
HAL Id: hal-00919759
https://inria.hal.science/hal-00919759

Submitted on 17 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of First Order Axiomatic Theories
Guillaume Burel, Simon Cruanes

To cite this version:
Guillaume Burel, Simon Cruanes. Detection of First Order Axiomatic Theories. FroCoS - 9th Inter-
national Symposium on Frontiers of Combining Systems - 2013, Sep 2013, Nancy, France. pp.229-244,
�10.1007/978-3-642-40885-4_16�. �hal-00919759�

https://inria.hal.science/hal-00919759
https://hal.archives-ouvertes.fr

Detection of First Order Axiomatic Theories

Guillaume Burel1, Simon Cruanes2

1 ÉNSIIE/Cédric, 1 square de la résistance, 91025 Évry cedex, France
guillaume.burel@ensiie.fr

http://www.ensiie.fr/~guillaume.burel/
2 École polytechnique and INRIA, 23 Avenue d’Italie, 75013 Paris, France

simon.cruanes@inria.fr

https://who.rocq.inria.fr/Simon.Cruanes/

Abstract Automated theorem provers for first-order logic with equality
have become very powerful and useful, thanks to both advanced calculi —
such as superposition and its refinements — and mature implementation
techniques. Nevertheless, dealing with some axiomatic theories remains
a challenge because it gives rise to a search space explosion. Most at-
tempts to deal with this problem have focused on specific theories, like
AC (associative commutative symbols) or ACU (AC with neutral ele-
ment). Even detecting the presence of a theory in a problem is generally
solved in an ad-hoc fashion. We present here a generic way of describ-
ing and recognizing axiomatic theories in clausal form first-order logic
with equality. Subsequently, we show some use cases for it, including a
redundancy criterion that can be applied to some equational theories,
extending some work that has been done by Avenhaus, Hillenbrand and
Löchner.

This is a self-archiving version of the final paper 1, which is available at
http://link.springer.com/chapter/10.1007/978-3-642-40885-4_16.

1 Introduction

Automated theorem proving for first order logic has lead to many successful
techniques to tackle problems from a lot of application domains. Among the
most prominent techniques lies resolution[10]. Superposition[8] appeared later
to handle the difficult issue of equality reasoning, that would otherwise drown
most provers in a huge search space.

Many theorem provers for first-order logic with equality contain an ad-hoc
engine to recognize instances of Associative Commutative (AC) symbols, com-
posed of the two following axioms:

Associativity: ∀x∀y∀z x+ (y + z) = (x+ y) + z,
Commutativity: ∀x∀y x+ y = y + x.

1 DOI: 10.1007/978-3-642-40885-4 16

mailto:guillaume.burel@ensiie.fr
http://www.ensiie.fr/~guillaume.burel/
http://link.springer.com/chapter/10.1007/978-3-642-40885-4_16

2 Guillaume Burel, Simon Cruanes

Once the automated prover has recognized that some symbol has the AC
property, it can use some technique to deal with it. However, if similar techniques
can be applied to other axiomatic theories — theories that can be defined in
terms of a finite set of axioms — code would need to be written for those provers
to handle each new theory. We propose here a system that can recognize the
presence of theories in a generic and incremental way. The system is based on
the use of a second theorem prover, based on Datalog[1], that reasons about the
properties that the problem exhibits, rather than trying to solve the problem
itself. In some limited sense, this is similar to what a human mathematician
does: she would try to use equations and hypotheses on the problem itself, but
at the same time she would recognize already met patterns and specific structures
(for instance, a group structure, a linear field, or an isomorphism to some other
part of the mathematics) and use this meta knowledge to apply theorems and
lemmas she knows.

We implemented this technique in our experimental theorem prover Zip-
perposition. Zipperposition is free software, available under the GPL license at
https://www.rocq.inria.fr/deducteam/Zipperposition/index.html. It is
written in OCaml and implements ordered superposition, with lazy reduction
to CNF and automatic selection of a precedence. An embedded Datalog engine
is used to reason on properties of the problems, including which known theo-
ries and axioms are present; both systems interact by exchanging clauses on the
one hand, deduced properties on the other. The superposition prover can use
the additional information to infer new clauses thanks to lemmas or to activate
theory-specific redundancy criteria.

Then, we expose two possible applications. The first is a powerful lemma
that allows theorem provers that deal well with equality to discover that some
relations represent the graph of a function, and to replace instances of the relation
by equations. For instance, in the TPTP[13] archive, many algebraic problems
on groups (or extensions thereof) are encoded using sum(X,Y, Z) instead of
Z = add(X,Y). This complicates the axiomatization (many more axioms, that
are big Horn clauses, etc.) compared to an equational view of the problem. Our
lemma, fed to the prover in a simple declarative language as:

functional(r) is axiom ~r(X,Y,Z) | ~r(X,Y,Z2) | Z=Z2.

total(r, f) is axiom r(X,Y,f(X,Y)).

lemma r(X,Y,Z) <=> Z = f(X,Y) if functional(r) and total(r, f).

allows to recover an equational (boolean) definition from this encoding, which
can then be unfolded to simplify clauses.

The second application is the per-theory activation of an equational redun-
dancy criterion. If we know a saturated, ground convergent system of equations
for some theory [2], literals that are tautological or absurd in this theory can be
removed while retaining completeness. Our framework allows us to know when
such a theory occurs in a problem, so we can use the corresponding redundancy
criterion.

We first expose some basic definitions and notations, then successively expose
techniques for recognizing individual axioms and whole theories. Then, after

https://www.rocq.inria.fr/deducteam/Zipperposition/index.html
http://caml.inria.fr/

Detection of First Order Axiomatic Theories 3

some examples of how to use knowledge about axiomatic theories, we present
some experimental results and conclude.

2 Notations and Definitions

The first step toward recognizing theories, is recognizing instances of individ-
ual axioms. More complex algebraic theories, like group theory, involve several
symbols. We present here a general framework for representing axiom schemas,
axiom instances, and for finding instances of the former among the latter. We
start with some basic notations.

A signature Σ = (S, V) is the combination of a finite set of symbols S (with
an arity function arity : S → N), with a countable set of variables V . Terms in
a signature Σ = (S, V) are defined recursively by t = X | f(t1, . . . , tn), where
X ∈ V and f ∈ S, with arity(f) = n. We give a type to each term, in a simple-
type system with base types ι for individuals and o for propositions; a function
type is written (τ1×· · ·× τn) → τ . The statement “t has type τ” is written t : τ .
The set of variables of a term, vars(t), is recursively defined as

vars(X) = {X}

vars(f(t1, . . . , tn)) =

n⋃

i=1

vars(ti)

From now on, f , g, h will be symbols, t, t′, ti will be terms, uppercase letters
like X, Y , Z will denote variables and τ will be a type.

A clause is a disjunction of literals l1∨ · · · ∨ ln, each literal being an equation
s = t, or the negation of an equation s 6= t (s and t must have the same type).
A literal of any sign is written s =̇ t. Following [11], we represent propositions p
by boolean-typed equations p = ⊤, where ⊤ : o is a special constant for truth.

A substitution σ is a finite mapping from variables to terms. The result of
applying a substitution to a term t is noted tσ. If σ and θ are substitutions, then
σ is more general than θ if there exists η such that ∀t. tθ = tση. Usual notions
for most general unifiers and most general matcher are employed:

unifier: The most general unifier of two terms t1 and t2, if it exists, is the
most general substitution σ such that t1σ = t2σ. Terms for which such a
substitution exists are said to be unifiable.

matcher: The most general matcher of two terms t1 and t2, if it exists, is the
most general substitution σ such that t1σ = t2. Similarly, it is not always
defined.

Equality of two terms modulo a theory E is written t1 =E t2, short for E ⊢
t1 = t2. We extend the definitions of unification and matching to unification

modulo AC and matching modulo AC, respectively defined by t1σ =AC t2σ and
t1σ =AC t2.

4 Guillaume Burel, Simon Cruanes

Let the local signature of a term or clause, noted ls(t), be defined as follow:

ls(X) = ∅

ls(f(t1, . . . , tn)) = {f} ∪
n⋃

i=1

ls(ti)

ls(s=̇t) = ls(s) ∪ ls(t)

ls(l1 ∨ · · · ∨ ln) =

n⋃

i=1

ls(li)

A few special symbols (disjoint from any signature) will be used:

– A symbol marker, s, used to prefix function symbols;
– A variable marker, v, used to prefix variables.

For the meta-prover, we encode properties of the problem at hand in higher-

order logic, where the definition of terms is extended with binders (here, only λ).
Well-formed terms for the meta-prover are defined by t = X | f | t t | λX.t where
f ∈ S ∪ {s, v}, X ∈ V and t a term. Term application t t is curried and left-
associative. We call lambda terms terms in which some variables are bound by a
lambda-abstraction. We will assume that the reader knows about basic simply-
typed lambda-calculus, but recall that β-reduction is the rule (λX.t) t′ →β

[t′/X]t and we will work modulo alpha-equivalence in order to prevent variable
captures. In the rest of the paper, t ↓β denotes the normal form of a term t
w.r.t. β-reduction, i.e., the unique term t′ such that t →∗

β t′ and ¬∃t′′ t′ → t′′

(it always exists because simply-typed lambda calculus is convergent).

3 Detecting axioms

The first step toward recognizing theories, is recognizing instances of individual
axioms of first-order theories. We will see, in the next section, how to recog-
nize full theories. Many theorem provers contain an ad-hoc system to recognize
instances of Associative Commutative (AC) symbols, composed of two axioms:

Associativity: ∀x∀y∀z x+ (y + z) = (x+ y) + z,
Commutativity: ∀x∀y x+ y = y + x.

More complex algebraic theories, like group theory, involve several symbols.
We present here a general framework for representing axiom schemas, axiom
instances, and for finding instances of the former among the latter. Recognizing
axioms in any signature is a higher order problem, but we are going to use
currying to stay in a first-order setting. We start with some basic notations.

We call pattern a clause c parametrized by ls(c). This notion of pattern is
central in our approach, since it allows us to reason over axioms and theories
regardless of the actual signature of the problem (a given axiom or theory might
have several distinct instances within the same proof). A pattern p is represented

Detection of First Order Axiomatic Theories 5

as a higher-order curried term t ≡ λX1 : τ1.λX2 : τ2. . . . λXn : τn.c, or more
compactly Λn

i=1Xi : τi.c. We need to curry the term because we cannot replace a
function symbol by a variable in first-order terms. c is the core of the pattern, and
s1, . . . , sn the input types or types of the pattern. Note that although patterns
are higher-order terms (because of the lambda abstractions), we still reason over
first-order problems, and any instantiation of a pattern must yield a first-order
clause.

Patterns are an extension of the representative patterns defined in [4], but
are more general because they are curried and deal with non-unit clauses, which
explains our use of AC-matching. In addition to that, our technique is concerned
with which set of symbols instantiates a given pattern. On the other hand,
representative patterns are indexed by an AVL tree, which makes the matching
process very efficient.

The point in using curried terms to represent patterns is that we can leverage
many well-known techniques, such as AC-matching or term indexing modulo
AC2. Also, this system is quite easy to adapt to some similar tasks, like matching
a pattern p = ΛiXi : τi.c against a subset of a clause c′: we can match ΛiXi :
τi.(c ∨ y) against c′ ∨ ⊤, where y : o is a fresh variable to be matched against
the rest of c′. Matching a pattern against a subset of a clause could be useful
if the subset is an instance of the negation of the conclusion of a lemma, for
instance, because instantiating the lemma would then simplify the clause. The
lambda-abstraction is used to have a canonical representation of a pattern (using
De Bruijn indexes would also work), so that it can be considered as a constant
by Datalog (see section 4). More powerful matching algorithms (e.g., restricted
forms of higher-order matching) can be used to find more elaborate instances.

The following property always holds for patterns: if p = Λn
i=1Xi : τi c, and

a1 : τ1, . . . , an : τn are terms (in particular, constants), then p a1 a2 . . . an is a
well-typed term, that is isomorphic to a concrete first-order clause.

Pattern abstraction allows us to abstract a clause from its concrete local
signature. Pattern instantiation applies a pattern to a tuple of symbols, returning
a concrete clause. Figure 1 describes the following operations (the variable F used
for abstraction is assumed to be a fresh variable uniquely associated with the
symbol f):

encoding a term or clause into a curried term, noted enc(t);
decoding a curried term into a term or clause, noted dec(t);
abstracting a symbol f out of a curried term t, by a variable F , noted abs(t, f, F);
applying a curried term t to a term a, noted app(t, a), extended into the n-ary

application app(t, a1, . . . , an).

Encoding is a two steps operation: currying, then prefixing variables with v

and symbols with s to force the matching algorithm to bind abstracted symbols
(resp. first-order variables) of the pattern only with symbols (resp. variables) of
the clause. Decoding is the exact inverse of encoding.

2 our experimental implementation does not implement AC indexing, though.

6 Guillaume Burel, Simon Cruanes

enc(X) = v X

enc(f(t1, . . . , tn)) = s f enc(t1) enc(t2) . . . enc(tn)

enc(t1 =̇ t2) = enc(t1) =̇ enc(t2)

enc(l1 ∨ . . . ∨ ln) = enc(l1) ∨ . . . ∨ enc(ln)

dec(v X) = X

dec(s f t1 . . . tn) = f(dec(t1), . . . , dec(tn))

dec(t1 =̇ t2) = dec(t1) =̇ dec(t2)

dec(l1 ∨ . . . ∨ ln) = dec(l1) ∨ . . . ∨ dec(ln)

abs(s f, f, F) = s F

abs(v X, f, F) = v X

abs(t1 t2, f, F) = abs(t1, f, F) abs(t2, f, F)

abs(t1 =̇ t2, f, F) = abs(t1, f, F) =̇ abs(t2, f, F)

abs(l1 ∨ . . . ∨ ln, f, F) = λF.(abs(l1, f, F) ∨ . . . ∨ abs(ln, f, F))

app(p, a1, . . . , an) = (p a1 a2 . . . an) ↓
β

Figure 1. Rules for patterns

Example: let us consider the theory of commutative monoids ACU with op-
erator f and neutral element e. Its axioms are (last one is unit, or U) :

f(X,Y) = f(Y,X)

f(X, f(Y, Z)) = f(f(X,Y), Z)

f(X, e) = X

The corresponding patterns, after currying and abstraction, are:

– λF.(s F (v X) (v Y) = s F (v Y) (v X))
– λF.(s F (s F (v X) (v Y)) (v Z) = s F (v X) (s F (v Y) (v Z)))
– λF.λE.(s F (v X) (s E) = v X))

Once we have a set of patterns P = {p1, . . . , pn}, we can match those patterns
against clauses of the problem we are trying to solve. Matching a pattern p
against a clause c amounts to:

1. choose fresh variables X1 : s1, . . . , Xn : τn, where (τi)i are the input types
of the pattern p;

2. compute t ≡ app(p,X1, . . . , Xn);
3. use a matching algorithm modulo AC (= is commutative, and ∨ is AC) to

match t against enc(c);
4. for each such matcher σ, its restriction σ′ ≡ σ|{X1,...,Xn} is an instance of p

equivalent to c (i.e., dec(app(p,X1σ
′, . . . , Xnσ

′)) =AC c).

Detection of First Order Axiomatic Theories 7

Example: let us match the pattern for an identity value, λF.λE.(s F (s E) =
s E) with zero = minus(zero, zero). We first apply the pattern to fresh variables
F ′ and E′, obtaining after beta-reduction the HO term s F ′ (s E′) = s E′.
The clause is then encoded into s zero = s minus (s zero) (s zero); a solution,
obtained by AC-matching the equations, is σ = {F ′ 7→ minus zero, E′ 7→ zero}.
This (first-order) instance can only be found thanks to currying.

The next step is to aggregate several pattern instances into an instance of a
theory, that is, a set of clauses.

4 Meta-reasoning with Datalog

4.1 Description of an Axiomatic Theory

An equational theory is a set of related axioms. Therefore, a theory pattern is a
set of related clause patterns. We adapt and generalize the mechanism used by
Waldmeister[6] for choosing term orderings. In Figure 2, we show a fragment of
the file that defines some basic axioms and theories for our prover3.

associative(f) is axiom f(X,f(Y,Z)) = f(f(X,Y), Z).

commutative(f) is axiom f(X,Y) = f(Y,X).

theory ac(f) is associative(f) and commutative(f).

theory aci(f,e) is ac(f) and axiom f(X,e) = X.

Figure 2. Description of Theories

This simple file shows us what is needed to define a theory like AC or the
theory of commutative monoids. We need to define some axioms, possibly named,
to abstract their symbol out, and to constraint symbols of the axioms to be the
same. Indeed, the two clauses f(f(X,Y), Z) = f(X, f(Y, Z)) and g(X,Y) =
g(Y,X) can be matched, respectively, against the axioms associative(f) and
commutative(g), but that does not mean that the theory of AC symbols is
present. Those axioms are parametrized by symbols f and g.

To be able to constraint symbols in the axioms to be the same, we use the
Datalog fragment of first-order logic[1]. Datalog only allows function-free Horn
clauses, but shows very good computational properties, and a set of Datalog
clauses always has exactly one minimal model. We are going to have a Datalog
reasoner work on properties of the problem, and communicate with the regular
superposition prover.

A Datalog atom is of the form p(t1, . . . , tn) where p is a predicate symbol and
for all i, ti is either a Datalog constant or a Datalog variable. A Datalog clause

3 The axioms, theories, lemmas and redundancy criteria are defined in a file loaded
when the theorem prover starts. The format of the file is defined by a simple grammar
that is easy to edit and read, as demonstrated in Figure 2.

8 Guillaume Burel, Simon Cruanes

is a Horn clause, noted a :- b1, . . . bn. where a is the conclusion, and bi are the
premises We will write a. for unit clauses. We point out that Datalog constants
and variables are nothing like the first-order problem’s constants and variables.
The trick is that the Datalog reasoner will not “see” what is inside the patterns
it manipulates (such objects are not expressible in Datalog), but it will consider
them as blackboxes (constants).

Let us define the black-boxing of patterns, that embeds first-order objects
into Datalog constants. Given a pattern p, we write ⌈p⌉ for the boxed version
of p; given such a black box b, we define ⌊b⌋ its content, obtained by unboxing.
Obviously, ⌊⌈p⌉⌋ = p must hold. Equality over boxes is defined by ⌈p⌉ = ⌈q⌉ ⇔
p = q. The boxing and unboxing functions are trivially extended to any term.

We can now encode properties about the current problem into Datalog atoms,
and their definitions into Datalog clauses. Detecting theories requires a few basic
properties, which are the following ones:

– Presence of an instance of a pattern, with the corresponding symbols, such
as app(p, plus) where p ≡ λF.(s F (v X) (v Y) = s F (v Y) (v X)). It is
needed for recognizing the constituting axioms of a theory;

– Presence of a named pattern, for instance commutative(plus) (which cor-
responds to the previous pattern). This is used mainly for the user to attach
a meaningful name (“associative”) to a pattern;

– Presence of an instance of a theory, with the corresponding symbols, for
instance monoid(plus, zero);

– Other properties can be encoded (see Sections 4.4 and 5) for more advanced
uses of the Datalog reasoner. This makes the detection mechanism quite
generic and modular since it allows to define additional properties based on
the previously defined ones.

4.2 Encoding of Properties

Such properties are encoded using a distinct Datalog predicate symbol for each
kind of property. This way, new properties can be encoded just by reserving a
new predicate symbol for them. The basic properties are encoded by:

pattern: A pattern instance app(p, a1, . . . , an), is encoded using the predicate
“pattern”, into pattern(⌈p⌉, ⌈a1⌉, . . . , ⌈an⌉)

theory: A theory is a name, parametrized by a set of function symbols; A
theory instance “name”(a1, . . . , an) is encoded using the predicate “theory”
into theory(⌈“name”⌉, ⌈a1⌉, . . . , ⌈an⌉);

named pattern: It is similar to a theory with a single axiom, but using the
predicate “axiom”; so, for instance, associative(f) is encoded into
axiom(⌈“associative”⌉, ⌈f⌉).

4.3 Encoding of Definitions

It is also necessary to define theories and named patterns, by Datalog clauses that
will trigger a property when the constitutive patterns of the theory (respectively

Detection of First Order Axiomatic Theories 9

named patterns) are present. This requires Datalog variables; if a theory (named
N) is defined by N (f1, . . . , fn) ≡ p1, . . . , pm (withm premises), its definition will
be a Datalog clause with m Datalog atoms as premises. Let us map f1, . . . , fn
to fresh Datalog variables F1, . . . , Fn. The premises pi are translated to Datalog
atoms qi as follows:

– If pi expresses the presence of a named pattern or a theoryN ′(fσ(1), . . . , fσ(k))
parametrized by k symbols, then qi = axiom(⌈N ′⌉, Fσ(1), . . . , Fσ(k)) or qi =
theory(⌈N ′⌉, Fσ(1), . . . , Fσ(k))

– If pi expresses the presence of a pattern instance app(p, fσ(1), . . . , fσ(k)), with
k symbols as parameters, then qi = pattern(⌈p⌉, Fσ(1), . . . , Fσ(k))

The definition is simply theory(⌈N⌉, F1, . . . , Fn) :- q1, . . . , qm. (easily adapted
for named patterns).

4.4 Encoding of Other Properties

Other properties, depending on how the prover uses knowledge about theories,
can be encoded the same way. For instance, if we want to gather information
specifically about AC symbols, we can use a fresh Datalog predicate “ac” and
the following clause:

ac(F) :- theory(⌈“ac”⌉, F)

Then, whenever a Datalog fact ac(a) is found by the Datalog reasoner, we
know that ⌊a⌋ is an associative commutative symbols in the current problem
(and we can activate a special strategy to deal with it in the refutational theorem
prover, like superposition modulo AC). We will see more detailed examples in
Section 5.

4.5 Incremental Computation

When an automated theorem prover tries to solve a given problem, some prop-
erties of this problem may not be readily available for recognition. Instead, it
may take some time to reach some axioms that are part of a theory’s definition.
Therefore, incrementality, i.e. the ability to discover properties and deduce other
properties during the process of solving the problem, is crucial.

Our implementation of the Datalog reasoner therefore does not provide a
query interface, but rather an incremental interface; clauses can be added one by
one, each time updating the current set of clauses (saturated under the immediate

consequence operator). The immediate consequence operator adds aσ to the set
of facts, if a :- b1, . . . , bn. is a clause and for all i ∈ {1 . . . n}, biσ belongs to
the set of facts. Because we only work with safe clauses, i.e., clauses in which
vars(a) ⊆

⋃n

i=1 vars(bi), we are sure that aσ is ground.
To achieve incremental computation, the Datalog reasoner is based on unit

resolution with selection. Every non-unit clause, of the form a :- b1, b2, . . . , bn.
with n > 0, gets its first body literal selected (the underlined literal). Only one
inference rule is needed to ensure completeness:

10 Guillaume Burel, Simon Cruanes

a :- b1, b2, . . . , bn. c. b1σ = cσ

aσ :- b2σ, b3σ, . . . , bnσ.

Every time we add a clause to the Datalog reasoner, the resolution rule is
applied between clauses of the current fixpoint, and the new clause. Callbacks
can be attached to the Datalog reasoner, to be called whenever a new fact is
deduced by this inference rule; the new facts are then added to the reasoner one
by one – with their own chance to trigger inferences. A non-perfect discrimination
tree is used to index selected literals and facts, in order to make this inference
reasonably efficient.

4.6 Backward Chaining

In some cases, the underlying first-order calculus used by the theorem prover may
never discover some axioms (like associativity). This is the case, for instance, for
refutational provers based on resolution or superposition, because they may not
need to infer the axiom to remain complete, in case it is deducible from the
initial problem but redundant. In this case, if, for instance, out of the 10 axioms
that are necessary for an instance of a theory to hold, 9 are present, the Datalog
prover may pro-actively spawn a sub-prover to try to show this axiom.

The Datalog reasoner can use prolog-like backward chaining to find which
literals may help finding new facts. Assuming we keep a set G of goals – a goal
being a literal whose instances may help solving already existing goals – the
following rule updates the set of goals:

a :- b1, b2, . . . , bn. g ∈ G aσ = gσ

b1σ ∈ G

We did not implement a system that spawns sub-provers that attempt to
show missing axioms, but it would be quite simple by finding which of the cur-
rent goals of the Datalog reasoner belong to the category of totally instantiated
patterns (where all parameters of the pattern are constants, not Datalog vari-
ables). However, goals are already important in our implementation, because
we only try to match against concrete clauses, the patterns which are currently
goals in the Datalog reasoner. In other words, clause patterns we want to match
with concrete clauses are {p | pattern(⌈p⌉, F1, . . . , Fn) ∈ G}. The initial set of
goals is the set of conclusions of clauses, that is, G0 = {a | a :- b1, b2, . . . , bn.},
but we could choose a different (restricted) set of goals; for instance, if some
lemmas hold only when arithmetic symbols are present, their conclusion shall
not be goals until an arithmetic formula is detected, not to clutter the pattern
recognition mechanisms.

5 Why Recognize Theories?

In previous sections, we explained how to recognize individual axioms and the-
ories during a saturation proof search. We will now give some ways to use this

Detection of First Order Axiomatic Theories 11

knowledge about the problem at hand. Of course, because the coupling with the
Datalog reasoner is modular, one can make any use she wants from the output of
the Datalog reasoner, and even add whichever clauses and predicates she judges
useful. For most uses of the Datalog reasoner, we use a dedicated predicate,
and some clauses whose premises are theories or individual axioms. We will call
Knowledge Base the set of definitions and facts that is given to the theorem
prover when it starts; it should contain definitions of axioms, theories, and other
data that is specific to how we use knowledge about the problem.

5.1 Lemmas

Let us call lemma an already proven logic statement of the form “clause a is true
if clauses b1, . . . , bn are”. Such a lemma may be a mathematical result that the
user makes available to the theorem prover, or some previously proven theorem;
all we need to know is that this statement is already known to be proven. It
can be encoded in Datalog by abstracting symbols from the conclusion and the
premises (see section 4.3).

Our current Knowledge Base contains only one lemma that we added by
hand, but it has shown to be quite useful. We call this lemma un-mangling of

functional relations. Given the two properties about a ternary relation symbol r
and a binary function symbol f :

– functional(r) ≡ r(X,Y, Z) ∧ r(X,Y, Z ′) ⇒ Z = Z ′;
– total(r, f) ≡ r(X,Y, f(X,Y)).

We know that r encodes the graph of the function f . Hence the following lemma,
that states r(X,Y, Z) ⇔ (f(X,Y) = Z). Its definition is shown in Figure 3. Such
a lemma, if applied during the preprocessing phase, allows one to unfold the
definition of r, removing it from the problem (our prover uses the calculus of [5],
which allows one to use such equivalences for rewriting). After unfolding of r,
the problem is “more equational”: axioms such as the commutativity of f , that
were encoded by r(X,Y, Z) ∧ r(Y,X,Z ′) ⇒ Z = Z ′, become f(X,Y) = f(Y,X)
after simplifications. An equational theorem prover such as E[11] will be able to
use more rewriting-based simplification rules.

functional(r) is axiom ~r(X,Y,Z) | ~r(X,Y,Z2) | Z=Z2.

total(r, f) is axiom r(X,Y,f(X,Y)).

lemma r(X,Y,Z) <=> Z = f(X,Y) if functional(r) and total(r, f).

Figure 3. Un-mangling of Functional Relations Lemma

Before we developed the general theory detection system, specific code was
dedicated to recognizing instances of this lemma in Zipperposition. The code
took around 85 lines of OCaml and would only work on initial axioms. We

12 Guillaume Burel, Simon Cruanes

emphasize the fact that detecting instances of this lemma require many features,
like detecting non-unit clauses with several abstracted symbols (f and r), and
then joining the multi-symbol axioms together. Now, to add similar lemmas,
we only need a few lines in the previously mentioned declarative syntax. Each
lemma is encoded as exactly one Datalog clause, whose conclusion is a pattern
instance.

5.2 Equational Redundancy Criteria

As the authors of [2] point out, superposition-based theorem provers such as
SPASS[14], E[11] or Vampire[9] can quickly become overwhelmed by the amount
of clauses that are generated in the presence of equational theories such as AC,
ACI or other algebraic structures. This is exacerbated by the fact that superpos-
ing with commutativity is very often possible in both ways, since the axiom is
not oriented by the usual KBO and RPO term orderings. A lot of efforts [12] [3]
have been devoted in extending the superposition calculus to work modulo AC,
or modulo theories that encompass AC; however it is usually delicate both to
implement and prove complete each instance of superposition modulo a theory.
We expose here a way of using some knowledge about equational theories to
prune the search space of such theorem provers. We will use some definitions
and theorems from [2].

Redundancy Criterion Let use consider the section 5 of [2]. A ground con-
vergent system of equations R0 ∪E0 is used to decide of the AC theory for some
symbol f . The Theorem 5.1 states that any equation s = t, not part of the
system R0 ∪ E0, where s =AC(f) t, is redundant and can be disposed of during
the proof search process. Let us examine how this theorem is proved:

R0(E0) (the set of orientable instances of the equations) is terminating by
construction. For every critical pair, all of its ground instances are joinable.
Hence R0(E0) is confluent on Term(F e). Consequently, if s =R0∪E0

, then sσ ↓ tσ
for any ground substitution σ, and therefore s ⇓⊲ t.

We can adapt this proof, for a given reduction ordering ≻, to any set of
equations E that is ground convergent. Indeed, with the trivial rewriting system
R = ∅, R(E) is ground convergent and terminating (included in the well-founded
reduction ordering ≻). Let us consider an equation s = t, and write s′ = t′

the same equation where variables x0, . . . , xn are replaced by fresh constants
c0, . . . , cn; let us extend the ordering ≻ to a reduction ordering ≻′ that contains
≻ ([2] explains how to do it for LPO and KBO, respectively, in lemmas 5.2 and

5.3). Then, if s′ ↓R(E)≻
′

t′, every ground instance of s = t is joinable by E≻, and
s = t is redundant.

In other words, E provides us with a redundancy criterion for any equation
s = t, by checking whether s′ and t′ have the same normal form. In practice,
we just have to consider variables in s and t as constants, extend ≻ with those
new constants, and compute the normal form of both terms w.r.t. orientable
equations of E. The resulting simplification rules are exposed in Figure 4. The

Detection of First Order Axiomatic Theories 13

Tautology Deletion modulo T :

s = t ∨ C
if const(s) ↓T const(t)

Equality Resolution modulo T :

s 6= t ∨ C
if const(s) ↓T const(t)

C

Figure 4. Simplification Rules for the Redundancy Criterion on a Theory T

double bar indicates that the clause above is replaced by the clause below. The
operation const replaces variables in s and t by fresh constants; ground joinability
of s and t is then implied by joinability of const(s) and const(t).

Theory combination If several theories T1, . . . , Tn occur in a single problem,
then we can combine several ground confluent systems E1, . . . , En. The combi-
nation will always be terminating (because included in ≻), but not necessarily
ground-convergent any more. However, if the theories have disjoint signatures,
the combination is still a decision procedure on terms that are exclusively com-
posed of free symbols and symbols from Ti for some i. On mixed term, we may
want to purify terms by introducing fresh constants for subterms that belong to
a different theory.

Interaction with Datalog Now that we have a redundancy criterion for some
theories, we can encode it, regardless of the concrete signature, into Datalog
clauses. The encoding is more complicated than previous ones — it involves
boxing several patterns, keeping track of a relationship between Datalog variables
and the symbols of each equation of a ground joinable system — but it follows
the same principles. Then, such a redundancy criterion can be triggered when
the theory it decides is detected; the equational theorem prover can then use it,
if its ordering is compatible. The E[11] prover does exactly this, for the specific
case of AC symbols (with the same rules as in Figure 4 where T is replaced by
AC for a set of symbols).

Computing Criteria for a Theory If we want to compute such a ground
convergent system of equations E for a given theory E0 (for instance, AC or
a formulation of Group theory), a possibility is to use the syntactic criterion

described in Theorem 5.2 of [2] in order to saturate E0 (in a given ordering
≻), while discarding ground joinable equations. If this process terminates, it
yields a set E that must be ground convergent (otherwise there would be a non
ground-joinable equation in E).

14 Guillaume Burel, Simon Cruanes

Given an equational theory E0 that has symbols f1, . . . , fn, we can try to
compute such ground convergent systems by saturation for a finite set of LPO
and KBO orderings on those symbols. Whenever a saturation succeeds for some
ordering ≻, it yields a decision procedure E for E0 in ≻. If we later meet a
problem where the axioms contain E0, and the ordering is compatible with ≻,
we add E to the set of clauses and remove any clause c 6∈ E that is ground-
joinable by E≻.

5.3 Term Orderings

In [6], the authors describe a system, quite similar to ours, used by Waldmeister
during the preprocessing phase to detect some theories and heuristically choose
a term ordering that experience has shown to be efficient for those theories. This
kind of analysis of the problem is feasible with our approach as well. However,
since theories can be detected during the proof search, information on the or-
dering may come too late; in this case, restarting the prover with a different
ordering, chosen with more information about the problem — maybe keeping
some useful deduced clauses, like rewriting rules — can be relevant.

6 Experimental Results

We compared our experimental implementation4 (version 0.2) with SPASS[14]
and E[11] on categories RNG and GRP of the TPTP[13] base of problems.
Benchmarks include both zipperposition — our theorem prover with theory
detection, relational un-mangling lemma, and redundancy criteria (for AC, com-
mutative monoids and abelian groups) — zipperposition-lemma, with the re-
lational lemma but no redundancy criteria, and zipperposition-no-theories,
in which all theory handling is disabled. The results are exposed in Figure 5.
Overall, on 1434 problems, zipperposition proves 7 problems that are not
proven by SPASS nor E within the 120s timeout. Zipperposition is able to de-
tect at least one theory in 594 problems out of 1434, and triggers the lemma in
68 problems. Among the 594 problems with theories, 31 are solved by zipperpo-

sition or zipperposition-lemma, but not by zipperposition-no-theories, and 7 are
solved by the latter but not by the former (because the prover was slower or it
pruned the wrong part of the search space). This ratio becomes 7 to 2 on the
problems in which the lemma is applied.

We can already see that the redundancy criterion, with its quite naive imple-
mentation, already brings benefits. The un-mangling lemma makes a significant
difference on the set of problems in which it applies. On individual problems,
the difference can be striking: some problems that would not terminate within
2 minutes become trivial enough to get solved in 0.5s when lemma detection is
enabled. Those results are encouraging, and we believe that using a meta-prover

4 We point out that our implementation of superposition is not nearly as good as
SPASS or E, which are the result of years of work.

Detection of First Order Axiomatic Theories 15

Prover Proved success rate(%) proved /594 % proved /68 %

E 1047 73.0 430 72.4 59 86
SPASS 863 60.1 376 63.3 50 73
zipperposition 531 37.0 202 34.0 56 82
zipperposition-lemma 527 36.7 199 33.5 57 83
zipperposition-no-theories 504 35.1 191 32.1 52 76

Figure 5. Benchmark Results: Number of Solved Problems

may find more uses in automated theorem proving. Profiling shows that the Dat-
alog reasoner represents a negligible fraction of the run-time (less than 1%). On
the other hand, our implementation is more naive and less efficient than SPASS
or E (which have a more powerful calculus, better heuristics, or a more efficient
implementation), which can explain why they still solve more problems. Our
technique could be integrated in other theorem provers to discover lemmas or
usable redundancy criteria — especially for scheduling provers (like iProver[7])
because meta-level facts that are discovered during a time slice can be used for
the next ones (using a suitable term ordering, etc.).

Three problems are solved only by the versions of Zipperposition that use
lemma detection: GRP392-1.p, GRP393-1.p and GRP394-1.p. Interestingly, all
three are satisfiable problems in relational form where the un-mangling lemma
transforms into easily saturated sets of equations. This is only possible because
the calculus of [5] turns some equivalences into rewrite rules.

Conclusion and Possible Extensions

We have shown a generic and flexible way to detect instances of axioms and
theories during the search for a (clausal) proof. The use of a Datalog incre-
mental inference system, which manipulates assertions about the problem itself,
makes the meta-level reasoning flexible, modular and allows to have one’s own
meta-facts (properties) triggered by new meta-assertions. This technique already
shows very promising results, and can be improved further with more sophisti-
cated uses of the detected theories. We believe that this kind of combination,
although still quite simple, bears some resemblance with the way real mathe-
maticians solve problems. Using several levels of description and proof may also
help making automated proofs more understandable, saturation proofs being
often blamed for being very unintuitive to human users. Further development
includes:

– making the reasoner more proactive by having it spawning subprocesses to
try to prove missing axioms;

– computing redundancy criteria for equational theories off-line. Theories could
be extracted from axiom files, before a redundancy criterion is looked for by
saturating the axioms;

16 Guillaume Burel, Simon Cruanes

– automatically extract lemma from successful proofs in order to help solving
similar problems;

– implementing this technique in a state of the art prover.

Acknowledgements

We would like to thank Gilles Dowek for his help, and the anonymous reviewers
for their detailed and helpful comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in
equational theorem proving. Journal of Symbolic Computation 36(12) (2003) 217
– 233

3. Bachmair, L., Ganzinger, H.: Associative-commutative superposition. In Der-
showitz, N., Lindenstrauss, N., eds.: Conditional and Typed Rewriting Systems.
Volume 968 of Lecture Notes in Computer Science. Springer (1995)

4. Denzinger, J., Schulz, S.: Learning domain knowledge to improve theorem proving.
In McRobbie, M., Slaney, J., eds.: Automated Deduction Cade-13. Volume 1104
of Lecture Notes in Computer Science. Springer (1996) 62–76

5. Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed
clause normal form transformation. In Baader, F., ed.: Automated Deduction
CADE-19. Volume 2741 of Lecture Notes in Computer Science. Springer (2003)
335–349

6. Hillenbrand, T., Jaeger, A., Löchner, B.: System description: Waldmeister im-
provements in performance and ease of use. In: Automated Deduction CADE-16.
Volume 1632 of Lecture Notes in Computer Science. Springer (1999) 232–236

7. Korovin, K.: iProver — An Instantiation-Based Theorem Prover for First-Order
Logic (System Description). In: Proceedings of the 4th international joint con-
ference on Automated Reasoning. IJCAR ’08, Berlin, Heidelberg, Springer-Verlag
(2008) 292–298

8. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In Robinson,
J.A., Voronkov, A., eds.: Handbook of Automated Reasoning. Elsevier and MIT
Press (1999)

9. Riazanov, A., Voronkov, A.: Vampire 1.1 (system description). In: Proceedings
of the First International Joint Conference on Automated Reasoning. IJCAR ’01,
London, UK, UK, Springer-Verlag (2001) 376–380

10. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. J.
ACM 12(1) (1965) 23–41

11. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2,3) (August 2002)
111–126

12. Stuber, J.: Superposition theorem proving for abelian groups represented as integer
modules. In: Theoretical Computer Science, Springer (1996) 208–1

13. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4) (2009) 337–362

14. Weidenbach, C., Schmidt, R., Hillenbrand, T., Rusev, R., Topic, D.: System De-
scription: SPASS Version 3.0. In Pfenning, F., ed.: Automated Deduction CADE-
21. Volume 4603 of Lecture Notes in Computer Science. Springer (2007) 514–520

	Detection of First Order Axiomatic Theories

