
HAL Id: hal-00919625
https://hal.inria.fr/hal-00919625

Submitted on 17 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lineal: A linear-algebraic lambda-calculus
Pablo Arrighi, Gilles Dowek

To cite this version:
Pablo Arrighi, Gilles Dowek. Lineal: A linear-algebraic lambda-calculus. Logical Methods in Com-
puter Science, Logical Methods in Computer Science Association, 2013. <hal-00919625>

https://hal.inria.fr/hal-00919625
https://hal.archives-ouvertes.fr

Lineal: A linear-algebraic λ-calculus

Pablo Arrighia,1, Gilles Dowekc

aUniversité de Grenoble, Laboratoire LIG, UMR 5217, 220 rue de la Chimie, 38400

Saint-Martin d’Hères, France.
bUniversité de Lyon, Laboratoire LIP, UMR 5668, 46 allée d’Italie 69007 Lyon, France.

cINRIA, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France.

Abstract

We provide a computational definition of the notions of vector space and bilinear
functions. We use this result to introduce a minimal language combining higher-
order computation and linear algebra. This language extends the λ-calculus
with the possibility to make arbitrary linear combinations of terms α.t + β.u.
We describe how to “execute” this language in terms of a few rewrite rules, and
justify them through the two fundamental requirements that the language be
a language of linear operators, and that it be higher-order. We mention the
perspectives of this work in the field of quantum computation, whose circuits
we show can be easily encoded in the calculus. Finally, we prove the confluence
of the entire calculus.

1. Motivations

Knuth and Bendix have described a method to transform an equational the-
ory into a rewrite system [35]. In this paper, we show that this can be achieved
for the theory of vector spaces. This yields a computational definition of the no-
tion of vector space. We then use this definition to merge at a fundamental level
higher-order computation in its simplest and most general form, the untyped
λ-calculus, together with linear algebra. We see this Linear-algebraic λ-calculus
(also referred to as Lineal for short) as a platform for various applications, such
as non-deterministic, probabilistic and quantum computation — each of these
applications probably requiring their own type systems.

This journal paper integrates the contributions from three already published
conference papers [5, 6, 7]. There has been a number of recent works surrounding
these papers, whose presentation we postpone till Section 8. The emphasis of the
present introduction is on the original motivations behind this calculus; in the
same way that the emphasis of the present paper is on providing an integrated,
coherent, comprehensive presentation of the calculus without further add-ons.

Email addresses: pablo.arrighi@imag.fr (Pablo Arrighi), gilles.dowek@inria.fr
(Gilles Dowek)

Preprint submitted to LMCS May 2, 2013

1.1. Quantum programming languages

Over the last two decades, the discovery of several great algorithmic results
[22, 52, 33] has raised important expectations in the field of quantum compu-
tation. Somewhat surprisingly however these results have been expressed in
the primitive model of quantum circuits – a situation which is akin to that
of classical computation in the 1950s. Over the last few years a number of
researchers have sought to develop quantum programming languages as a con-
sequence. Without aiming to be exhaustive and in order to understand where
the perspectives of this work come in, it helps to classify these proposals ac-
cording to “how classical” versus “how quantum” they are [50]. There are two
ways a quantum mechanical system may evolve: according to a unitary trans-
formation or under a measurement. The former is often thought of as “purely
quantum”: it is deterministic and will typically be used to obtain quantum su-
perpositions of base vectors. The latter is probabilistic in the classical sense,
and will typically be used to obtain some classical information about a quantum
mechanical system, whilst collapsing the system to a mere base vector.

Note that these are only typical uses: it is well-known that one can simulate
any unitary transformation by series of generalized measures on the one hand,
and reduce all measures to a mere projection upon the canonical basis at the
end of a computation on the other hand. It remains morally true nonetheless
that measurement-based models of quantum computation tend to hide quantum
superpositions behind a classical interface, whilst the unitary-based models of
quantum computation tend to consider quantum superpositions as legitimate
expressions of the language, and sometimes even seek to generalize their effects
to control flow.

Therefore one may say that measurement-based models of quantum com-
putation – whether reliant upon teleportation [40], state transfer [43] or more
astonishingly graph states [46] – lie on one extreme, as they keep the “quan-
tumness” to a minimum.

A more balanced approach is to allow for both unitary transformations and
quantum measurements. Such models can be said to formalize the existing al-
gorithm description methods to a strong extent: they exhibit quantum registers
upon which quantum circuits may be applied, together with classical registers
and programming structures in order to store measurements results and con-
trol the computation [48]. For this reason they are the more practical route
to quantum programming. Whilst this juxtaposition of “quantum data, clas-
sical control” has appeared ad-hoc and heterogeneous at first, functional-style
approaches together with linear type systems [50, 4] have ended up producing
elegant quantum programming languages.

Finally we may evacuate measures altogether – leaving them till the end of
the computation and outside the formalism. This was the case for instance in
[55, 56], but here the control structure remained classical.

In our view, such a language becomes even more interesting once we have also
overcome the need for any additional classical registers and programming struc-
tures, and aim to draw the full consequence of quantum mechanics: “quantum

2

data, quantum control”. After all, classical control can be viewed as a particular
case of quantum control. Moreover, avoiding this distinction leads to a simpler
language, exempt of the separation between classical and quantum expressions.
Finally recent results suggest that quantum control may turn out to be more
efficient that classical control in the presence of Black-box algorithms [41, 18].

Quantum Turing Machines [13], for instance, lie on this other extreme, since
the entire machine can be in a superposition of base vectors. Unfortunately
they are a rather oblivious way to describe an algorithm. Functional-style con-
trol structure, on the other hand, seem to merge with quantum evolution de-
scriptions in a unifying manner. The functional language we describe may give
rise to a “purely quantum” programming language, but only once settled the
question of restricting to unitary operators. This language is exempt of clas-
sical registers, classical control structure, measurements, and allows arbitrary
quantum superpositions of base vectors.

A survey and comparison of these quantum programming languages can be
found in [31].

1.2. Current status of the language

In our view, the problem of formulating a language of higher-order com-
putable operators upon infinite dimensional vector spaces was the first challenge
that needed to be met, before even aiming to have a physically executable lan-
guage. In the current state of affairs computability in vector spaces is dealt with
matrices and compositions, and hence restricted to finite-dimensional systems
– although this limitation is sometimes circumvented by introducing an extra
classical control structure e.g. via the notions of uniform circuits or linear types.
The language we provide achieves this goal of a minimal calculus for describing
higher-order computable linear operators in a wide sense. Therefore this work
may serve as a basis for studying wider notions of computability upon abstract
vector spaces, whatever the interpretation of the vector space is (probabilities,
number of computational paths leading to one result,. . .).

The downside of this generality as far as the previously mentioned appli-
cation to quantum computation are concerned is that our operators are not
restricted to being unitary. A further step towards specializing our language to
quantum computation would be to restrict to unitary operators, as required by
quantum physics. There may be several ways to do so. A first lead would be to
design an a posteriori static analysis that enforces unitarity – exactly like typa-
bility is not wired in pure lambda-calculus, but may be enforced a posteriori. A
second one would be to require a formal unitarity proof from the programmer.
With a term and a unitarity proof, we could derive a more standard represen-
tation of the operator, for instance in terms of a universal set of quantum gates
[17]. This transformation may be seen as part of a compilation process.

In its current state, our language can be seen as a specification language for
quantum programs, as it possesses several desirable features of such a language:
it allows a high level description of algorithms without any commitment to a
particular architecture, it allows the expression of black-box algorithms through

3

the use of higher-order functionals, its notation remains close to both linear
algebra and functional languages.

Besides quantum computing, this work may bring contributions to other
fields, which we now develop.

1.3. Logics, calculi
In this article linearity is understood in the sense of linear algebra, which is

not to be confused with linearity in the sense of Linear λ-calculus [1]. It may
help the reader to draw attention to this distinction: Linear λ-calculus is a cal-
culus whose types are formulae of Linear Logic [32]. In such a λ-calculus, one
distinguishes linear resources, which may be neither duplicated nor discarded,
from nonlinear ones, whose fate is not subjected to particular restrictions. The
Linear-algebraic λ-calculus we describe does have some resemblances with the
Linear λ-calculus, as well as some crucial, strongly motivated differences. Du-
plication of a term t is again treated cautiously, but in a different way: only
terms expressing base vectors can be duplicated, which is compatible with linear
algebra. As we shall see, terms of the form λx u are always base vectors. As
a consequence, even when a term t cannot be duplicated the term λx t can.
Since the term λx t is a function building the term t, it can be thought of as a
description of t. (This suggests some possible connections between the abstrac-
tion λx, the ! bang operator of linear lambda-calculus and the ′ quote operator
that transforms a term into a description of it as used for instance in LISP.)
Again in connection with Linear Logic, Vaux has proposed an Algebraic λ-
calculus [57] independently and simultaneously [5, 6, 7] with ours, and which is
similar in the sense that it exhibits linear combinations of terms, and different
in both the reduction strategy and the set of scalars considered. We will say
more about this in Section 8. His work is both a restriction (less operators) and
a generalization (positive reals) of Ehrhard and Regnier’s differential λ-calculus
[26].
The functional style of programming is based on the λ-calculus together with
a number of extensions, so as to make everyday programming more accessi-
ble. Hence, since the birth of functional programming there has been several
theoretical studies of extensions of the λ-calculus in order to account for basic
arithmetic (see for instance Dougherty’s algebraic extension [25] for normalising
terms of the λ-calculus). Lineal could again be viewed as just an extension of
the λ-calculus in order to handle operations over vector spaces, and make every-
day programming more accessible upon them. The main difference in approach
is that here the λ-calculus is not seen as a control structure which sits on top
of the vector space data structure, controlling which operations to apply and
when. Rather, the λ-calculus terms themselves can be summed and weighted,
hence they actually are the basis of the vector space. . . upon which they can also
act. This intertwining of concepts is essential if seeking to represent parallel or
probabilistic computation as it is the computation itself which must be endowed
with a vector space structure. The ability to superpose λ-calculus terms in that
sense takes us back to Boudol’s parallel λ-calculus [15], and may also be viewed
as taking part of a wave of probabilistic extensions of calculi, e.g.[16, 34, 30].

4

1.4. Confluence techniques

A standard way to describe how a program is executed is to give a small
step operational semantic for it, in the form of a finite set rewrite rules which
gradually transform a program into a value. The main theorem proved in this
paper is the confluence of our language. What this means is that the order in
which those transformations are applied does not affect the end result of the
computation. Confluence results are milestones in the study of programming
languages and more generally in the theory of rewriting. Our proof uses many
of the theoretical tools that have been developed for confluence proofs in a
variety of fields (local confluence and Newman’s lemma; strong confluence and
the Hindley-Rosen lemma) as well as the avatar lemma for parametric rewriting
as introduced in [5]. These are fitted together in an elaborate architecture
which may have its own interest whenever one seeks to merge a non-terminating
conditional confluent rewrite system together with a terminating conditional
confluent rewrite system.

1.5. Outline

Section 2 develops a computational definition of vector spaces and bilinear
functions. This is achieved by taking the axioms of vector spaces and orienting
them. Section 3 explains how to have a rewrite system for scalars that are
enough to account for quantum computation. Section 4 presents the designing
principles of the language, Section 5 formally describes the Linear-algebraic
λ-calculus and its semantics. Section 6 shows that the language is expressive
enough for classical and quantum computations. These are the more qualitative
sections of the paper. We chose to postpone till Section 7 the various proofs
of confluence, as they are more technical. Section 8 will be the opportunity
to provide an overview of the most recent contributions surrounding this work.
Section 9 provides a summary and some perspectives.

2. Computational vector spaces and bilinear functions

One way to prove the equality of two vectors expressed by terms such as
2.x + y + 3.x and 5.(x + y) + (−4).y is to transform these terms into linear
combinations of the unknowns and check that the terms obtained this way are
the same. This algorithm transforming a term expressing a vector into a linear
combination of the unknowns is also useful to express the operational semantic
of programming languages for quantum computing, because in such languages
a program and its input value form a term expressing a vector whose value, the
output, is a linear combination of constants. More generally, several algorithms
used in linear algebra, such as matrix multiplication algorithms, transform a
term expressing a vector with various constructs into a linear combination of
constants.

The algorithm transforming a term expressing a vector into a linear combi-
nation of the unknowns is valid in all vector spaces. The goal of this Section is
to show that, moreover, it completely defines the notion of vector space. This

5

computational definition of the notion of vector space can be extended to define
other algebraic notions such as bilinearity.

2.1. Algorithms and models

In this paper rewriting systems play a double role: they serve to provide
an oriented version of the notion of vector space, and to provide a small step
operational semantics for the introduced language. We now provide the standard
definitions about them.

Definition 1. (Rewriting) Let L be a first-order language. A rewrite system
X on L is given by a finite set of rules of the form l −→ r. We define the
relation −→X as follows: t −→X u if and only if there is an occurrence α in
the term t, a rewrite rule l −→ r in X, and a substitution σ such that t|α = σl
and u = t[σr]α, where t|α is the subterm of t at occurrence α, and t[v]α is the
graft of v in t occurrence α.

Definition 2. (AC-Rewriting) Let L be a first-order language. A AC-rewrite
system X on L is given by binary function symbols f1, . . . , fn of the language
and a finite set of rules of the form l −→ r. We define the relation =AC as
the congruence generated by the associativity and commutativity axioms of the
symbols f1, . . . , fn. We define the relation −→X as follows: t −→X u if and
only if there exists a term t′ such that t =AC t′, an occurrence α in t′, a rewrite
rule l −→ r in X and a substitution σ such that t′|α = σl and u =AC t′[σr]α.

Definition 3. (Algebra) Let L be a first-order language. An L-algebra is a

family formed by a set M and for each symbol f of L of arity n, a function f̂
from Mn to M . The denotation JtKφ of a term t for an assignment φ is defined

as usual: JxKφ = φ(x) and Jf(t1, . . . , tn)Kφ = f̂(Jt1, . . . , tnK).

Definition 4. (Model of a rewrite system) Let L be a first-order language
and X an algorithm defined by a rewrite system on terms of the language L.
An L-algebraM is a model of the algorithm X, or the algorithm X is valid in
the model M, (M |= X) if for all rewrite rules l −→ r of the rewrite system
and for all valuations φ, JlKφ = JrKφ.

Example 1. Consider the language L formed by two binary symbols + and ×
and the algorithm X defined by the distributivity rules

(x+ y)× z −→ (x× z) + (y × z)

x× (y + z) −→ (x× y) + (x× z)
transforming for instance, the term (a+ a)× a to the term a× a+ a× a. The
algebra 〈{0, 1},min,max〉 is a model of this algorithm.

Remark 1. This definition of the validity of an algorithm in a model is strongly
related with denotational semantics, as rewriting systems could also be seen as
programs, and the algebraic structure as a denotational semantics.

6

Definition 5. (Model of an AC-rewrite system) Let L be a first-order
language. Let X be a AC-rewrite system. An L-algebra M is a model of the
AC-rewrite system X (M |= R) if

• for all rewrite rules l −→ r of X and for all valuations φ, JlKφ = JrKφ,

• for all AC-symbol f of X and for all valuations φ and indices i

Jf(x, f(y, z))Kφ = Jf(f(x, y), z)Kφ

Jf(x, y)Kφ = Jf(y, x)Kφ

As a consequence if t −→∗
X u then for all φ, JtKφ = JuKφ.

2.2. Vector spaces: an algorithm

Let L be a 2-sorted language with a sortK for scalars and a sort E for vectors
containing two binary symbols + and × of rank 〈K,K,K〉, two constants 0 and
1 of sort K, a binary symbol, also written +, of rank 〈E,E,E〉, a binary symbol
. of rank 〈K,E,E〉 and a constant 0 of sort E.

To transform a term of sort E into a linear combination of the unknowns,
we want to develop sums of vectors: α.(u+ v) −→ α.u+ α.v, but factor sums
of scalars and nested products: α.u+β.u −→ (α+β).u, α.(β.u) −→ (α×β).u.
We also need the trivial rules u + 0 −→ u, 0.u −→ 0 and 1.u −→ u. Finally,
we need three more rules for confluence α.0 −→ 0, α.u + u −→ (α + 1).u,
u+ u −→ (1 + 1).u. As we want to be able to apply the factorization rule to a
term of the form (3.x+4.y)+ 2.x, reductions in the above rewrite system must
be defined modulo the associativity and commutativity of +. This leads to the
following definition.

Definition 6. (The rewrite system V) The rewrite system V is the AC-
rewrite system where the only AC-symbol is + and the rules are

u+ 0 −→ u

0.u −→ 0

1.u −→ u

α.0 −→ 0

α.(β.u) −→ (α.β).u

α.u+ β.u −→ (α+ β).u

α.u+ u −→ (α+ 1).u

u+ u −→ (1 + 1).u

α.(u+ v) −→ α.u+ α.v

7

To be complete, we should also transform the axioms of the theory of fields
into a rewrite system, which is known to be impossible as there is no equational
description of fields as a consequence of Birkhoff’s HSP theorem and the fact
that the class of fields is not closed under direct product [14].

We could switch to the theory of modules and use the fact that the axioms
of the theory of rings can be transformed into a rewrite system.

An alternative is to provide term rewrite systems for specific rings or fields
such as Z, Q, Q(i,

√
2), etc. as we shall do in Section 3. Notice that these rewrite

system are in general richer than that of the theory of rings. For instance in
the language of the rewrite system of Q(i,

√
2), we have terms expressing the

numbers 1/2 or
√
2 that are not in the generic language of rings.

Thus we shall introduce a general notion of “scalar rewrite system” and
consider an arbitrary such system. Basically the notion of a scalar rewrite
systems lists the few basic properties that scalars are usually expected to have:
neutral elements, associativity of +, etc.

Definition 7. (Scalar rewrite system) A scalar rewrite system is a rewrite
system on a language containing at least the symbols +, ×, 0 and 1 such that:

• S is terminating and ground confluent,

• for all closed terms α, β and γ, the pair of terms

– 0 + α and α,

– 0× α and 0,

– 1× α and α,

– α× (β + γ) and (α× β) + (α× γ),
– (α+ β) + γ and α+ (β + γ),

– α+ β and β + α,

– (α× β)× γ and α× (β × γ),
– α× β and β × α

have the same normal forms,

• 0 and 1 are normal terms.

Later in Subsection 7.4 we shall prove that for any such scalar rewrite system
S, S ∪ V is terminating and confluent.

Proposition 1. Let t be a normal term whose variables are among x1, ...,xn.
The term t is 0 or a term of the form α1.xi1 + ...+ αk.xik + xik+1

+ ...+ xik+l

where the indices i1, ..., ik+l are distinct and α1, ..., αk are neither 0 nor 1.

Proof. The term t is a sum u1 + ...+un of normal terms that are not sums
(we take n = 1 if t is not a sum).

8

A normal term that is not a sum is either 0, a variable, or a term of the
form α.v. In this case, α is neither 0 nor 1 and v is neither 0, nor a sum of two
vectors nor a product of a scalar by a vector, thus it is a variable.

As the term t is normal, if n > 1 then none of the ui is 0. Hence, the term
t is either 0 or a term of the form

α1.xi1 + ...+ αk.xik + xik+1
+ ...+ xik+l

where α1, ..., αk are neither 0 nor 1. As the term t is normal, the indices
i1, ..., ik+l are distinct.

2.3. Vector spaces: a computational characterization

With respect to the notion of model, algorithms play the same role as sets
of axioms: an algorithm may or may not be valid in a model, exactly like a set
of axioms may or may not be valid in a model.

The notion of validity may be used to study sets of axioms, typically build-
ing a model is a way to prove that some proposition is not provable from a
set of axioms. But validity can also be used in the other direction: to define
algebraic structures as models of some theories. For instance, given a field
K = 〈K,+,×, 0, 1〉 the class of K-vector spaces can be defined as follows.

Definition 8. (Vector space) The algebra 〈E,+, .,0〉 is a K-vector space if
and only if K = 〈K,+,×, 0, 1〉 is a field and the algebra 〈K,+,×, 0, 1, E,+, .,0〉
is a model of the 2-sorted set of axioms

∀u∀v∀w ((u+ v) +w = u+ (v +w))

∀u∀v (u+ v = v + u)

∀u (u+ 0 = u)

∀u ∃u′ (u+ u′ = 0)

∀u (1.u = u)

∀α∀β∀u (α.(β.u) = (α.β).u)

∀α∀β∀u ((α+ β).u = α.u+ β.u)

∀α∀u∀v (α.(u+ v) = α.u+ α.v)

We now prove that, the class of K-vector spaces can be defined as the class
of models of the rewrite system V .

Proposition 2. Let K = 〈K,+,×, 0, 1〉 be a field. The algebra 〈E,+, .,0〉 is a
K-vector space if and only if the algebra 〈K,+,×, 0, 1, E,+, .,0〉 is a model of
the rewrite system V .

9

Proof. We first check that all the rules of V and the associativity and
commutativity of addition are valid in all vector spaces. All of them are trivial
except α.u+ u = (α+ 1).u, u+ u = (1 + 1).u, 0.u = 0 and α.0 = 0. The first
and second are consequence of 1.u = u and α.u+β.u = (α+β).u. To prove the
third let u′ be such that u+ u′ = 0. We have 0.u = 0.u+ 0 = 0.u+ u+ u′ =
0.u+1.u+u′ = 1.u+u′ = u+u′ = 0. The last one is a consequence of 0.u = 0
and α.(β.u) = (α.β).u.

Conversely, we prove that all axioms of vector spaces are valid in all models
of V . The validity of each of them is a consequence of the validity of a rewrite
rule, except ∀u∃u′ (u + u′ = 0) that is a consequence of u + (−1).u = 0 itself
being a consequence of α.u+ β.u = (α+ β).u and 0.u = 0.

2.4. Vector spaces: decidability

We now show that the rewrite system V (Definition 6) permits to prove
the decidability of the word problem (i.e., whether two terms express the same
vector or not) for vector spaces.

Definition 9. The decomposition of t along x1, ...,xn is the sequence α1, ..., αn

such that if there is a subterm of the form α.xi in t, then αi = α, if there is a
subterm of the form xi in t, then αi = 1, and αi = 0 otherwise.

Proposition 3. Let t and u be two terms whose variables are among x1, ...,xn.
The following propositions are equivalent:

(i) the normal forms of t and u are identical modulo AC,

(ii) the equation t = u is valid in all K-vector spaces,

(iii) and the denotation of t and u in Kn for the assignment φ = e1/x1, ..., en/xn,
where e1, ..., en is the canonical base of Kn, are identical.

Proof. Proposition (i) implies proposition (ii) and proposition (ii) implies
proposition (iii). Let us prove that proposition (iii) implies proposition (i).

Let t be a normal term whose variables are among x1, ...,xn. Assume JtKφ =
JuKφ. Let e1, ..., en be the canonical base of Kn and φ = e1/x1, ..., en/xn. Call
α1, ..., αn the coordinates of JtKφ in e1, ..., en. Then the decompositions of the
normal forms of t and u are both α1, ..., αn and thus they are identical modulo
AC.

2.5. Summary

We usually define an algebraic structure as an algebra 〈M, f̂1, . . . , f̂n〉 that
validates some propositions. For instance K-vector spaces are defined as the
algebras 〈E,0,+, .〉 that validate the equations of Definition 8.

We can, in a more computation-oriented way, define an algebraic structure
as an algebra that validates an algorithm on terms constructed upon these oper-
ations. For instance K-vector spaces are are defined as the algebras 〈E,0,+, .〉
that validate the algorithm V of Definition 6.

This algorithm is a well-known algorithm in linear algebra: it is the algorithm
that transforms any linear expression into a linear combination of the unknowns.

10

If we chose a base, as will be the case in section 5, this algorithm may be used
to transforms any linear expression into a linear combination of base vectors.
Still the algorithm itself is not linked to any particular base and it may even be
used if the unknowns represent a linearly dependent family.

This algorithm is, at a first look, only one among the many algorithms
used in linear algebra, but it completely defines the notion of vector space: a
vector space is any algebra where this algorithm is valid, it is any algebra where
linear expressions can be transformed this way into linear combinations of the
unknowns.

2.6. Bilinearity

Another important notion about vector spaces is that of bilinear functions.
For instance the tensor product, matrix multiplication, the inner product and
as we shall see the application in Lineal are all bilinear operations. The method
we developed for a computational characterization of vector spaces extends to
this notion:

Definition 10. (Bilinear function) Let E, F , and G be three vector spaces
on the same field. A function ⊗ from E × F to G is said to be bilinear if

(u+ v)⊗w = (u⊗w) + (v ⊗w)

(α.u)⊗ v = α.(u⊗ v)

u⊗ (v +w) = (u⊗ v) + (u⊗w)

u⊗ (α.v) = α.(u⊗ v)

Definition 11. (Tensor product) Let E and F be two vector spaces, the pair
formed by the vector space G and the bilinear function from E × F to G is a
tensor product of E and F if for all bases (ei)i∈I of E and (e′j)j∈J of F the
family (ei ⊗ e′j)〈i,j〉 is a base of G.

The corresponding algorithm is as follows:

Definition 12. (The rewrite system V ′) Consider a language with four
sorts: K for scalars and E, F , and G for the vectors of three vector spaces,
the symbols +, ×, 0, 1 for scalars, three copies of the symbols +, . and 0 for
each sort E, F , and G and a symbol ⊗ of rank 〈E,F,G〉.

The system V ′ is the rewrite system formed by three copies of the rules of
the system V and the rules

(u+ v)⊗w −→ (u⊗w) + (v ⊗w)

(α.u)⊗ v −→ α.(u⊗ v)

u⊗ (v +w) −→ (u⊗ v) + (u⊗w)

u⊗ (α.v) −→ α.(u⊗ v)

0⊗ u −→ 0

u⊗ 0 −→ 0

11

Later in Subsection 7.4 we shall prove that for any such scalar rewrite system
S, S ∪ V ′ is terminating and confluent.

Propositions 1-3 generalize easily.

Proposition 4. Let t be a normal term whose variables of sort E are among
x1, ...,xn, whose variables of sort F are among y1, ...,yp, and that has no vari-
ables of sort G and K. If t has sort E or F , then it has the same form as in
Proposition 1. If it has sort G, then it has the form

α1.(xi1 ⊗ yj1) + ...+ αk.(xik ⊗ yjk) + (xik+1
⊗ yjk+1

) + ...+ (xik+l
⊗ yjk+l

)

where the pairs of indices 〈i1, j1〉, ..., 〈ik+l, jk+l〉 are distinct and α1, ..., αk are
neither 0 nor 1.

Proposition 5. Let K = 〈K,+,×, 0, 1〉 be a field. The structures 〈E,+, .,0〉,
〈F,+, .,0〉, 〈G,+, .,0〉 are K-vector spaces and ⊗ is a bilinear function from
E × F to G if and only if 〈K,+,×, 0, 1, E,+, .,0, F,+, .,0, G,+, .,0,⊗〉 is a
model of the system V ′.

Proposition 6. Let t and u be two terms whose variables of sort E are among
x1, ...,xn, whose variables of sort F are among y1, ...,yp, and that have no
variables of sort G and K. The following propositions are equivalent:

(i) the normal forms of t and u are identical modulo AC,

(ii) the equation t = u is valid in all structures formed by three vector spaces
and a bilinear function,

(iii) the equation t = u is valid in all structures formed by two vector spaces
and their tensor product,

(iv) and the denotation of t and u in Knp for the assignment

φ = e1/x1, ..., en/xn, e
′
1/y1, ..., e

′
p/yp

where e1, ..., en is the canonical base of Kn, e′1, ..., e′p that of Kp and
⊗ is the unique bilinear function such that ei ⊗ e′j = e′′p(i−1)+j where
e′′1, ..., e′′np is the canonical base of Knp.

3. The field of quantum computing

As explained in Section 2.2, fields are not easily implemented as term rewrite
systems. In the previous section such problems were avoided by simply assuming
the provision of some scalar rewrite system, i.e., some term rewrite system for
scalars having a certain number of properties (Definition 7). However if the ob-
jective is to provide a formal operational semantics for a quantum programming
language, up to the point that it provides a full description of a classical simu-
lator for the language, then we must give such a term rewrite system explicitly.
The present section briefly outlines how this can be achieved.

12

3.1. A rewrite system for the field Q(i,
√
2)

In the circuit model of quantum computation the emphasis was placed on the
ability to approximate any unitary transform from a finite set of gates, where
approximation is defined in terms of the distance induced by the supremum
norm. This line of research (cf. [53, 37] to cite a few) has culminated with [17],
where the following set

CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









(1)

H =

(

1√
2

1√
2

1√
2
− 1√

2

)

P =

(

1 0
0 eiπ/4

)

was proven to be universal, in the sense that its closure under composition,
tensor product and tracing out forms a dense set relative to the set of unitary
matrices — with respect to the supremum norm. Thus, the field Q(i,

√
2) is

enough for quantum computation.
To define a scalar rewrite system for this field we can proceed in three steps.

• We define a scalar rewrite system for Q,

• We use Section 2.2 to define a rewrite system for the vector space of linear
combination of the form:

α.1+ β.
1√
2
+ γ.i+ δ.

i√
2
.

• We use Section 2.6 to define multiplication as a bilinear AC-operation and
with the rules

1× v −→ v
1√
2
× 1√

2
−→ (1/2).1

1√
2
× i −→ i√

2

1√
2
× i√

2
−→ (1/2).i

i× i −→ (−1/2).1 i× i√
2
−→ (−1/2). 1√

2
i√
2
× i√

2
−→ (−1/2).1

3.2. Restricting to the ring D(i, 1/
√
2)

For the sake of implementation we can make further simplifications. As di-
vision does not appear when composing unitary operators, the only scalars that
appear in the closure of gates (1) are those obtained by additive and multiplica-
tive closure from the elements 1, i and 1√

2
, i.e., elements of the ring D(i, 1/

√
2)

13

where D is the ring of numbers that have a finite dyadic development. Thus
this ring is enough for quantum computing.

Notice that, as noticed above, switching to the theory of ring would not
be sufficient as, in order to express the gates of quantum computing, we need
terms expressing the scalars i and 1/

√
2. An implementation of this ring, along

these lines, can be found in [8] that builds upon Section 3.1 and [20, 58] for
implementing binary numbers.

4. Towards a higher-order language

We introduce a language combining higher-order computation and linear
algebra. The syntax of this language is minimal, in the sense that it just contains
the syntax of λ-calculus and the possibility to make linear combinations of terms
α.t+ β.u. This language is called Linear-algebraic λ-calculus, or just Lineal.

To start with, we take as the operational semantics, the rewrite rules of
vector spaces of Section 2.2, the bilinearity of application of Section 2.6, and
the β-reduction rule. The goal of this section is to present the issues arising.
This will result in the fine-tuned system presented in Definition 13.

4.1. Higher-order λ-calculus

In quantum computing, many algorithms fall into the category of black-box
algorithms. I.e., some mysterious implementation of a function f is provided to
us which we call “oracle” – and we wish to evaluate some property of f , after
a limited number of queries to its oracle. For instance in the Deutsch-Josza
quantum algorithm, f is a function f : {false, true}n −→ {false, true} which
is either constant (i.e., ∃c∀x[f(x) = c]) or balanced (i.e., |{x such that f(x) =
false}| = |{x such that f(x) = true}|), and whose corresponding oracle is a
unitary transformation Uf : Hn+1

2 −→ Hn+1
2 such that Uf : x ⊗ b 7→ x ⊗ (b ⊕

f(x)), where Hn+1
2 stands for a tensor product of n+ 1 two-dimensional vector

spaces, ⊗ is the tensor product and ⊕ just the addition modulo two. The aim
is to determine whether f is constant or balanced, and it turns out that this
can be done in one single query to its oracle. The algorithm works by applying
H⊗n+1

upon (false⊗
n ⊗ true), then Uf , and then H⊗n+1

again, where H⊗n+1

means applying the Hadamard gate on each of the n+1 qubits. It is clear that
a desirable feature for a linear-algebraic functional language is to be able to
express algorithms as a function of an oracle. E.g. we may want to define

Dj1 ≡ λx ((H ⊗H) (x ((H ⊗H) (false⊗ true)))

so that Dj1 Uf reduces to (H ⊗H) (Uf ((H ⊗H) (false⊗ true))). More impor-
tantly even, one must be able to express algorithms, whether they are black-
box or not, independent of the size of their input. This is what differentiates
programs from fixed-size circuits acting upon finite dimensional vector spaces,
and demonstrates the ability to have control flow. The way to achieve this in
functional languages involves duplicating basic components of the algorithm an
appropriate number of times. E.g. we may want to define some Dj operator

14

so that (Dj n) Uf reduces to the appropriate (Djn) Uf , where n is a natural
number.

Clearly the language of uniform circuits does not offer an elegant presen-
tation for this issue. Higher-order appears to be a desirable feature to have
for black-box computing, but also for expressing recursion and for high-level
programming.

4.2. Reduction strategies: copying and cloning
We seek to design a λ-calculus, i.e., have the possibility to introduce and

abstract upon variables, as a mean to express functions of these variables. In
doing so, we must allow functions such as λx (x ⊗ x), which duplicate their
argument. This is necessary for expressiveness, for instance in order to obtain
the fixed point operator or any other form of iteration/recursion.

Now problems come up when functions such as λx (x ⊗ x) are applied to
superpositions (i.e., sums of vectors). Linear-algebra brings a strong constraint:
we know that cloning is not allowed, i.e., that the operator which maps any vec-
tor ψ onto the vector ψ⊗ψ is not linear. In quantum computation this impossi-
bility is referred to as the no-cloning theorem [59]. Most quantum programming
language proposals so far consist in some quantum registers undergoing unitary
transforms and measures on the one hand, together with classical registers and
programming structures ensuring control flow on the other, precisely in order
to avoid such problems. But as we seek to reach beyond this duality and ob-
tain a purely quantum programming language, we need to face it in a different
manner.

This problem may be seen as a confluence problem. Faced with the term
(λx (x⊗ x)) (false+ true), one could either start by substituting false+ true
for x and get the normal form (false + true) ⊗ (false + true), or start by
using the fact that all the functions defined in our language must be linear
and get ((λx (x ⊗ x)) false) + ((λx (x ⊗ x)) true) and finally the normal form
(false⊗ false)+ (true⊗ true), leading to two different results. More generally,
faced with a term of the form (λx t) (u+v), one could either start by substituting
u+v for x, or start by applying the right-hand-side linearity of the application,
breaking the confluence of the calculus. So that operations remain linear, it is
clear that we must start by developing over the + first, until we reach a base
vector and then apply β-reduction. By base vector we mean a term which does
not reduce to a superposition. Therefore, we define a reduction strategy where
the β-reduction rule is restricted to cases where the argument is a base vector,
as formalized later.

With this restriction, we say that our language allows copying but not cloning
[6, 4]. It is clear that copying has all the expressiveness required in order to ex-
press control flow, since it behaves exactly like the standard β-reduction as long
as the argument passed is not in a superposition. This is the appropriate linear
extension of the β-reduction, philosophically it comprehends classical computa-
tion as a (non-superposed) sub-case of linear-algebraic/quantum computation.

The same applies to erasing: the term λxλy x expresses the linear operator
mapping the base vector bi ⊗ bj to bi. Again this is in contrast with other

15

programming languages where erasing is treated in a particular fashion whether
for the purpose of linearity of bound variables or the introduction of quantum
measurement.

4.3. Base (in)dependence

The main conceptual difficulty when seeking to let our calculus be higher-
order is to understand how it combines with this idea of copying, i.e., duplicating
only base vectors. Terms of the form (λx (xx)) (λxv) raise the important ques-
tion of whether the λ-term λxv must be considered to be a base vector or
not:

• we need to restrict (λx t)u −→ t[u/x] to “base vectors”;

• we want higher-order in the traditional sense (λx t) (λyu) −→ t[λyu/x];

• therefore abstractions must be the base vectors;

• since variables will only ever be substituted by base vectors, they also are
base vectors.

It is clear that there is a notion of privileged basis arising in the calculus, but
without us having to a priori choose a canonical basis (e.g. we do not introduce
some arbitrary orthonormal basis {|i〉} all of a sudden – i.e., we have nowhere
specified a basis at the first-order level). The eventual algebraic consequences of
this notion of a privileged basis arising only because of the higher-order level are
left as a topic for further investigations. An important intuition is that (λxv) is
not the vector itself, but its classical description, i.e., the machine constructing
it – hence it is acceptable to be able to copy (λxv) whereas we cannot clone v.
The calculus does exactly this distinction.

4.4. Infinities & confluence

It is possible, in our calculus, to define fixed point operators. For instance
for each term b we can define the term

Yb =
(

(λx (b+ (xx))
)(

λx (b+ (xx)))
)

Then the term Yb reduces to b + Yb, i.e., the term reductions generate a
computable series of vectors (n.b+Yb)n whose “norm” grows towards infinity.
This was expected in the presence of both fixed points and linear algebra, but the
appearance of such infinities entails the appearance of indefinite forms, which we
must handle with great caution. Marrying the full power of untyped λ-calculus,
including fixed point operators etc., with linear-algebra therefore jeopardizes
the confluence of the calculus, unless we introduce some further restrictions.

Example 2. If we took an unrestricted factorization rule α.t+β.t −→ (α+β).t,
then the term Yb − Yb would reduce to (1 + (−1)).Yb and then 0. It would
also be reduce to b+Yb −Yb and then to b, breaking the confluence.

16

Thus, exactly like in elementary calculus ∞ − ∞ cannot be simplified to 0,
we need to introduce a restriction to the rule allowing to factor α.t + β.t into
(α+β).t to the cases where t is finite. But what do we mean by finite? Notions of
norm in the usual mathematical sense seem difficult to import here. In order to
avoid infinities we would like to ask that t is normalizable, but this is impossible
to test in general. Hence, we restrict further the rule α.t+ β.t −→ (α+ β).t to
the case where the term t is normal. It is quite striking to see how this restriction
equates the algebraic notion of “being normalized” with the rewriting notion of
“being normal”. The next three examples show that this indefinite form may
pop up in some other, more hidden, ways.

Example 3. Consider the term (λx ((x)− (x))) (λyYb) where is any base
vector, for instance false. If the term (x) − (x) reduced to 0 then this term
would both reduce to 0 and also to Yb −Yb, breaking confluence.

Thus, the term t we wish to factor must also be closed, so that it does not
contain any hidden infinity.

Example 4. If we took an unrestricted rule (t+u)v −→ (t v)+(uv) the term
(λx (x) − λx (x)) (λyYb) would reduce to Yb −Yb and also to 0, breaking
confluence.

Thus we have to restrict the rule (t + u)v −→ (t v) + (uv) to the case where
t+ u is normal and closed.

Example 5. If we took an unrestricted rule (α.u)v −→ α.(uv) then the term
(α.(x + y))Yb would reduce both to (α.x + α.y)Yb and to α.((x + y)Yb),
breaking confluence due to the previous restriction.

Thus we have to restrict the rule (α.u)v −→ α.(uv) to the case where u is
normal and closed.

This discussion motivates each of the restrictions (∗) − (∗ ∗ ∗∗) in the rules
below. These restrictions are not just a fix: they are a way to formalize vector
spaces in the presence of limits/infinities. It may come as a surprise, moreover,
that we are able to tame these infinities with this small added set of restric-
tions, and without any need for context-sensitive conditions, as we shall prove
in Section 7.

5. A higher-order language

We consider a first-order language, called the language of scalars, containing
at least constants 0 and 1 and binary function symbols + and ×. The language
of vectors is a two-sorted language, with a sort for vectors and a sort for scalars,
described by the following term grammar:

t ::= x | λx t | t t | 0 | α.t | t+ t

where α is a term in the language of scalars.

17

In this paper we consider only semi-open terms, i.e., terms containing vector
variables but no scalar variables. In particular all scalar terms will be closed.

As usual we write t u1 ...un for ...(t u1) ...un.

Definition 13 (The system L). Our small-step semantics is defined by the
relation −→L where L is the AC-rewrite system where the only AC-symbol is +
and the rules are those of S, a scalar rewrite system (see Definition 7) and the
union of four groups of rules E, F , A and B:
- Group E – elementary rules

u+ 0 −→ u,

0.u −→ 0,

1.u −→ u,

α.0 −→ 0,

α.(β.u) −→ (α× β).u,
α.(u+ v) −→ α.u+ α.v

- Group F – factorisation

α.u+ β.u −→ (α+ β).u, (∗)
α.u+ u −→ (α+ 1).u, (∗)
u+ u −→ (1 + 1).u, (∗)

- Group A – application

(u+ v) w −→ (u w) + (v w), (∗∗)
w (u+ v) −→ (w u) + (w v), (∗∗)

(α.u) v −→ α.(u v), (∗ ∗ ∗)
v (α.u) −→ α.(v u), (∗ ∗ ∗)

0 u −→ 0,

u 0 −→ 0,

- Group B – beta reduction

(λx t) b −→ t[b/x] (∗ ∗ ∗∗)

And:
(∗) the three rules apply only if u is a closed L-normal term.
(∗∗) the two rules apply only if u+ v is a closed L-normal term.
(∗ ∗ ∗) the two rules apply only if u is a closed L-normal term.
(∗∗∗∗) the rule applies only when b is a “base vector” term, i.e., an abstraction
or a variable.

18

Notice that the restriction (∗), (∗∗) and (∗ ∗ ∗) are well-defined as the terms to
which the restrictions apply are smaller than the left-hand side of the rule.
Notice also that the restrictions are stable by substitution. Hence these condi-
tional rules could be replaced by an infinite number of non conditional rules,
i.e., by replacing the restricted variables by all the closed normal terms verifying
the conditions.
Finally notice how the rewrite system R = S∪E∪F ∪A, taken without restric-
tions, is really just the V ′ (see Definition 12) we have seen in Section 2, i.e., an
oriented version of the axioms of vector spaces. Intuitively the restricted system
defines a notion of vector space with infinities. Rewrite rules with closedness
conditions are not new in the theory of λ-calculus (see, for instance, [29]).

Normal forms. We have explained why abstractions ought to be considered
as “base vectors” in our calculus. We have highlighted the presence of non-
terminating terms and infinities, which make it impossible to interpret the cal-
culus in your usual vector space structure. The following two results show that
terminating closed terms on the other hand can really be viewed as superposi-
tions of abstractions.

Proposition 7. An L-closed normal form, that is not a sum, a product by a
scalar, or the null vector, is an abstraction.

Proof. By induction over term structure. Let t be a closed normal term
that is not a sum, a product by a scalar, or the null vector. The term t is not
a variable because it is closed, hence it is either an abstraction in which case
we are done, or an application. In this case it has the form uv1 . . . vn where
u,v1, . . .vn are normal and closed and n is different from 0. Neither u nor v1 is
a sum, a product by a scalar, or the null vector since the term being normal we
then could apply rules of group A. Thus by induction hypothesis, both terms
are abstractions, thus the rule B applies and the term t is not normal.

Proposition 8 (Form of closed normal forms). A L-closed normal form is
either the null vector or of the form

∑

i αi.λx ti +
∑

i λxui where the scalars
are different from 0 and 1 and the abstractions are all distinct.

Proof. If the term is not the null vector it can be written as a sum of terms
that are neither 0 nor sums. We partition these terms in order to group those
which are weighted by a scalar and those which are not. Hence we obtain a
term of the form

∑

α′
i.t

′
i +
∑

u′
i

where the terms u′
i are neither null, nor sums, nor weighted by a scalar. Hence

by Proposition 7 they are abstractions. Because the whole term is normal the
terms t′i are themselves neither null, nor sums, nor weighted by a scalar since
we could apply rules of group E. Hence Proposition 7 also applies.

19

6. Encoding classical and quantum computation

The restrictions we have placed upon our language are still more permissive
than those of the call-by-value λ-calculus, hence any classical computation can
be expressed in the linear-algebraic λ-calculus just as it can in the call-by-value
λ-calculus.

It then suffices to express the three universal quantum gatesH,Phase,Cnot
[17] which we will do next.

Encoding booleans. We encode the booleans as the first and second projec-
tions, as usual in the classical λ-calculus: true ≡ λxλy x, false ≡ λxλy y.
Again, note that these are conceived as linear functions, the fact we erase the
second/first argument does not mean that the term should be interpreted as a
trace out or a measurement. Here is a standard example on how to use them:

Not ≡ λy
(

y false true
)

.

Notice that this term expresses a unitary operator upon the vector space gen-
erated by true and false, even if some subterms express non unitary ones.

Encoding unary quantum gates. For the Phase gate the naive encoding will not
work, i.e.,

Phase 6≡ λy
(

y (ei
π

4 .true) false
)

since by bilinearity this would give Phase false −→∗
L ei

π

4 .false, whereas the
Phase gate is supposed to place an ei

π

4 only on true. The trick is to use
abstraction in order to retain the ei

π

4 phase on true only (where is any base
vector, for instance false).

Phase ≡ λy
(

(

y λx (ei
π

4 .true)λx false
)

)

Now, the term Phase true reduces in the following way

λy

(

(

y λx (ei
π

4 .true)λx false
)

)

true −→L

(

trueλx (ei
π

4 .true)λx false
)

=
(

(λxλy x)λx (ei
π

4 .true)λx false
)

−→∗
L (λx (ei

π

4 .true)) −→L e
iπ

4 .true

whereas the term Phase false reduces as follows

λy

(

(

y λx (ei
π

4 .true)λx false
)

)

false −→L

(

falseλx (ei
π

4 .true)λx false
)

=
(

(λxλy y)λx (ei
π

4 .true)λx false
)

−→∗
L (λx false) −→L false

This idea of using a dummy abstraction to restrict linearity can be generalized
and made more elegant with the following syntactic sugar:

20

• [t] ≡ λx t. The effect of this canon [.] is to associate to any state t a base
vector [t].

• {t} ≡ t where is any closed normal base vector, for instance λxx. The
effect of this uncanon is to lift the canon, i.e., we have the derived rule
{[t]} −→L t.

Note that {.} is a “left-inverse” of [.], but not a ”right inverse”, just like eval
and ′ (quote) in LISP. Again these hooks do not add anymore power to the
calculus, in particular they do not enable cloning. We cannot clone a given state
α.t+β.u, but we can copy its classical description [α.t+β.u]. For instance the
function λx [x] will never “canonize” anything else than a base vector, because
of restriction (∗ ∗ ∗∗). The phase gate can then be written

Phase ≡ λy
{

(y [ei
π

4 .true]) [false]
}

For the Hadamard gate the game is just the same:

H ≡ λy
{

y [

√
2

2
.(false+ true)] [

√
2

2
.(false− true)]

}

Encoding tensors. In quantum mechanics, vectors are put together via the
bilinear symbol ⊗. But because in our calculus application is bilinear, the usual
encoding of pairs does just what is needed.

⊗ ≡ λxλy λf
(

f x y
)

, π1 ≡ λp(pλxλy x), π2 ≡ λp(pλxλy y),

⊗

≡ λf λg λx
(

⊗
(

f (π1 x)
) (

g (π2 x)
)

)

E.g. H⊗2 ≡
(
⊗

HH
)

. From there on the infix notation for tensors will be
used, i.e., t⊗ u ≡ ⊗ t u, t

⊗

u ≡
⊗

t u.

Encoding the Cnot gate. This binary gate is essentially a classical gate, its
encoding is standard.

Cnot ≡ λx
(

(π1 x)⊗
(

(

(π1 x)
(

Not (π2 x)
)

)

(π2 x)

)

)

Expressing the Deutsch-Josza algorithm parametrically.
As discusses in Section 4, an advantage of a higher-order language is that it

permits to express black-box algorithms, such as the Deutsch-Josza algorithm,
in a parametric way. We show now how to encode this algorithm in Lineal.

Here is the well-known simple example of the Deutsch algorithm, which is
the n = 1 case of the Deutsch-Josza algorithm

Dj1 ≡ λx
(

H⊗2

(

x
(

H⊗2
(

false⊗ true
)

)

)

)

21

But we can also express control structure and use them to express the depen-
dence of the Deutsch-Josza algorithm with respect to the size of the input. En-
coding the natural number n as the Church numeral n ≡ λxλf (fn x) the term

(n H λy (H
⊗

y)) reduces to H⊗n+1

and similarly the term (n true λy (false⊗
y)) reduces to false⊗

n ⊗ true. Thus the expression of the Deutsch-Josza algo-
rithm term of the introduction is now straightforward:

Dj ≡ λnλx

(

(n H λy (H
⊗

y))

(

x
(

(n H λy (H
⊗

y))
(

n true λy (false⊗y)
)

)

)

)

.

Infinite dimensional operators. Notice that our language enables us to express
operators independently of the dimension of the space they apply to, even when
this dimension is infinite. For instance the identity operator is not expressed as
a sum of projections whose number would depend on the dimension of the space,
but as the mere lambda term λxx. In this sense our language is a language of
infinite dimensional computable linear operators, in the same way that matrices
are a language of computable finite dimensional linear operators.

7. Confluence

The main theorem of this paper is the confluence of the system L. Along the
way, we will also prove the confluence of the unrestricted systems V and V ′ which
we introduced for the sake of our computational definition of vector spaces. This
section is quite technical. A reader who is not familiar with rewriting techniques
may be happy with reading just Definition 16 and Theorem 1, and then skipping
to Section 8. A reader with an interest in such techniques may on the other
hand find the architecture of the proof quite useful. The rationale is as follows:

• There is only a very limited set of techniques available for proving the
confluence of non-terminating rewrite systems (mainly the notions of par-
allel reductions and strong confluence). Hence we must distinguish the
non-terminating rules, which generate the infinities (the B rule), from the
others (the R rules) and show that they are confluent on their own;

• We then must show that the terminating rules and the non-terminating
rules commute, so that their union is confluent. (The conditions on B,F,A
are key to obtaining the commutation. Without them, both subsets are
confluent, but not their union.)

• The rules of R being terminating, the critical pairs lemma applies. The
critical pairs can be checked automatically for the non-conditional rules,
but the conditional ones must be checked by hand. Hence we must dis-
tinguish the non-conditional rules (E rules), from the others (the F and
A rules).

• In order to handle the parametricity with respect to the scalars rewrite
system, we shall introduce a new technique called the avatar’s lemma.

22

The first step is to prove the confluence of the system R = S ∪ E ∪ F ∪ A,
i.e., the system L of Definition 13, minus the rule B. To prove the confluence of
this system we shall prove that of the system R0 = S0 ∪E ∪ F ∪A where S0 is
a small avatar of S, namely the simplest possible scalar rewrite system. Then
we use the avatar lemma to extend the result from S0 to S, hereby obtaining
the confluence of R = S ∪ E ∪ F ∪A.

Definition 14 (The rewrite system S0). The system S0 is formed by the
rules

0 + α −→ α

0× α −→ 0

1× α −→ α

α× (β + γ) −→ (α× β) + (α× γ)
where + and × are AC-symbols.

To be able to use a critical pair lemma in an AC context, we shall use
a well-known technique, detailed in the Section 7.1, and introduce addenda
S0ext, Eext and Fext to the systems S0, E and F , with some extra rules called
extension rules, but with a more restricted form of AC-rewriting and the system
R0ext = S0ext ∪ Eext ∪ Fext ∪A.

The second step towards our main goal is show that the B‖ rule, the parallel
version of the rule B defined in Definition 21, is strongly confluent on the term
algebra, and commutes with R∗, hence giving the confluence of L (Section 7.5).

As the system R = S ∪E ∪F ∪A does not deal at all with abstractions and
bound variables, we have, throughout this first part of the proof, considered λx
as a unary function symbol and the bound occurrences of x as constants. This
way we can safely apply known theorems about first-order rewriting.

7.1. Reminder on rule extensions and the critical pairs lemma

The term ((a+ 2.a) + b) + c reduces to the term ((2 + 1).a+ b) + c, as it
contains a subterm a+2.a that is AC-equivalent to an instance of the left hand
side of the rule α.u + u −→ (α + 1).u. The term ((2.a + b) + a) + c does not
contain such a subterm, yet it can be reduced, because it is itself AC-equivalent
to the term ((2.a+a)+b)+ c that contain a subterm that is an instance of the
left hand side of this rule. This suggests that there is a more local way to define
reduction modulo AC where the first reduction is possible but not the second.

Unfortunately, the critical pair lemma for AC-rewrite system gives the con-
fluence of this local version of AC-reduction system and not the global one we
are interested in. This problem has been solved by [42, 36] that show that the
globally AC reduction relation is confluent if the locally AC reduction relation
of an extended rewrite system is confluent.

Definition 15 (The extension rules). Let X be a AC-rewrite system with
AC symbols f1, . . . , fn. We define the AC-rewrite system Xext as containing the
same AC symbols as X, the same rules as X, plus the rules fi(t, x) −→ fi(u, x)
for each rule t −→ u of X where the head symbol of t is fi.

23

Proposition 9 (R0ext). The system S0ext is formed by the rules of S0 and the
rule

(0 + α) + χ −→ α+ χ

(0× α)× χ −→ 0× χ
(1× α)× χ −→ α× χ

(α× (β + γ))× χ −→ ((α× β) + (α× γ))× χ
The system Eext is formed by the rules of E and the rule:

(u+ 0) + x −→ u+ x

The system Fext is formed by the rules of F and these three rules:

(α.u+ β.u) + x −→ (α+ β).u+ x (∗)

(α.u+ u) + x −→ (α+ 1).u+ x (∗)
(u+ u) + x −→ (1 + 1).u+ x (∗)

where (∗) imposes the three rules apply only if u is a closed normal term. The
system Aext is A.
The system R0ext is S0ext ∪ Eext ∪ Fext ∪A.

As usual we write t −→∗
X u if and only if t = u or t −→X . . . −→X u. We also

write t −→?
X u if and only if t = u or t −→X u t −→X;Y u if there exist a v

such that t −→X v −→Y u, and t −→X↓ u if t −→∗
X u and u is normal for the

relation X.

7.2. Termination

Proposition 10. The systems S0ext terminates.

Proof. Consider the following interpretation (compatible with AC)

|x|s = |0|s = |1|s = 2

|t+ u|s = 1 + |t|s + |u|s
|t× u|s = |t|s × |u|s

Each time a term t rewrites to a term t′ we have |t|s > |t′|s. Hence, the system
terminates.

Proposition 11. The systems R0ext, Rext, S ∪ V and S ∪ V ′ terminate.

24

Proof. [The system Eext ∪ Fext ∪A terminates]
Consider the following interpretation (compatible with AC)

|(u v)| = (3|u|+ 2)(3|v|+ 2)

|u+ v| = 2 + |u|+ |v|
|α.u| = 1 + 2|u|
|0| = 0

Each time a term t rewrites to a term t′ we have |t| > |t′|. Hence, the system
terminates.

[The system R0ext terminates]
The system R0ext is S0ext ∪ Eext ∪ Fext ∪ A. It is formed of two subsystems
S0ext and Eext ∪ Fext ∪ A. By definition of the function | |, if a term t S0ext-
reduces to a term t′ then |t| = |t′|. Consider a R-reduction sequence. At
each Eext ∪ Fext ∪ A-reduction step, the measure of the term strictly decreases
and at each S0ext-reduction step it remains the same. Thus there are only a
finite number of Eext ∪ Fext ∪ A-reduction steps in the sequence and, as S0ext

terminates, the sequence is finite.
The same argument applies for Rext, S ∪ V and S ∪ V ′, with respect to S

instead of S0ext.

7.3. Critical pairs

Definition 16 (Confluence and local confluence). A relation X is said to
be confluent if whenever t −→∗

X u and t −→∗
X v, there exists a term w such

that u −→∗
X w and v −→∗

X w. A relation X is said to be locally confluent if
whenever t −→X u and t −→X v, there exists a term w such that u −→∗

X w
and v −→∗

X w.

Definition 17 (Critical pair). Let l −→ r and l′ −→ r′ be two rewrite rules
of an AC-rewrite system X, let p be an occurrence in l such that l|p is not a free

variable. Let σ be an AC-unifier for l|p and l′, the pair
(

σr, σ(l[p ← r′])
)

is a
critical pair of the the rewrite system X.

Proposition 12 (Peterson-Stickel Theorem). If −→Xext
terminates and for

each critical pair (t, u) of Xext there exists a term w such that t −→∗
Xext

w
u −→∗

Xext
w. Then the relation −→X is confluent.

Proof. See [42], Theorems 10.5., 9.3 and 8.9.

Proposition 13. The system S0 ∪ E is confluent.
The systems S0 ∪ V and S0 ∪ V ′ are confluent.

Proof. First notice that (S0 ∪ E)ext = (S0ext ∪ Eext) and that this system
terminates (see Proposition 11). Thus by proposition 12 all we need to do is
to check that all the critical pair close. As these rules are not conditional, we
have used the system CIME [19] to check this automatically. The same applies
to S0 ∪ Vext and S0 ∪ V ′

ext.

25

Proposition 14. The system S0 ∪ E ∪ F is confluent.

Proof. First notice that the system (S0ext ∪ E ∪ F)ext = S0ext ∪ Eext ∪ Fext

and that this system terminates (see Proposition 11). Thus by proposition 12
all we need to do is to check that all the critical pair close. If both rules used
are rules of the system S0ext ∪Eext, then the critical pair closes by Proposition
13. There are no critical pairs between S0ext and Eext ∪Fext. Thus, all we need
to check are the critical pairs between one rule of Eext and one of Fext or one
rule of Fext and one of Fext.

To find the critical pairs, we used CIME [19]. There are 251 critical pairs,
not taking the fact that some rules are conditional and thus may not apply.
Indeed, among these critical pairs 81 do not verify the conditions of the rules
Fext. For instance, the pair given by CIME

α.(0+ u) + u←− 0+ α.(0+ u) + u −→ (1 + α).(0+ u)

does not verify the condition because u + 0 is never closed normal: we do not
need to close this pair because our conditions forbid that it opens.

We need to check the 170 other pairs by hands. Some close easily, for instance
the pair

0+ α.u←− 0.u+ α.u −→ (0 + α).u

closes on α.u.
Some other require a short analysis of the conditions. For instance, for the

pair

α.u+ α.v + β.(u+ v)←− α.(u+ v) + β.(u+ v) −→ (α+ β).(u+ v)

the fact that we have been able to factor α.(u+v)+β.(u+v) into (α+β).(u+v)
shows that the term u+ v is closed normal, thus the terms u and v are closed
normal, which permits to reduce both terms to (α + β).u + (α + β).v. All the
cases are analyzed in [9].

Proposition 15. The system R0 = S0 ∪ E ∪ F ∪A is confluent.

Proof. First notice that R0ext = S0ext ∪ Eext ∪ Fext ∪ A and that this system
terminates (see Proposition 11). Thus by proposition 12 all we need to do is to
check that all the critical pair close. If both rules used are rules of the system
S0ext ∪ Eext ∪ Fext, then the critical pair closes by Proposition 14. It is not
possible that the top-level rule is in S0ext ∪Eext ∪Fext and the other in A since
the rules of S0ext∪Eext∪Fext do not contain any application. Thus the top-level
rule must be in A and the (S0ext ∪ Eext ∪ Fext)-reduction must be performed
in a non-toplevel non-variable subterm of the left-hand-side of a rule of A. By
inspection of the left-hand-sides of rules S0ext ∪ Eext ∪ Fext the subterm must
be of the form u+ v, α.u or 0. But this subterm cannot be of the form u+ v,
because, by restriction (**), the term itself would not be A-reducible. It cannot
be 0 since this term is normal. Thus it is of the form α.u. As there are five
rules reducing a term of this form, there are 10 critical pairs to check. Because
of the conditionality of the rewrite system we check them by hand.

26

Pair 1 0v←− (0.u)v −→ 0.(uv): this critical pair closes on 0.

Pair 2 uv←− (1.u)v −→ 1.(uv): this critical pair closes on uv.

Pair 3 0v←− (α.0)v −→ α.(0v): this critical pair closes on 0.

Pair 4 ((α × β).u)v ←− (α.(β.u))v −→ α.((β.u)v): the term u is closed and
normal by (∗ ∗ ∗). Hence, the critical pair closes on (α× β).(uv).

Pair 5 (α.u+α.v)w←− (α.(u+v))w −→ α.((u+v)w): the term u+v is closed
and normal. Hence, by Proposition 8 it is of the form

∑

i βi.ai +
∑

i bi.
Therefore the top reduct reduces to (

∑

i(α×βi) ↓ .ai+
∑

i α.bi)w, where
↓ denotes normalization by S0ext. We treat only the case where the terms
(l×βi) ↓ are neither 0 nor 1, the other cases being similar. Hence, we can
apply rules of group A yielding

∑

i(α × βi) ↓ .(ai w) +
∑

i α.(bi w). It is
routine to check that the bottom reduct also reduces to this term.

The five next critical pairs are the symmetrical cases, permuting the left
and right-hand-sides of the application.

Now, when both rules are in the group A, there are 9 critical pairs to check.

Pair 11 u(w + x) + v(w + x) ←− (u + v)(w + x) −→ (u + v)w + (u + v)x: as
u+ v and w+ x are normal and closed, so are u, v, w and x. Hence the
critical pair closes on uw + ux+ vw + vx.

Pair 12 u(α.w) + v(α.w) ←− (u + v)(α.w) −→ α.((u + v).w): as, by (∗∗) and
(∗∗∗), u+v and w are closed normal terms , so are u and v. Thus the top
reduct further reduces to α.(uw)+α.(vw) and the bottom reduct further
reduces to α.((uw)+ (vw)) and both terms reduce to α.(uw)+α.(vw).

Pair 13 0←− (u+ v)0 −→ (u0) + (v0): this critical pair closes on 0.

Pair 14 α.(u(v+w))←− (α.u)(v+w) −→ (α.u)v+(α.u)w: the terms u and v+w
are closed normal. Thus, the top reduct further reduces to α.(uv + uw)
and the bottom reduct to α.(uv) + α.(uw). Hence the critical pair closes
on α.(uv) + α.(uw).

Pair 15 α.(u(β.v))←− (α.u)(β.v) −→ β.((α.u)v): as u and v are closed normal,
the first term reduces to α.(β.(uv)) and the second to β.(α.(uv)) and both
terms reduce to (α× β).(uv).

Pair 16 α.(u0)←− (α.u)0 −→ 0: this critical pair closes on 0.

Pair 17 0←− 0(u+ v) −→ (0u) + (0v): this critical pair closes on 0.

Pair 18 0←− 0(α.u) −→ α.(0u): this critical pair closes on 0.

Pair 19 0←− 00 −→ 0: this critical pair closes on 0.

27

7.4. The avatar lemma

Definition 18 (Subsumption). A terminating and confluent relation S sub-
sumes a relation S0 if whenever t −→S0

u, t and u have the same S-normal
form.

Definition 19 (Commuting relations). Two relations X and Y are said to
be commuting if whenever t −→X u and t −→Y v, there exists a term w such
that u −→Y w and v −→X w.

Proposition 16 (The avatar lemma). [6] Let X, S and S0 be three relations
defined on a set such that:

• S is terminating and confluent;

• S subsumes S0;

• S0 ∪X is locally confluent;

• X commutes with S∗.

Then, the relation S ∪X is locally confluent.

Proof. [X can be simulated by X;S ↓].
If t −→X u and t −→S↓ v, then there exists w such that u −→S↓ w and
v −→X;S↓ w. Indeed by commutation of X and S∗ there exists a such that
u −→S∗ a and v −→X a. Normalizing a under S yields the w.

[S0 ∪X can be simulated by (X;S ↓)?].
If t −→S0∪X u and t −→S↓ v, then there exists w such that u −→S↓ w and

v −→?
X;S↓ w. Indeed if t −→S0

u this is just subsumption, else the first point
of this proof applies.

[S ∪X can be simulated by (X;S ↓)?].
If t −→S∪X u and t −→S↓ v, then there exists w such that u −→S↓ w and

v −→?
X;S↓ w. Indeed if t −→S u this is just the normalization of S, else the first

point of this proof applies.

[X;S ↓ is locally confluent].
If t −→X;S↓ u and t −→X;S↓ v, then there exists w such that u −→∗

X;S↓ w
and v −→∗

X;S↓ w. Indeed if t −→X a −→S↓ u and t −→X b −→S↓ v we know
from the local confluence of S0 ∪ X that there exists c such that a −→∗

S0∪X c
and b −→∗

S0∪X c. Normalizing c under S yields the w. This is because by the
second point of the proof u −→∗

X;S↓ w and v −→∗
X;S↓ w.

[S ∪X is locally confluent].
If t −→S∪X u and t −→S∪X v, then there exists w such that u −→∗

S∪X w
and v −→∗

S∪X w. Indeed call t↓, u↓, v↓ the S normalized version of t, u, v.
By the third point of our proof we have t↓ −→?

X;S↓ u↓ and t↓ −→?
X;S↓ v↓.

By the fourth point of our proof there exists w such that u↓ −→∗
X;S↓ w and

v↓ −→∗
X;S↓ w.

28

Proposition 17. For any scalar rewrite system S the systems R = S∪E∪F∪A,
S ∪ V and S ∪ V ′ are confluent.

Proof. The system S is confluent and terminating because it is a scalar rewrite
system. The system S subsumes S0 because S is a scalar rewrite system. From
Proposition 15, the system R0 = S0 ∪ E ∪ F ∪ A is confluent. Finally, the
system E ∪F ∪A commutes with S∗. Indeed, each rule of E ∪F ∪A commutes
with S∗ as each subterm of sort scalar in the left member of a rule is either a
variable or 0 or 1, which are normal forms. We conclude with Proposition 16
that R = S ∪ E ∪ F ∪ A is locally confluent. Hence as it is terminating it is
confluent by Newman’s lemma [39].The same argument applies for S ∪ V and
S ∪ V ′.

7.5. The system L

We now want to prove that the system L is confluent. With the introduction
of the rule B, we lose termination, hence we cannot use Newman’s lemma [39]
anymore. Thus we shall use for this last part techniques coming from the proof
of confluence of the λ-calculus and prove that the parallel version of the B rule
is strongly confluent. In our case as we have to mix the rule B with R we shall
also prove that it commutes with −→∗

R.

Definition 20 (Strong confluence). A relation X is said to be strongly con-
fluent if whenever t −→X u and t −→X v, there exists a term w such that
u −→X w and v −→X w.

Definition 21 (The relation −→‖
B). The relation −→‖

B is the smallest re-

flexive congruence such that if u is a base vector, t −→‖
B t′ and u −→‖

B u′

then
(λx t) u −→‖

B t′[u′/x]

Proposition 18. If v1 −→∗
R w1 then v1[b/x] −→∗

R w1[b/x], where b is a base
vector.

Proof. If the reduction of v1 to w1 involves an application of a conditional rule,
then the condition is preserved on v1[v2/x]. Indeed, substituting some term in
a closed normal term yields the same term.

Proposition 19. If v2 −→∗
R w2 then v1[v2/x] −→∗

R v1[w2/x].

Proof. The reduction is a congruence.

Proposition 20. If t = u or t −→R u and if t −→‖
B v then there exists w

such that u −→‖
B w and v −→∗

R w.

Proof. By induction on the structure of t. If t = u we just take w = v. Thus
we focus in the rest of the proof to the case where t −→R u.

29

If the B‖-reduction takes place at the toplevel, then t = (λx t1) t2, t2 is a

base vector and there exists terms v1 and v2 such that t1 −→‖
B v1, t2 −→‖

B v2

and v = v1[v2/x]. Neither λx t1 nor t2 is a sum, a product by a scalar or the
null vector, hence the R-reduction is just an application of the congruence thus
there exists terms u1 and u2 such that and t1 −→?

R u1 and t2 −→?
R u2. Since

t2 is a base vector, u2 is also a base vector. By induction hypothesis, there

exist terms w1 and w2 such that u1 −→‖
B w1, v1 −→∗

R w1, u2 −→‖
B w2 and

v2 −→∗
R w2. We take w = w1[w2/x]. We have (λxu1) u2 −→‖

B w and by
Proposition 18 and 19 we also have v1[v2/x] −→∗

R w.
If the R-reduction takes place at the toplevel, we have to distinguish several

cases according to the rule used for this reduction.

• If t = t1+0 and u = t1, then there exists a term v1 such that t1 −→‖
B v1

and v = v1 + 0. We take w = v1.

• If t = 0.t1 and u = 0, then there exists a term v1 such that t1 −→‖
B v1

and v = 0.v1. We take w = 0.

• If t = 1.t1 and u = t1, then there exists a term v1 such that t1 −→‖
B v1

and v = 1.v1. We take w = v1.

• If t = α.0 and u = 0, then v = t. We take w = 0.

• If t = α.(β.t1) and u = (α× β).t1, then there exists a term v1 such that

t1 −→‖
B v1 and v = α.(β.v1). We take w = (α× β).v1.

• If t = α.(t1 + t2) and u = α.t1 + α.t2, then there exist terms v1 and

v2 such that t1 −→‖
B v1, t2 −→‖

B v2 and v = α.(v1 + v2). We take
w = α.v1 + α.v2.

• If t = α.t1 + β.t1 and u = (α + β).t1, then by (∗) t1 is L-normal, thus
v = t. We take w = u.

The cases of the two other factorisation rules are similar.

• If t = (t1+t2) t3 and u = t1 t3+t2 t3, then by (∗∗) the term t1+t2 is L-

normal. There exists a term v3 such that t3 −→‖
B v3 and v = (t1+t2) v3.

We take w = t1 v3 + t2 v3.

• If t = (α.t1) t2 and u = α.(t1 t2), then by (∗ ∗ ∗) t1 is L-normal. There

exists a term v2 such that t2 −→‖
B v2 and v = (α.t1) v2. We take

w = α.(t1 v2).

• If t = 0 t2 and u = 0, then there exists a term v2 such that t2 −→‖
B v2

and v = 0 v2. We take w = 0.

The three other cases where a rule of group A is applied are symmetric.

Finally if both reductions are just applications of the congruence we apply the
induction hypothesis to the subterms.

30

Proposition 21 (−→∗
R commutes with −→‖

B).

If t −→∗
R u and t −→‖

B v then there exists w such that u −→‖
B w and

v −→∗
R w.

Proof. By induction on the length of the −→∗
R derivation. If t = u then we

take w = v. Otherwise there exists a term t1 such that t −→R t1 −→∗
R u

with a shorter reduction from t1 to u. Using Proposition 20, there exists a

term w1 such that t1 −→‖
B w1 and v −→∗

R w1. By induction hypothesis, there

exists a term w such that u −→‖
B w and w1 −→∗

R w. We have u −→‖
B w and

v −→∗
R w.

Proposition 22 (Substitution for B‖).

If t −→‖
B t′ and b −→‖

B b′ then t[b/x] −→‖
B b′[b′/x]. Here b denotes a base

vector.

Proof. By induction on the structure of t.

• If t = x then t′ = x and hence t[b/x] = b −→‖
B b′ = t′[b′/x].

• If t = y then t′ = y and hence t[b/x] = y = t′[b′/x].

• If t = λy t1 the B‖-reduction is just an application of the congruence. We

have t′ = λy .t′1 with t1 −→‖
B t′1 and the induction hypothesis tells us that

t1[b/x] −→‖
B t′1[b

′/x]. Hence t[b/x] = λy t1[b/x] −→‖
B λy t′1[b

′/x] =
t′[b′/x].

• If t = (t1 t2) then we consider two cases.

– We have t1 = λy t3, t2 a base state, and t′ = t′3[t
′
2/x], i.e., a B-

reduction occurs at top-level. By induction hypothesis we know that

t3[b/x] −→‖
B t′3[b

′/x] and t2[b/x] −→‖
B t′2[b

′/x]. Because t2 and b

are base vectors, so is t2[b/x]. Hence t[b/x] = (λy t3[b/x])t2[b/x] −→‖
B

t′3[b
′/x][t′2[b

′/x]/y] = t′3[t
′
2/y][b

′/x] = t′[b′/x].

– If t′ = (t′1 t′2) with t1 −→‖
B t′1, t2 −→‖

B t′2, then by induction

hypothesis we know that t1[b/x] −→‖
B t′1[b

′/x] and t2[b/x] −→‖
B

t′2[b
′/x]. Hence t[b/x] = (t1[b/x] t2[b/x]) −→‖

B (t′1[b
′/x] t′2[b

′/x]) =
t′[b′/x].

• If t = 0 then t′ = 0 and hence t[b/x] = 0 = t′[b′/x].

• If t is a sum the B‖-reduction is just an application of the congruence.
Therefore t is AC-equivalent to t1 + t2 and t′ is AC-equivalent to t′1 + t′2
with t1 −→‖

B t′1, t2 −→
‖
B t′2. Then by induction hypothesis we know

that t1[b/x] −→‖
B t′1[b

′/x] and t2[b/x] −→‖
B t′2[b

′/x]. Hence t[b/x] =

t1[b/x] + t2[b/x] −→‖
B t′1[b

′/x] + t′2[b
′/x] = t′[b′/x].

31

• If t = α.t1 the B‖-reduction is just an application of the congruence. We

have t′ = α.t′1 with t1 −→‖
B t′1 and the induction hypothesis tells us

that t1[b/x] −→‖
B t′1[b

′/x]. Hence t[b/x] = α.t1[b/x] −→‖
B α.t′1[b

′/x] =
t′[b′/x].

Proposition 23 (Strong confluence of B‖).

If t −→‖
B u and t −→‖

B v then there exists w such that u −→‖
B w and v −→‖

B

w.

Proof. By induction on the structure of t.

• If t is a variable then u = t and v = t. We take w = t.

• If t = 0 then u = 0 and v = 0. We take w = 0.

• If t = λx t1 then u = λx u1 with t1 −→‖
B u1 and v = λx v1 with t1 −→‖

B

v1. By induction hypothesis, there exists a w1 such that u1 −→‖
B w1 and

v1 −→‖
B w1. We take w = λx w1.

• If t = (t1 t2) then we consider two cases.

– If the term t1 has the form λx t3 and t2 is a base vector. We
consider three subcases, according to the form of the B‖-reductions.

Either v = (v1 v2) with t1 −→‖
B v1, t2 −→‖

B v2, and u = (u1 u2)

with t1 −→‖
B u1, t2 −→‖

B u2. By induction hypothesis, there exists

terms w1 and w2 such that u1 −→‖
B w1, v1 −→‖

B w1, u2 −→‖
B w2,

v2 −→‖
B w2. We take w = (w1 w2).

Or v = v3[v2/x] with t3 −→‖
B v3, t2 −→‖

B v2, and u = ((λx u3) u2)

with t3 −→‖
B u3, t2 −→‖

B u2. Since t2 is a base vector, u2 and v2 are
also base vectors. By induction hypothesis, there exist terms w3 and

w2 such that u3 −→‖
B w3, v3 −→‖

B w3, u2 −→‖
B w2, v2 −→‖

B w2.

We take w = w3[w2/x]. We have (λxu3) u2 −→‖
B w3[w2/x] by

definition of B‖. By Proposition 22 we also have v3[v2/x] −→‖
B

w3[w2/x].

Or v = v3[v2/x] with t3 −→‖
B v3, t2 −→‖

B v2, and u == u3[u2/x]

with t3 −→‖
B u3, t2 −→‖

B u2. Since t2 is a base vector, u2 and v2

are base vectors also. By induction hypothesis, there exist terms w3

and w2 such that u3 −→‖
B w3, v3 −→‖

B w3, u2 −→‖
B w2, v2 −→‖

B

w2. We take w = w3[w2/x]. By Proposition 22 we have both

u3[u2/x] −→‖
B w3[w2/x] and v3[v2/x] −→‖

B w3[w2/x].

– Otherwise the B‖-reduction is just an application of the congruence,

i.e., v = (v1 v2) with t1 −→‖
B v1, t2 −→‖

B v2, and u = (u1 u2)

with t1 −→‖
B u1, t2 −→‖

B u2. By induction hypothesis, there exists

terms w1 and w2 such that u1 −→‖
B w1, v1 −→‖

B w1, u2 −→‖
B w2,

v2 −→‖
B w2. We take w = (w1 w2).

32

• If t is a sum then the B‖-reduction is just an application of the congruence.
The term t is AC-equivalent to a sum t1+t2, the term u is AC-equivalent

to a sum u1 + u2 with t1 −→‖
B u1, t2 −→‖

B u2, and the term v is AC-

equivalent to a sum v1 + v2 such that t1 −→‖
B v1 and t2 −→‖

B v2. By

induction hypothesis, there exist terms w1 and w2 such that u1 −→‖
B w1,

v1 −→‖
B w1, u2 −→‖

B w2, v2 −→‖
B w2. We take w = w1 +w2.

• If finally, t = α.t1 then the B‖-reduction is just an application of the

congruence. We have u = α.u1 with t1 −→‖
B u1, and v = αv1 with

t1 −→‖
B v1. By induction hypothesis, there exists a term w1 such that

u1 −→‖
B w1, v1 −→‖

B w1. We take w = α.w1.

Proposition 24 (Hindley-Rosen lemma). If the relations X and Y are strongly
confluent and commute then the relation X ∪ Y is confluent.

Theorem 1. The system L is confluent.

Proof. By Proposition 17, the relation −→R is confluent, hence −→∗
R is

strongly confluent. By Proposition 23, the relation −→‖
B is strongly confluent.

By Proposition 21, the relations −→∗
R and −→‖

B commute. Hence, by Propo-

sition 24 the relation −→∗
R ∪ −→

‖
B is confluent. Hence, the relation −→L is

confluent.

Corollary 1 (No-cloning in the Linear-algebraic λ-calculus). There is no
term Clone such that for all term v, (Clone v) −→∗

L (v ⊗ v).

Proof. Note that the ⊗, true and false stand for the term introduced in Section
6. Say (Clone v) −→∗

L (v⊗v) for all v. Let v = α.true+β.false be in closed
normal form. Then by the A-rules we have (Clone (α.true + β.false)) −→∗

L

α.(Clone true) + β.(Clone false). Next according to our supposition on
Clone this further reduces to α.(true ⊗ true)+β.(false ⊗ false). But our
supposition on Clone, also says that (Clone (α.true + β.false)) reduces to
(α.true+β.false)⊗ (α.true+β.false). Moreover the two cannot be reconciled
into a common reduct, because they are normal. Hence our supposition would
break the confluence; it cannot hold. Note that λxv on the other hand can
be duplicated, because it is thought as the (plans of) the classical machine for
building v – in other words it stands for potential parallelism rather than actual
parallelism. As expected there is no way to transform v into λxv in general;
confluence ensures that the calculus handles this distinction in a consistent
manner.

8. Current works

8.1. Algebraic λ-calculus

As we have mentioned in the introduction the idea of endowing the λ-calculus
with a vector space has emerged simultaneously and independently in a differ-
ent context. Indeed, the exponential-free fragment of Linear Logic is a logic

33

of resources where the propositions themselves stand for those resources – and
hence cannot be discarded nor copied. When seeking to find models of this
logic, one obtains a particular family of vector spaces and differentiable func-
tions over these. It is by trying to capture back these mathematical structures
into a programming language that T. Ehrhard and L. Regnier have defined
the differential λ-calculus [26], which has an intriguing differential operator as
a built-in primitive, and some notion of module of the λ-calculus terms, over
the natural numbers. More recently L. Vaux [57] has focused his attention on
a “differential λ-calculus without differential operator”, extending the module
to finitely splitting positive real numbers. He obtained a confluence result in
this case, which stands even in the untyped setting. More recent works on this
Algebraic λ-calculus tend to consider arbitrary scalars [28, 49]. This Algebraic
λ-calculus and the Linear-algebraic λ-calculus we presented in this paper are
very similar not only in names: they both merge higher-order computation, be
it terminating or not, in its simplest and most general form (namely the un-
typed λ-calculus) together with linear algebra in its simplest and most general
form also (the axioms of vector spaces). Skipping over details a closer inspection
unravels that:

• the application in the Algebraic λ-calculus is left linear but not right linear;

• the abstraction in the Algebraic λ-calculus is a linear unary operator;

• the rewriting is modulo vector space axioms, and these axioms are not
transformed into rewrite rules of the system.

It could be said the last two points are only minor differences; design choices
in some sense. Arguably those of Lineal are advantageous because they yield
a more robust confluence proof, valid for arbitrary scalars. If we lift these two
differences, Lineal simulates the Algebraic λ-calculus [12]. The first point is
a more important difference, with justification right within the origins of the
Algebraic λ-calculus and the Differential λ-calculus. Recently, however, it has
been shown that the difference really amounts to a choice between call-by-name
and call-by-value oriented strategies. The encoding of one strategy into another
still works [23] — hence it could be said that the two calculi are essentially
equivalent.

8.2. Types

Whilst terms in our calculus seem to form a vector space, the very definition
of a norm is difficult in our context: deciding whether a term terminates is
undecidable; but these terms produce infinities, hence convergence of a vector
space norm is undecidable. Related to this precise topic, L. Vaux has studied
simply typed algebraic λ-calculus, ensuring convergence of a vector space norm
[57]. Following his work, C. Tasson has studied some model-theoretic properties
of the barycentric (

∑

αi = 1) subset of this simply typed calculus [49]. A
recent work by T. Ehrhard proves the convergence of a Taylor series expansion
of Algebraic λ-calculus terms, via a System F typing system [28].

34

Hence, standard type systems ensure the convergence of the vector space norm
of a term. And indeed it is not so hard to define a simple extension of System
F that fits Lineal — just by providing the needed rules to type additions, scalar
products and the null vector in some trivial manner, as we did in [10, 11]. As
expected one obtains strong normalisation from this type system. An important
byproduct of this result is that one can then remove the conditions (∗)− (∗ ∗ ∗)
that limit the reduction rules of Lineal (see Section 5), because their purpose
was really to keep indefinite forms from reducing (such as t − t, with t not
normal and hence potentially infinite). In other words types make Lineal into
a simpler language.
Yet standard type systems are unable for instance to impose upon the language
that any well-typed linear combination of terms

∑

αi.ti has
∑

αi = 1. That is
unless they are provided with a handle upon these scalars. This is the purpose
of the scalar type system which was recently proposed [10, 11]. This type
system which manages to keep track of “the amount of a type” by summing the
amplitudes of its contributing terms, and reflects this amount within the type.
As an example of its uses, it was demonstrated that this provides a type system
which guarantees well-definiteness of probabilistic functions in the sense that
it specializes Lineal into a probabilistic, higher-order λ-calculus. We are still
looking for a type system that would impose that linear combination of terms
∑

αi.ti have
∑ |αi|2 = 1, as suited for quantum computing.

8.3. Models

The functions expressed in our language are linear operators upon the space
constituted by its terms. It is strongly inspired from the more preliminary [6],
where terms clearly formed a vector space. However because the calculus higher-
order, we get forms of infinities coming into the game. Thus, the underlying
algebraic structure is not as obvious as in [6]. Moreover one can notice already
that since the non-trivial models of the untyped λ-calculus are all uncountable,
the models of (Linear-)Algebraic λ-calculus are likely to be vector spaces hav-
ing an uncountable basis. These are fascinating, open questions, but whose
difficulty explain why we have not provided a denotational semantics for Lineal
in this paper. This issue of models of (Linear-)Algebraic λ-calculus is a chal-
lenging, active topic of current research. We know of the categorical model of
simply typed Lineal with fixpoints [51], which establishes a connection between
the canon and uncanon construct of Section 6 and monads à la Moggi [38].
The finiteness space model of simply typed Algebraic λ-calculus [27, 49] does
not easily carry through to Lineal, which is call-by-value oriented. Recently,
a syntactic finiteness space model of System F algebraic λ-calculus has been
developed in [28].

9. Conclusion

9.1. Summary

When merging the untyped λ-calculus with linear algebra one faces two dif-
ferent problems. First of all simple-minded duplication of a vector is a non-linear

35

operation (cloning) unless it is restricted to base vectors and later extended lin-
early (copying). Second of all we can express computable but nonetheless infinite
series of vectors, hence yielding some infinities and the troublesome indefinite
forms. Here again this is fixed by restricting the evaluation of these indefinite
forms, this time to normal vectors. Both problems show up when looking at the
confluence of the Linear-algebraic λ-calculus (Lineal).
The architecture of the proof of confluence seems well-suited to any non-trivial
rewrite systems having both some linear algebra and some infinities as its key
ingredients. Moreover the proof of confluence entails a no-cloning result for
Lineal, in accordance with the linearity of quantum physics.

9.2. Perspectives

Lineal merges higher-order computation with linear algebra in a minimalis-
tic manner. Such a foundational approach is also taking place for instance in [2]
via some categorical formulations of quantum theory exhibiting nice composi-
tion laws and normal forms, without explicit states, fixed point or the possibility
to replicate gate descriptions. As for [2] although we have shown that quantum
computation can be encoded in our language, Lineal remains some way apart
from a model of quantum computation, because it allows evolutions which are
not unitary. Establishing formal connections with this categorical approach does
not seem an easy matter but is part of our objectives.
These connections might arise through typing. Finding a type system which spe-
cializes Lineal into a strictly quantum programming language (enforcing the uni-
tary constraint) is not only our next step on the list, it is actually the principal
aim and motivation for this work: we wish to extend the Curry-Howard isomor-
phism between proofs/propositions and programs/types to a linear-algebraic,
quantum setting. Having merged higher-order computation with linear-algebra
in a minimalistic manner, which does not depend on any particular type systems,
grants us a complete liberty to now explore different forms of this isomorphism.
For instance we may expect different type systems to have different fields of
application, ranging from fine-grained entanglement-analysis for quantum com-
putation [44, 45], to opening connections with linear logic [24] or even giving
rise to some novel, quantitative logics [10].

Acknowledgments

The authors would like to thank Alejandro Dı́az-Caro, Evelyne Contejean,
Philippe Jorrand, Jean-Pierre Jouannaud, Claude Marché, Simon Perdrix, Benôıt
Valiron and Lionel Vaux for some enlightening discussions.

References

[1] S. Abramsky, Computational Interpretations of Linear Logic, Theoretical Com-
puter Science, 111, 3–57, (1993).

36

[2] S. Abramsky, B. Coecke, A categorical semantics of quantum protocols LICS,
IEEE Computer Society, 415-425, (2004).

[3] L. Adleman, J. DeMarrais, M. Huang, Quantum Computability, SIAM J. on
Comp., 26, 5, 1524-1540, (1997).

[4] T. Altenkirch, J. Grattage, J.K. Vizzotto, A. Sabry, An Algebra of Pure Quantum
Programming, Third International Workshop on Quantum Programming Lan-
guages, Electronic Notes of Theoretical Computer Science, 170C, 23-47, (2007).

[5] P. Arrighi, G. Dowek, A computational definition of the notion of vector space,
ENTCS 117, 249-261, (2005).

[6] P. Arrighi, G. Dowek, Linear-algebraic lambda-calculus, in P. Selinger (Ed.), In-
ternational workshop on quantum programming languages, Turku Centre for
Computer Science General Publication, 33, 21-38, (2004).

[7] P. Arrighi, G. Dowek, Linear-algebraic lambda-calculus: higher-order, encodings,
confluence, arXiv:quant-ph/0612199.

[8] P. Arrighi, G. Dowek, www-roc.inria.fr/who/Gilles.Dowek/Prog/lineal.html.

[9] P. Arrighi, G. Dowek, On the critical pairs of a rewrite system
for vector spaces, available on the web page of the authors, see
www-roc.inria.fr/who/Gilles.Dowek/Publi/criticalpairs.pdf, (2012).

[10] P. Arrighi, A. Dı́az-Caro, Scalar System F for Linear-Algebraic λ-Calculus: To-
wards a Quantum Physical Logic, Proceedings of the 6th International Workshop
on Quantum Physics and Logic, ENTCS 206–215, (2009).

[11] P. Arrighi, A. Dı́az-Caro, A System F accounting for scalars, Preprint:
arXiv:0903.3741, (2009).

[12] P. Arrighi, L. Vaux, Embedding Algebraic Lambda-calculus into Lineal, Private
communication, (2009).

[13] E. Bernstein, U. Vazirani, Quantum Complexity Theory, Annual ACM sympo-
sium on Theory of Computing, 25, (1993).

[14] G. Birkhoff, On the Structure of Abstract Algebras, Proc. Cambridge Phil. Soc.,
31, (1935).

[15] G. Boudol, Lambda-calculi for (strict) parallel functions, Information and Com-
putation, 108(1), 51-127, (1994).

[16] O. Bournez, M. Hoyrup, Rewriting Logic and Probabilities, Rewriting Techniques
and Applications, LNCS 2706, (2003).

[17] P. Boykin, T. Mor, M. Pulver, V. Roychowdhury, F. Vatan, On universal and
fault-taulerant quantum computing, arxiv:quant-ph/9906054

[18] G. Chiribella, G. D’Ariano, P. Perinotti, B. Valiron, Beyond Quantum Comput-
ers, Arxiv preprint arXiv:0912.0195, (2009).

[19] The CiME Rewrite Tool, http://cime.lri.fr/.

37

[20] D. Cohen, P. Watson, An efficient representation of arithmetic for term rewriting,
Proc. of the 4th Conference on Rewrite Techniques and Applications, LNCS

[21] N. Dershowitz, J.-P. Jouannaud, Rewrite systems, Handbook of theoretical com-
puter science, Vol. B: formal models and semantics, MIT press, (1991).

[22] D. Deutsch, R. Josza, Rapid solution of problems by quantum computation. Proc.
of the Roy. Soc. of London A, 439, 553-558, (1992).

[23] A. Dı́az-Caro, S. Perdrix, C. Tasson, B. Valiron Equivalence of Algebraic λ-
calculi, HOR 2010.

[24] A. Dı́az-Caro, B. Petit, From Additive Logic to Linear Logic, manuscript, (2010).

[25] D. Dougherty, Adding Algebraic Rewriting to the Untyped Lambda Calculus, Proc.
of the Fourth International Conference on Rewriting Techniques and Applica-
tions, 1992.

[26] T. Ehrhard, L. Regnier, The differential lambda-calculus, Theoretical Computer
Science, 309, 1–41, (2003).

[27] T. Ehrhard, Finiteness spaces, Mathematical Structures in Computer Science,
15(4), 615–646, (2005).

[28] T. Ehrhard, A finiteness structure on resource terms, LICS 2010, to appear.

[29] M. Fernandez and I. Mackie, Closed Reductions in the λ-calculus, Computer
Science Logic, Lecture Notes in Computer Science 1683, (1999).

[30] A. Di Pierro, C. Hankin, H. Wiklicky, Probabilistic λ-calculus and quantitative
program analysis, J. of Logic and Computation, 15(2), 159-179, (2005).

[31] S. J. Gay, Quantum programming languages: survey and bibliography, Mathe-
matical Structures in Computer Science, 16(4), 581–600, (2006).

[32] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50, 1-102, (1987).

[33] L. K. Grover, Quantum Mechanics Helps in Searching for a Needle in a Haystack,
Phys. Rev. Lett., 79(2), 325–328, (1997).

[34] O. M. Herescu, C. Palamidessi, Probabilistic asynchronous pi-calculus, ETAPS,
LNCS 1784, 146–160, (2000).

[35] G. Huet, A complete proof of correctness of the Knuth-Bendix completion algo-
rithm, Journal of Computer and System Sciences, 23(1), pages 11–21, (1981).

[36] J.-P. Jouannaud, H. Kirchner, Completion of a Set of Rules Modulo a Set of
Equations, SIAM J. of Computing, 15(4), 1155–1194, (1986).

[37] A. Kitaev, Quantum computation, algorithms and error correction, Russ. Math.
Surv., 52, 6, 1191-1249, (1997).

[38] E. Moggi, Notions of computation and monads, Information and Computation,
93, 55–92, (1991).

38

[39] M. H. A. Newman, On theories with a combinatorial definition of ”equivalence”,
Annals of Mathematics, 432, 223–243, (1942).

[40] M. A. Nielsen, Universal quantum computation using only projective measure-
ment, quantum memory, and preparation of the 0 state, Phys. Rev. A, 308,
96-100, (2003).

[41] , O. Oreshkov, F. Costa, C. Brukner, Quantum correlations with no causal order,
Arxiv preprint arXiv:1105.4464, (2011).

[42] G. E. Peterson, M. E. Stickel, Complete Sets of Reductions for Some Equational
Theories, J. ACM, 28(2), 233-264, (1981).

[43] S. Perdrix, State transfer instead of teleportation in measurement-based quantum
computation, Int. J. of Quantum Information , 1(1), 219-223, (2005).

[44] S. Perdrix, Quantum entanglement analysis based on abstract interpretation, SAS
2008, LNCS 5079, (2008).

[45] F. Prost, C. Zerrari, Reasoning about Entanglement and Separability in Quantum
Higher-Order Functions, UC 2008, Proceedings of the 8th International Confer-
ence on Unconventional Computation, 219–235 (2009).

[46] R. Raussendorf, D.E. Browne, H.J. Briegel, The one-way quantum computer - a
non-network model of quantum computation, Journal of Modern Optics, 49, p.
1299, (2002).

[47] T. Rudolph, L. Grover, A two rebit gate universal for quantum computing, octo-
ber 2002, arxiv:quant-ph/0210187.

[48] P. Selinger, Towards a quantum programming language, Math. Struc. in Com-
puter Science, 14(4), 527-586, (2004).

[49] C. Tasson, Algebraic Totality, towards Completeness, TLCA 2009: Proceedings
of the 9th International Conference on Typed Lambda Calculi and Applications,
325–340, (2009).

[50] P. Selinger, B. Valiron, A lambda calculus for quantum computation with classical
control, Math. Struc. in Computer Science, 16(3), 527-552, (2006).

[51] B. Valiron, A Typed, Algebraic, Computational Lambda-Calculus. Mathematical
Structures in Computer Science (to appear).

[52] P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer, SIAM J. on Computing, 26, 1484-1509,
(1997).

[53] R. Solovay, manuscript, (1995).

[54] R. Solovay, A. Yao, Quantum Circuit Complexity and Universal Quantum Turing
Machines, manuscript, (1996).

[55] A. Van Tonder, A Lambda Calculus for Quantum Computation, july 2003,
arXiv:quant-ph/0307150.

39

[56] A. Van Tonder, Quantum Computation, Categorical Semantics and Linear Logic,
december 2003, arXiv:quant-ph/0312174.

[57] L. Vaux, On linear combinations of lambda-terms, Proceedings of RTA 2007,
LNCS 4533, (2007).

[58] H. Walters, H. Zantema, Rewrite systems for integer arithmetic, Proc. of Rewrit-
ing Techniques and Applications 94, 6th Int. Conf., LNCS 914, 324-338, (1995).

[59] W. K. Wooters, W. H. Zurek, A single quantum cannot be cloned, Nature 299,
802-803, (1982).

40

