N
N

N

HAL

open science

Providing CCN functionalities over OpenFlow switches

Xuan Nam Nguyen, Damien Saucez, Thierry Turletti

» To cite this version:

Xuan Nam Nguyen, Damien Saucez, Thierry Turletti. Providing CCN functionalities over OpenFlow
switches. [Research Report] 2013. hal-00920554

HAL Id: hal-00920554
https://inria.hal.science/hal-00920554
Submitted on 23 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00920554
https://hal.archives-ouvertes.fr

Providing CCN functionalities over
OpenFlow switches

Xuan-Nam Nguyen, Damien Saucez, Thierry Turletti

INRIA Sophia Antipolis Mediterranée, France

{FirstName.LastName}Qinria.fr

Abstract

Content-Centric Networking (CCN) and Software-Defined Networking
(SDN) are gathering special attention from academia and industry and
are perceived as a potential future of networking. Providing CCN func-
tionalities over SDN devices is an important requirement to enable the
innovation and optimization of network resources. However, current SDN
devices like OpenFlow switches do not support CCN functionalities such
as name forwarding and caching. In this paper, we propose an approach
to provide CCN functionalities over OpenFlow switches without having
to change OpenFlow, by adding an abstraction layer, called the Wrapper,
between OpenFlow and CCN. The preliminary results performed with
CCNXx, the reference CCN implementation, show the feasibility and the
low overhead of this approach.

1 Introduction

Internet usage today becomes more and more mobile and is dominated by con-
tent delivery services. Nowadays end-users do not care of where contents come
from or how. To fit today’s trend, Content-Centric Networking (CCN) [B] has
been proposed. The objective of CCN is to provide efficient content delivery
framework and better cope with mobility and security issues than traditional
networks.

Beside CCN, there is an important trend in networking: Software-Defined
Networking (SDN) []. SDN decouples forwarding hardware from control deci-
sions and promises to dramatically simplify network management, enable new
services through its programmability. Enabling CCN funtionalities on SDN de-
vices might open a new chances for optimizing network resources usage. How-
ever, current OpenFlow switches, the most notable implementation of SDN, do
not support CCN functionalities such as name forwarding and content caching.
So our research question is “ How to provide OpenFlow switches with CCN func-
tionalities?”. In this paper, we propose an architecture which enables name-

based forwarding on OpenFlow switches. The main idea is to hash the name
inside the fields which OpenFlow switch can process.

The rest of this paper is organized as follows. We begin with the state-of-
the-art in Section[2l Then we describe our architecture in Section3land conduct
the evaluation of our proposal architecture in Section [d Finally, we conclude
this work in Section [5] and open new perspectives for future work.

2 Related work

In CCN, the content is addressable and routers use content name as the primitive
for processing. Content is published with an unique name to the network by
content providers.

CCN communication are receiver-driven and composed of two types of pack-
ets: Interest sent by nodes who are interested in a content; and Data that contain
chunks of the requested content. Each node in CCN maintains three data struc-
tures. First, The Pending Interest Table (PIT) maintains the list of interfaces
(called faces) waiting for contents. Second, the Forwarding Information Base
(FIB) that lists the next hops toward potential content sources. And third, the
Content Store (CS) that caches chunks of contents that can be served by the
node. A user who is interested in a content issues an Interest to one or several
CCN nodes. Intermediate CCN nodes use their FIBs to forward the Interest
packet towards potential sources, while keep state and aggregate Interests in
PITs for content delivery after. Content which satisfies the Interests is encapsu-
lated in Data packets and back-tracks the reverse-path to the user. Interestingly,
CCN nodes may hold a copy of content in CS to serve future Interests. In other
words, CCN enables in-network caching. CCNx [I] is the official implementa-
tion of CCN, which is currently under development. To be compatible with the
existing architecture, CCNx builds an IP overlay to transport Interest and Data
packets. The current version of CCNx is 0.8 and it supports Linux and Android
platform.

In OpenFlow [3], the most common SDN implementation, the OpenFlow
switch is responsible for packet forwarding and the network control runs on
a logical centralized controller, which maintains a global view of networks. An
OpenFlow switch contains a flow table, which is a set of flow entries that specify
the forwarding rules for the flows passing the switch and use the OpenFlow
protocol to communicate with the controller via a secured connection, over
network itself (in-band control) or a dedicate network (out-of-band control). A
flow entry has three components: matching rule — set of the packet header fields
(current OpenFlow switches cover the headers at layer 2, 3 and 4 of the IP
stack), actions — list of actions to execute (e.g., forwarding, drop, modifying)
when it receives a packet matching with this rule, and statistics — list of statistics
about the flows covered by the entry (e.g., number of packets, number of bytes,
duration). An OpenFlow switch looks up its flow table. Upon matching between
the packet header fields and a flow table entry, the switch performs the action
specified in the matched entry. Otherwise, the switch enqueues the packet and

queries the controller to learn the action to perform on the packet to finally
execute the action. The switch inserts the corresponding flow entry in its flow
table in order to reduce interactions with the controller for similar subsequent
packets. In this paper, we consider OpenFlow 1.0, as it is the most popular
implementation on current switches.

The idea of combining alternative architectures of CCN and SDN appeared
in [9] where Syrivelis et al. describe how to pursue a Software-Defined Information-
Centric Networks and how SDN implementation should be modified to support
their content-centric architecture called Blackadder. Melazzi et al. [6] propose
to add a new IP option field and to extend the OpenFlow protocol to support
their CONET architecture. However this proposal requires modifications in IP
protocol and does not support CCN architecture.

3 Architecture

3.1 Overview

OpenFlow switches cannot process CCN packet since to determine the content
name, they would have to perform deep packet inspection.

Instead of modifying OpenFlow to support CCN or CCN to be supported
by OpenFlow, we follow an approach that requires modifications in neither
OpenFlow, IP, or CCN. Therefore, we can directly use CCNx, the CCN reference
implementation. However, CCNx daemon cannot work directly with OpenFlow
switches as there is no mechanism for OpenFlow switch to understand the name
inside CCN packets. So the main idea is that we build an intermediate layer
between CCNx and OpenFlow, which we called the Wrapper to support them.
The Wrapper takes every packet from the CCNx daemon, hashes its content
name, and encapsulates it in an IP packet where the header fields that OpenFlow
can match (e.g., IP source address, destination address) are forged to reflect the
content name’ hash value. In this manner, the OpenFlow switch is able to
forwarding and monitoring packets based on their content name. For that, the
controller has to decide actions based on the content names summarized in the
hash valued spread over the IP packet fields.

There are several advantages of this approach. First, we exploit the Open-
Flow hardware capacity for forwarding and monitoring CCN packets (e.g., main-
taining Forwarding Interest Base); and CCNx daemon for content caching and
managing state of Interests (e.g., maintaining CS and PIT). Second, we are
also able to use OpenFlow centralized controller to populate name forwarding
decision via OpenFlow protocol. Third, this approach requires modifications in
neither OpenFlow nor CCNx allowing them to evolve independently. In case of
protocol change, only the wrapper must be modified, minimizing so the time to
market.

A first drawback of this approach is that the fields used to store the name
information lose their original meaning. This limitation is however very limited
as, on the one hand, within the OpenFlow network, the forwarding decisions are

CCNx CCNx

OF Switch OF Switch

CCN Node CCN Node

Figure 1: Integration of the Wrapper in nodes

consistent thanks to the centralized controller and, on the other hand, the fields
modified by the Wrapper can be restored to their initial values if the Wrapper
communicates this information to the controller. A second drawback is related
to the forwarding performance as additional operations are necessary on every
packet.

3.2 Design

Fig.[3:2]shows the three main components in our design: The OpenFlow switch,
the Wrapper, and CCNx daemon. The Wrapper and CCNx are executed on
an external machine which is connected to a dedicated port of the OpenFlow
switch. CCNx carries CCN packets over UDP and the CCNx demon listens on
port 9695 as default configuration. The CCNx instance and the Wrapper are
connected via UDP (e.g., localhost:10001 <-> localhost:9695), each such link
corresponding to a face in the CCNx demon.

The OpenFlow switch forwards every packets it receives from other ports
to the Wrapper, and the Wrapper forwards it to the CCNx daemon. Further-
more, the OpenFlow switch needs to help the Wrapper knowing which port of
the switch the packet comes from, so we borrow the ToS field — which can be
modified by OpenFlow switches, to let the Wrapper know from which port the
packet comes from. The OpenFlow switch is configured to set ToS value of all
packets it receives to the corresponding incoming port value and then forward-
ing all of them to the Wrapper’s port. So the rule on OpenFlow switch is the
followings: in_port = any except Wrapper’s port = set ToS value to in_port
value, forward to Wrapper port. Upon reception of a packet from the Wrapper,
the OpenFlow switch forwards it to its corresponding output port (e.g., in_port
= Wrapper’s port, ToS = 1 = forward to port 1).

Wrapper’ behavior is shown in Fig.|[2land Fig.|3] The Wrapper needs to map
a face of CCNx to a interface (i.e., port) of OpenFlow switches using ToS value.
In our design, face W is a special face between Wrapper and CCNx daemon. W
receives every Data packet from the wrapper and is used to send every Interest
packets from CCNx to the Wrapper.

Upon the arrival of an Interest packet from the OpenFlow switch, the Wrap-
per extracts its ToS value and forwards it to corresponding face of CCNx. The

Check
Interest— |

"% R Face 1: 10001 <0608

|
OF Switch 52:,\:; Face 2: 20002 <->9695 CCNx
Dat »| FaceW: 8888 <>3695
Wrapper
Figure 2: Packet flow from OpenFlow Switch to CCNx

P

Set ToS —Data—— Face 1: 10001 <->0695
Y ‘

Decode the

OF Switch |« v e

Face 2: 20002 <->0695 CCNx

FIB: f-=W I

name
Set to IP field

'

Interest Face W: 8888 <->0605

Wrapper

Figure 3: Packet flow from CCNx to OpenFlow Switch

Interest is then processed by the CCNx daemon. If CCNx hold a copy of con-
tent, it returns a Data packet back to the incoming face. Otherwise, it forwards
this Interest to face W and update its PIT accordingly. Upon Data packet ar-
rival from the OpenFlow switch, the Wrapper forwards it directly to face W (see
Fig. .

When the Wrapper receives a Data packet from the CCNx demon, it sets
the ToS field accordingly. Then, for any packet, it decodes the packet to extract
the content name related to the packet. The name is hashed and the source
IP address of the packet is set to correspond to the hashed value. Finally, the
wrapper forwards the packets to OpenFlow switches (see Fig. [3). Data packets
are returned to their corresponding incoming face. Interest packets have ToS
value set to zero so they are forwarded to next hop by OpenFlow switch. At
that moment, the OpenFlow switch might have to invoke the controller to make
the decision (e.g., p_sre=hash(/name) = forward to port).

We use the 32-bit of IP source address to carry the hashed value of content
names; which means that 232 contents can be tracked at the same time, which
represents an temporary addressing space large enough. If this address space is
too short, it can be extended by using other fields in the IP header such as the
destination IP address or the IP identification field.

The wrapper is implemented in C and uses raw sockets. We use LibCCN for
encoding and decoding CCN messages and the hash function djb2 [2] to map a
string to an Integer 32-bit.

’ Element \ Description \ Note

OpenFlow Switch Pronto 3290, 48 Ethernet Indigo
(1Gbps) Firmware,
OpenFlow 1.0
Compatible
Controller Dell Latitude E6400 Core 2 Beacon
Duo P8400 2.4Ghz, Ram 3.4 Controller 1.0
GB, Fedora 13
PC1, PC2, PC3 Dell Latitude E6500 Core 2
P8400 2.4GHz x 2 RAM 4GB
Ubuntu 12.04

Table 1: Wrapper testbed description

4 Evaluation

To demonstrate the idea, we setup a testbed which is described in Table [4]
We have three PCs connected connected to a Pronto 3290 Switch. PC1 runs
an Interest generator that issues Interest for randomly chosen names. PC2
is a trace collector, and PC3 executes the Wrapper and CCNx daemon. The
controller is used to install forwarding rules on the Pronto 3290.

In the first experiment, we check the compliance of the Wrapper with the
CCN protocol by inspecting packets on PC2. As we can see on Fig. [d] the
content name of CCN packets from the Wrapper is hashed into source IP field
of IP packets (in the rectangle), and these packet is compatible with CCN
protocol. During the experiment, we have noticed an important packet loss
(20%) while handling Interest packets with short length name at high sending
speed. The short names cause high packet overhead that leads to high packet
loss while capturing. In our experiment, the size of content name is set to big
value (1000 characters + numbering).

In the second experiment, we evaluate the impact of Wrapper to perfor-
mance of the system in term of packets per second (pps) in three scenarios
when forwarding Interest packets: (i) using the OpenFlow switch; (ii) using the
OpenFlow switch and the CCNx daemon; (iii) using the OpenFlow switch, the
wrapper and the CCNx daemon. We change the generating speed of Interest
generator and measure the corresponding output.

Fig. 4| shows the outgoing rate (PPS out) for different incoming rates in
three scenarios. At the low speed, there is no difference in PPS out for all cases.
At high incoming rate, using only the OpenFlow switch gives the best PPS
out because CCN packets are forwarded at switch level. In contrast, using the
Wrapper slightly degrades forwarding performance but no more than 5%. This
can be justified by the fact that the wrapper processes CCN packets coming
from both the OpenFlow switch and the CCNx daemon. This results shows
that the wrapper does not significantly degrade forwarding performance. These
results have been reported in [7][8]. The source code of the Wrapper is available

Capturing from etho! | [Wireshark 1:6.21]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

BEpea ==x BlQAE vaY

Filter: [ccn | v | Expression... clear Apply

Ul $EE= B

| Time. LA — Destination Protocol Length Info

o
» Frame 51940 1278 bytes on wire (10224 bits), 1278 bytes captured (10224 bits)
b Ethernet II, Src: Dell bf:24:19 (00:21:70:bf:24:19), Dst: 09:00:00_00:00:00 (00:00:00:00:
b Internet Protocol Version 4, Src: 92.3.9.51 (92.3.9.51), Dst: 16.6.6.2 (16.6.0.2)
> User Datagram Protocol, Src Port: ddi-udp-1 (8888), Dst Port: ccnx (9695)
source port: ddi-udp-1 (8888)
Destination port: ccnx (9695)
Length: 1244
b Checksum: 06x0000 (none)
|~ [truncated] Content-centric Networking Protocol, Interest, ccnx:
Type: Interest (26)
> Name [truncated]: ccnx:
Component [truncated]:
Nonce: c93¢3c26b7000c77a9d9977

EEEN08 00 00 00 00 00 00 21
3CMN04 fo d4 31 00 00 10 11
TZCRl00 02 22 b8 25 df 04 dc
LECgo! 61 61 61 61 61 61 61 61 61 61 61 61 61 61 6]

O Frame (frame), 1278 bytes Packets: 98151 Displayed: 98022 Marked: 0 Profile: Default

)]

Figure 4: Captured packets from the Wrapper

x10

16

12

PPS Out

08

06l —— OpenFlow
oal — OpenFlow + CCNx
' —— OpenFlow + Wrapper + CCNx
02 i
00 0‘2 0‘4 0‘6 0‘8 ‘; 1?2 1I4 1I6 1I8 é 22

Figure 5: Performance Evaluation 2

at https://github.com/namnx87/Wrapper.

5 Conclusion

Providing CCN functionalities over SDN devices is an important requirements
to enable the innovation and optimization of network resources. In this pa-
per, we propose an approach to provide CCN functionalities over OpenFlow
switches. The main idea is using the Wrapper to hash the content name of
CCN packets into fields which OpenFlow switch can process. This preliminary
results show that the Wrapper is feasible and does not significantly degrade for-
warding performance. This architecture exploits the capacity of SDN hardware
for name forwarding and monitoring and might open new changes for inter-
esting optimization for CCN, like access control, traffic engineering, or cache
optimization.

With the current architecture, we can use an OpenFlow controller to cen-
tralize the control of FIB. However a centralized control for CS and PIT might
also be useful for further optimization, such as caching optimization.

References

[1] CCNx. http://www.ccnx.org.

[2] Djb2. http://www.cse.yorku.ca/ oz/hash.html.

[3] OpenFlow Switch Specification. https://www.opennetworking.org/.
[

4] Bruno Nunes Astuto, Marc Mendonga, Xuan Nam Nguyen, Katia Obraczka,
and Thierry Turletti. A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks. Research Report hal-
00825087, INRIA - UCSC, October 2013.

[6] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. Networking named content.
In Proceedings of the 5th international conference on Emerging networking
experiments and technologies, CoONEXT ’09, pages 1-12, New York, NY,
USA, 2009. ACM.

[6] N.B. Melazzi, A. Detti, G. Mazza, G. Morabito, S. Salsano, and L. Veltri.
An openflow-based testbed for information centric networking. In Future
Network Mobile Summit, 2012, pages 1 -9, july 2012.

[7] X.N. Nguyen. Software defined networking in wireless mesh network. Msc.
thesis, INRIA, UNSA, August 2012.

[8] Xuan-Nam Nguyen, Damien Saucez, and Thierry Turletti. Efficient caching
in Content-Centric Networks using OpenFlow. In 20138 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), pages
67-68. IEEE, April 2013.

[9] D. Syrivelis, G. Parisis, D. Trossen, P. Flegkas, V. Sourlas, T. Korakis, and
L. Tassiulas. Pursuing a software defined information-centric network. In

Software Defined Networking (EWSDN), 2012 European Workshop on, pages
103-108, 2012.

	Introduction
	Related work
	Architecture
	Overview
	Design

	Evaluation
	Conclusion

