-terms

r,s, t ::= xA | λxA.r | rs | ΛX .r | r{A} | p.r | r+ s

Grammar of terms

r,s, t ::= xA | λxA.r | rs | ΛX .r | r{A} |
n

∑
i=1

pi.ri with







n > 0,
pi ∈Q(0,1] and

∑
n
i=1 pi = 1

Rewriting system

Symmetric relation:

r+ s ⇄ s+ r , (r+ s)t ⇄ rt+ st , 1.r ⇄ r .

(r+ s)+ t ⇄ r+(s+ t) , λxA.(r+ s)⇄ λxA.r+λxA.s ,

Reductions:
Beta Elementary Factorisation

(λxA.r) s →֒ r[s/x] , p.q.r →֒ pq.r , p.r+q.r →֒ (p+q).r .

(ΛX .r){A} →֒ r[A/X ] , p.(r+ s) →֒ p.r+ p.s ,

Typing system

xA : A
(ax)

[(FV (r)∪{xA})
f
]

r : B

λxA.r : A ⇒ B
(⇒i) [FV (rs) f ]

r : A ⇒ B s : A
rs : B

(⇒e)

[FV (r+s) f ]
r : A s : A

r+ s : A
(+i)

r : A
p.r : A

(pi) [X /∈FV (Γ(r))]
r : A

ΛX .r : ∀X .A
(∀i)

r : ∀X .A
r{B} : A[B/X ]

(∀e)

Table 2: The algebraic calculus Alg
p
F .

• Let r = λxB.t. JλxB.tK[A/X ] = λxB.JtK[A/X ] = λxB[A/X ].JtK[A/X ]
IH
= λxB[A/X ].Jt[A/X ]K =

JλxB[A/X ].t[A/X ]K = J(λxB.t)[A/X ]K.

• Let r= t1t2. Jt1t2K[A/X ] = Jt1K[A/X ]Jt2K[A/X ]
IH
= Jt1[A/X ]KJt2[A/X ]K= Jt1[A/X ]t2[A/X ]K=

J(t1t2)[A/X ]K.

• Let r=ΛY.t, with Y /∈FV (A). JΛY.tK[A/X ] =ΛY.JtK[A/X ]
IH
= ΛY.Jt[A/X ]K= JΛY.t[A/X ]K=

J(ΛY.t)[A/X ]K.

• Let r = t{B}. Jt{B}K[A/X ] = JtK{B}[A/X ] = JtK[A/X ]{B[A/X ]}
IH
= Jt[A/X ]K{B[A/X ]}=

Jt[A/X ]{B[A/X ]}K = J(t{B})[A/X ]K.

• Let r = ∑
n
i=1

ni

di
.ri. J∑

n
i=1

ni

di
.riK[A/X ] = πA (∑

n
i=1 mi.JriK) [A/X ] = πA (∑

n
i=1 mi.JriK[A/X ])

IH
=

πA (∑
n
i=1 miJri[A/X ]K) = J∑

n
i=1

ni

di
.ri[A/X ]K = J(∑n

i=1
ni

di
.ri)[A/X ]K.

2. We proceed by induction on r.

• Let r = xA. JxAK[JsK/x] = xA[JsK/x] = JsK = JxA[s/x]K.

• Let r = yA, JyAK[JsK/x] = yA[JsK/x] = yA = JyAK = JyA[s/x]K.

• Let r = λyB.t. JλyB.tK[JsK/x] = λyB.JtK[JsK/x]
IH
=

λyB.Jt[s/x]K = JλyB.t[s/x]K = J(λyB.t)[s/x]K.
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• Let r = t1t2. Jt1t2K[JsK/x] = Jt1K[JsK/x]Jt2K[JsK/x]
IH
= Jt1[s/x]KJt2[s/x]K = Jt1[s/x]t2[s/x]K =

J(t1t2)[s/x]K.

• Let r = ΛX .t, JΛX .tK[JsK/x] = ΛX .JtK[JsK/x]
IH
= ΛX .Jt[s/x]K = JΛX .t[s/x]K = J(ΛX .t)[s/x]K.

• Let r = t{B}. Let FV (s) = ~X and ~Y be a set of free variables such that s[~Y/~X ][~X/~Y ] = s.

Then, Jt{B}K[JsK/x] = JtK{B}[JsK/x] = JtK[Js[~Y/~X ]/xK]{B}[~X/~Y ]
IH
= Jt[s[~Y/~X ]/x]K{B}[~X/~Y ]

= Jt[s[~Y/~X ]/x]{B}K[~X/~Y ]
item 1
= Jt[s[~Y/~X ]/x]{B}[~X/~Y ]K = J(t{B})[s/x]K.

• Let r = ∑
n
i=1

ni

di
.ri. J∑

n
i=1

ni

di
.riK[A/X ] = πA (∑

n
i=1 mi.JriK) [A/X ] = πA (∑

n
i=1 mi.JriK[A/X ])

IH
=

πA (∑
n
i=1 miJri[A/X ]K) = J∑

n
i=1

ni

di
.ri[A/X ]K = J(∑n

i=1
ni

di
.ri)[A/X ]K.

Theorem 4.6. If r →∗ ∑
n
i=1 pi.ti, with ti in Alg

p
F , with ∑

n
i=1 pi = 1 and JtiK →

∗ si, then JrK →∗ si with

probability pi

(

∑
n
j=1 p j

)−1
in λ

p
+.

Proof. Let r : A in Alg
p
F . For i = 1, . . . ,n, assume pi =

ni

di

with ni,di ∈N∗. We proceed by a case analysis

on the last reduction step to reach ∑
n
i=1 pi.ti.

• If r = ∑
n
i=1 pi.ti, then πA(∑

n
i=1(∏

n
k=1
k 6=i

dkni).JtiK) →
∗ πA(∑

n
i=1(∏

n
k=1
k 6=i

dkni).s
′
i) By Theorem 4.1, this

term reduces in one step to s′i with probability

∏
n
k=1
k 6=i

dkni

∑
n
i=1

(

∏
n
k=1
k 6=i

dkni

) =






ni

di

∑
n
i=1

ni

di




 .

(
∏

n
k=1 dk

∏
n
k=1 dk

)

= pi

(
n

∑
j=1

p j

)−1

.

• Consider 1.r ⇄ r, with r = ∑
n
i=1 pi.ti. We have, J1.rK= πA(1.JrK)→∗ πA(1.s), which reduces with

probability one to s. Notice that s is a reduct of J∑
n
i=1 pi.tiK = πA(∑

n
i=1 mi.Jt1K). We conclude with

Theorem 4.1.

• Consider
(

∑
n
i=m+1 pi.ti

)
+(∑m

i=1 pi.ti)⇄ ∑
n
i=1 pi.ti, with 1 ≤ m < n. Since r : A, then each ti : A.

We have,

J
n

∑
i=m+1

pi.ti +
m

∑
i=1

pi.tiK = πA

(
n

∑
i=m+1

mi.JtiK+
m

∑
i=1

mi.JtiK

)

⇄ πA

(
n

∑
i=1

mi.JtiK

)

.

where mi = ∏
n
k=1
k 6=i

dkni. We conclude with Theorem 4.1.

• Consider λxA.(r+ s) ⇄ λxA.r+λxA.s. We have JλxA.(r+ s)K = λxA.(Jr+ sK) = λxA.πA(JrK+
JsK)→∗ λxA.πA(r

′+ s′) By Theorem 4.1, λxA.πA(r
′+ s′) reduces to λxA.r′ (which is a reduct of

JλxA.rK = λxA.JrK), with probability 1
2
, and to λxA.s′ (which is a reduct of JλxA.sK = λxA.JsK),

with probability 1
2
.

• Consider (λxA.r) s →֒ r[s/x], with r[s/x] = ∑
n
i=1 pi.ti. Then J(λxA.r) sK = (λxA.JrK) JsK →֒

JrK[JsK/x] which, by Lemma 4.5(2), is equal to Jr[s/x]K = J∑
n
i=1 pi.tiK and this, by definition is

equal to πA

(

∑
n
i=1(∏

n
k=1
k 6=i

dkni).JtiK

)

. We conclude with Theorem 4.1.

• Consider (ΛX .r){A} →֒ r[A/X ], with r[A/X ] = ∑
n
i=1 pi.ti. Then, JΛX .r{A}K = ΛX .JrK{A} →֒

JrK[A/X ], which by Lemma 4.5(1) is equal to Jr[A/X ]K= J∑
n
i=1 pi.tiK= πA

(

∑
n
i=1(∏

n
k=1
k 6=i

dkni).JtiK

)

.

We conclude with Theorem 4.1.



A. Dı́az-Caro & G. Dowek 13

• Consider p.q.r →֒ pq.r. Let p.q.r : A. Since pq.r = ∑
n
i=1 pi.ti with ∑

n
i=1 pi = 1, we have n = 1

and pq = p1 = 1. Also, since p.q.r is a term, p = q = 1. So, we have J1.1.rK = πA(1.J1.rK) =
πA(1.πA(1.JrK)) →∗ πA(1.πA(1.s)) Notice that this term reduces with probability 1 to πA(1.s),
which is a reduct of πA(1.JrK) = J1.rK.

• Consider p.(r1 + r2) →֒ p.r1 + p.r2. Since p.r1 + p.r2 = ∑
n
i=1 pi.ti, with ∑

n
i=1 pi = 1, we have

n = 2 and p = 1
2
, however in such case 1

2
.(r1 + r2) is a pseudo-term, not a term.

• Consider p.r+q.r →֒ (p+q).r. Since (p+q).r = ∑
n
i=1 pi.ti, with ∑

n
i=1 pi = 1, we have n = 1 and

p+q= 1. Let p= m
d

, then q= d−m
d

. So, Jp.r+q.rK= πA(dm.JrK+(d(d−m)).JrK) →֒ πA(d
2.JrK),

which reduces with probability 1 to s, where JrK →∗ s.

• Contextual rules are straightfoward.

4.5 Back from λ
p
+ to Alg

p
F

The inverse translation is given by

LxAM = xA LrsM = LrMLsM Lr{A}M = LrM{A}
LλxA.rM = λxA.LrM LΛX .rM = ΛX .LrM Lr+ sM = LrM+ LsM
If πA(t) →֒ si with probability pi, for i = 1, . . . ,n, LπA(t)M = ∑

n
i=1 pi.LsiM

Remark 4.7. This translation does not admit translating a term of the form πA(t) in normal form. More-

over, let Π be the rule “πA⇒B(r)s ⇄ πB(rs) with r : A ⇒ (B∧C)”, then the translation keep reductions,

except for the one using rule Π, as expressed in Theorem 4.9.

Lemma 4.8.

1. LrM[A/X ] = Lr[A/X ]M 2. LrM[LsM/x] = Lr[s/x]M

Proof. Both items follow by induction on r. Cases xB, λxB.t, t1t2, ΛY.t and t{B} are analogous to those

in proof of Lemma 4.5. Hence we only need to verify the case πB(t), when r →֒ ri with probability pi,

for i = 1, . . . ,n.

1. LπB(t)M[A/X ] = (∑n
i=1 pi.LriM)[A/X ] = ∑

n
i=1 pi.LriM[A/X ], which by the induction hypothesis, is

equal to ∑
n
i=1 pi.Lri[A/X ]M = LπB[A/X ](t[A/X ])M = L(πB(t))[A/X ]M.

2. LπB(t)M[s/x] = (∑n
i=1 pi.LriM)[s/x] = ∑

n
i=1 pi.LriM[s/x], which by the induction hypothesis, is equal

to ∑
n
i=1 pi.Lri[s/x]M = LπB(t[s/x])M = L(πB(t))[s/x]M.

Theorem 4.9. Let r,s,si in λ
p
+.

• If r ⇄ s, then LrM ⇄ LsM.

• If r →֒ s, with probability 1, then LrM →֒ LsM, except if the reduction is done by rule Π.

• If r →֒ si with probability pi, for i = 1, . . . ,n, then LrM = ∑
n
i=1 pi.LsiM.

Proof. Case by case analysis.

• Consider r+ s ⇄ s+ r. Notice that Lr+ sM = LrM+ LsM ⇄ LsM+ LrM = Ls+ rM.

• Consider (r+s)+ t ⇄ r+(s+ t). Notice that L(r+ s)+ tM= (LrM+LsM)+LtM⇄ LrM+(LsM+LtM) =
Lr+(s+ t)M.
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• Consider (r+ s)t ⇄ rt+ st. Notice that L(r+ s)tM = (LrM+ LsM)LtM ⇄ LrMLtM+ LsMLtM = Lrt+ stM.

• Consider λxA.(r+ s)⇄ λxA.r+λxA.s. Notice that LλxA.(r+ s)M = λxA.(LrM+ LsM)⇄ λxA.LrM+
λxA.LsM = LλxA.r+λxA.sM.

• Consider (λxA.r)s →֒ r[s/x]. Notice that L(λxA.r)sM = (λxA.LrM)LsM →֒ LrM[LsM/x], and this, by

Lemma 4.8(2), is equal to Lr[s/x]M.

• Consider (ΛX .r){A} →֒ r[A/X ]. Notice that L(ΛX .r){A}M = ΛX .LrM[A/X ] →֒ LrM[A/X ], and this,

by Lemma 4.8(1), is equal to Lr[A/X ]M.

• Consider πA(∑
n
i=1 mi.ri + s) →֒ ri with probability mi

∑
n
j=1 m j

, where ri : A and s6 : A are closed normal

terms. Notice that, by definition, LπA(∑
n
i=1 mi.ri + s)M = ∑

n
i=1

mi

∑
n
j=1 m j

.LriM.

5 Conclusion

In this paper we have defined a probability space on the execution traces of non-confluent abstract rewrite

systems. We define a sample space on strategies deciding the rewrite to apply at each state (cf. Defini-

tion 2.2).

Our main motivation has been to be able to use this probability space in non-deterministic calculi,

hence being able to encode a probability superposition of the kind α.t+β .r, with α +β = 1, as a term

having probability α of rewriting to t and probability β of rewriting to r. As an example, we provided

such an encoding from an algebraic calculus into a non-deterministic calculus.
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