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Generalized Nevanlinna-Pick interpolation on the boundary. Application

to impedance matching.

L. Baratchart1, M. Olivi1 and F. Seyfert1

Abstract— In this work we study a generalized Nevanlinna Pick
interpolation problem, where transmission zero locations are
imposed. Unlike in other variant of this problem considered
by T.T. Giorgiou et al. the interpolation points are chosen
on the boundary of the analyticity domain: that is, in our
framework, on the real axis. This problem is motivated by
important questions in electronic and microwave system design,
and it relates to the broadband matching theories of Youla and
Helton. An existence and uniqueness theorem is proved. The
constructive proof is based on continuation techniques.

I. INTRODUCTION

Communication systems like multiplexers, routers, power

dividers, couplers, antenna receptor chains, are often realized

by plugging elementary components together. Among these

components, N-port junctions and filters are the most usual.

Multiplexers are for example realized by plugging N − 1

filters, one per channel, on a N-port junction. Filters can

therefore be considered as the elementary two-port compo-

nents, present in most telecommunication devices.

Fig. 1. Filter plugged on a system with reflexion coefficient L11

When plugging filters on an existing system, a recurring

question is to determine which frequencies will carry energy

into the system and which frequencies will be rejected. In the

setting of Figure 1, the system, that can be seen as the filter’s

load, is characterized by its reflection coefficient L11 while

the effect of the filter is determined by its 2× 2 scattering

matrix S. If the filter is considered lossless, that is if

S(ω)∗S(ω) = Id, ω ∈ R, (1)

then the reflection coefficient G11 of the overall system (at

each frequency ω) is computed as:

G11 = S11 +
S12S21L11

1−S22L11

=
S11 −L11 det(S)

1−S22L11

= det(S)
S∗22 −L11

1−S22L11
. (2)

Here and below, a pair of lower indices indicates the corre-

sponding entry of a 2× 2 matrix. A matching frequency is

by definition a frequency ω for which G11(ω) = 0, which in

view of equation (2), amounts to (if |L11(ω)|< 1)

S22(ω) = L11(ω). (3)

On the other hand a stopping frequency ω is characterised

by |G11(ω)| = 1, and therefore (if |L11(ω)| < 1) equivalent

to |S22(ω)|= 1, that is:

S12(ω) = S21(ω) = 0. (4)

The problem of synthesizing a filter, or a matching network,

such that G11 is lowest possible on a whole frequency

band is a very old one. When the filter is assumed finite-

dimensional, it gave rise to the matching theory of Fano

and Youla [4]. Provided a rational model is given for the

load, this theory provides a parametrization of all possible

reflection coefficients G11 that can be realized: it accounts,

in terms of transmission zeros, for the fact that the rational

model of the filter can be ”extracted” from the response

G. However, the unavailability until now of means to de-

rive matching characteristics from this parametrization, at

least when the load is of degree greater than one, partly

explains its low impact in practice. The necessity to derive

a rational model of the load, and to infer its transmission

zeros, might also have contributed to poor dissemination

among engineers. Among system manufacturers, brute force

optimization along with inherent uncertainties is often used

instead. Another approach was proposed by J. Helton [8]

in an infinite dimensional setting: the problem is solved

there, by reformulating the matching problem into an H∞

approximation problem, for which Nehary’s Hankel operator

approach delivers an elegant solution. The convexity gained

here for the matching problem, which eventually allows the

derivation of an optimal solution, comes however with a

price: the infinite order of the derived filter makes it hardly

realizable in practice.



Hereafter we propose an intermediate approach where a finite

dimensional filter response gets synthesized by imposing

matching and stopping frequencies with respect to a fre-

quency varying load.

II. AN INTERPOLATION PROBLEM

For simplicity of notation, we consider here the scattering

matrix of a filter as a function of real frequencies. This choice

differs from the conventional one, where the transfer function

is defined on the imaginary axis rather than the real line. In

this framework, assuming the filter is finite dimensional and

stable, the scattering matrix is rational with poles in the open

upper half-plane C
+. The scattering matrix of a lossless filter

is then inner in the lower half plane C
−, which means that

it satisfies (1) and is analytic, thus contractive, in C
−.

We denote by D the open unit disk. For any complex matrix

M, Mt denotes its conjugate and M∗ its transpose conjugate.

For a rational matrix function F(s), we define F∗(s) by

F∗(s) = F(s̄)∗, s ∈ C.

If p is a polynomial, then p∗ is a polynomial too, of the

same degree, and its roots are conjugate with respect to the

roots of p.

All rational 2× 2 inner matrices S, of McMillan degree N,

such that lims→∞ S(s) = Id can be parametrized as follow

(Belevitch’s form [2]):

S =
1

q

[

p∗ (−1)N+1n

n∗ (−1)N p

]

(5)

where p,q are monic complex polynomials of degree N, n

is a complex polynomial of degree at most N −1, and q is

computed from p and n as the unique monic stable spectral

factor satisfying the Feldtkeller equation:

qq∗ = pp∗+nn∗. (6)

If {x1 . . .xN} is a set of frequencies, the matching character

of the filter at these frequencies, with respect to a load with

reflection coefficient L11 amounts to:

p

q
(xk) = L11(xk)

de f
= γk (7)

We will suppose here that |γk|< 1, as the matching problem

on a fully reflecting load known at discrete frequencies is not

well defined (the expression in (2) is of the form 0/0 in this

case). We assume also it is given a set of N − 1 stopping

frequencies (possibly some at ∞), distinct from the xk’s:

in view of (4) this prescribes the roots of the transmission

polynomial n of the filter. In addition, we suppose that the

leading term of n is given. Under this hypothesis we consider

the following matching problem P:

Problem P: Given

- N distinct real frequencies (x1,x2 . . .xN),
- N interpolation conditions (γ1,γ2 . . .γN) in D

N ,

- a complex polynomial n of degree N−1, such that n(xk) 6= 0

for k = 1, . . . ,N,

to find a pair (p,q) of monic complex polynomials of degree

N such that,
{ p

q
(xk) = γk, for k = 1, ..,N

qq∗− pp∗ = nn∗
(8)

and q is strictly stable (i.e. has all its roots in the open upper

half-plane C
+).

This is a variant of the classical Nevanlinna-Pick interpola-

tion problem with degree constraint. In the latter, interpola-

tion points belong to the stability domain while in problem

P they belong to the boundary. The classical problem was

first solved in [7] using a topological approach which is

constructive. A huge literature exists on this problem, on

theoretical developments as well as applications (see [3] and

related papers). To our knowledge, problem P was never

addressed. Although it can be viewed as a limit case of the

standard problem, techniques used to solve the latter are not

applicable here, and new tools are required.

III. MATCHING THEOREM.

We state below the main result of this paper.

Theorem 3.1: If n has all its roots off the real line, then P

has one, and only one, solution.

The proof of the theorem relies on the local invertibility of

an evaluation map, that we define in what follows.

Let the polynomial n be given and suppose that p is a monic

polynomial of degree N. The polynomial P(s) = p(s)p∗(s)+
n(s)n∗(s) is self-reciprocal: P = P∗, and it satisfies P(ω)> 0

for all real ω . The Feldkeller equation (6) thus associates

with p, a unique monic and stable polynomial q = q(p) by

spectral factorization. Here stable means that its roots belong

to the closed half-plane. But real roots of q are necessarily

also shared by p and n, and corresponds to a drop of degree in

p/q. Since we assumed that n has no real roots, this situation

does not occur and q is in fact strictly stable. It is therefore

legitimate to define an evaluation map ψ by

ψ : p →







p(x1)/q(x1)
...

p(xN)/q(xN)






(9)



where q = q(p). The following proposition holds,

Proposition 3.1: Let PN be the set of all monic polynomials

of degree N in C
N [X ], and consider p ∈ PN . Then:

• the map ψ is well-defined and differentiable on a

neighborhood U of p in PN ,

• Dψ has full rank at p.

Proof: The kernel of the differential of ψ is determined

by following equations:

p(x j)dq(x j)−q(x j)d p(x j) = 0, j = 1, . . . ,N. (10)

in which the polynomials d p and dq are related by the

relation obtained differentiating (6)

pd p∗+ p∗d p = qdq∗+q∗dq. (11)

Step 1. Let x j such that p(x j) 6= 0. Computing (11) at x j,

and using the strict contractivity of p/q at this point we get

that,
d p

p
(x j) =

dq

q
(x j),

and is pure imaginary. Thus, for j = 1, . . . ,N, we have

d p(x j) = iα j p(x j)
dq(x j) = iα j q(x j)

(12)

for some α j ∈ R. Now if p(x j) = 0, then(10) yields that

d p(x j) = 0 which ensures that (12) still holds.

Step 2. Considering that degree of d p and dq is at most

N −1, the N interpolation conditions (12) allow us to write:

d p(t) =
N

∑
j=1

Lx j
(t)p(x j)α ji (13)

dq(t) =
N

∑
j=1

Lx j
(t)q(x j)α ji (14)

where the Lx j
are the Lagrange interpolation polynomials of

the set (x1, . . .xN).

Using the above parametrization of d p and dq, equation (11)

can be rewritten as

N

∑
j=1

β j(px j
−qx j

) = 0 (15)

where β j is a real number,

β j =
α j

∏k 6= j(x j − xk)
,

and px j
and qx j

are two families of polynomials with real

coefficients and degree at most N −1, defined by

px j
(t) =

1

i

p(t)p∗(x j)− p∗(t)p(x j)

(t − x j)
, j = 1, . . . ,N

qx j
(t) =

1

i

q(t)q∗(x j)−q∗(t)q(x j)

(t − x j)
, j = 1, . . . ,N.

(16)

Equation (15) is equivalent to the following linear system of

equations with unknowns β j:

N

∑
j=1

β j(qx j
(xk)− px j

(xk)) = 0,k = 1 . . .N. (17)

The matrix A = [ak, j] of this system is given by

ak, j = 2ℜ

(

(q(xk)q
∗(x j)− p(xk)p∗(x j))

i(xk − xi)

)

, k 6= j

ak,k = 2ℜ

(

q′(xk)q
∗(xk)− p(xk)

′p∗(xk)

i

)

.

By inspection, the matrix A = [ak, j] is symmetric. Our

objective is now to prove that A is positive definite using

classical Nevanlinna-Pick theory.

Step 3. Let r be a stable spectral factor such that rr∗ = nn∗,

and consider the inner 2×2 extension S of p/q, namely:

Š =
1

q

(

p −r∗

r p∗

)

. (18)

Consider the Pick matrix L = [Lk, j] associated with the

tangential interpolation problem for Š, at the points x j,

j = 1, . . . ,N, in direction
[

1 0
]t

which corresponds to the

first column of Š. This is an interpolation problem on the

boundary and the Pick matrix can be computed as the limit

of a classical Pick matrix, when the interpolation points tend

non-tangentially to the boundary. The diagonal elements tend

to the angular derivatives of Š at the interpolation points. For

details on boundary interpolation see [1, chap. 21]. In our

case, we get

Lk, j =
1− p

q
(xk)

p∗

q∗
(x j)−

r
q
(xk)

r∗

q∗
(x j)

i(x j − xk)
, k 6= j (19)

Lk,k =
q′(xk)q

∗(xk)− p′(xk)p∗(xk)− r′(xk)r
∗(xk)

iq(xk)q∗(xk)
. (20)

Then consider the Pick matrix H associated with the tangen-

tial interpolation problem for Št , at the points x j, j = 1, . . . ,N,

in direction
[

1 0
]t

. It corresponds to interpolation for the

first row of Š. The Pick matrix H is given by,

Hk, j =
1− p

q
(xk)

p∗

q∗
(x j)−

r∗

q
(xk)

r
q∗
(x j)

i(x j − xk)
, k 6= j (21)

Hk,k =
q′(xk)q

∗(xk)− p′(xk)p∗(xk)− (r∗)′(xk)r(xk)

iq(xk)q∗(xk)
. (22)

Now, let Λ be the diagonal (non singular) matrix defined by,

Λ = diag(q(x1), . . . ,q(xN)).

It can be verified that

A = ΛLΛ∗+Λ∗HtΛ. (23)

Step 4. We prove that H and thus A is positive definite. This

is ensured by the following theorem



Theorem 3.2: Let F a m× p inner rational matrix (analytic

in C
−). Let ξ ∈ C

p be a unit vector, and suppose that the

column F(s)ξ has McMillan degree N. Let x1, · · · ,xN be N

distinct real points. Then, the Pick matrix P given by

• k 6= j, Pk, j =
1−ξ ∗F(xk)

∗F(x j)ξ

i(x j−xk)

• k = j, Pk,k = ξ ∗F(xk)
∗F(xk)

′ξ ,

which corresponds to the interpolation problem along ξ of

the matrix F , is strictly positive.

The proof, which relies on a limiting process and on the

reproducing kernel approach developped in [5] is omitted.

As the first column of Št has McMillan degree N (as r∗

and q have no common factor), Theorem 3.2 applies, which

concludes the proof of Proposition 3.1.

Now, as the polynomial n has no roots on the real line, ψ
defines a local homomorphism from PN → D

N . The fiber

ψ−1(0) is a singleton, namely the monic polynomial of

degree N having as roots the x′ks.

Recall that a local homeomorphism from a topological space

X to a topological space Y is called proper if the preimage

of every compact set of Y is compact. The remark that:

|p(xk)|
2 =

|γk|
2

1−|γk|2
|n(xk)|

2

shows that the preimage of every compact set of D
N is

bounded in PN and therefore compact, so that ψ is proper.

We then have

Theorem 3.3: Let X and Y be two open sets in R
n, with Y

connected. Let φ : X →Y be a proper local homomorphism.

Suppose that there exists y0 ∈ Y such that the fiber φ−1(y0)
is a singleton {x0}, then φ is a global homomorphism from

X onto Y .

Proof: As φ is proper and a local homeorphism, φ is

a covering map (see [6, Th.4.22]). The path connectedness

of Y implies that all fibers φ−1(y), with y ∈ Y , have the

same cardinality. From φ−1(y0) = x0 we conclude that every

element y ∈ Y has one, and only one preimage.

An application of Theorem 3.3 to ψ completes the proof of

Theorem 3.1.

Remark 3.1: The case where n has roots on the real line is

of considerable practical interest. To extend our result to this

case, the idea is to restrict the definition domain of ψ to the

set of polynomials p that have no common real roots with

n and to adapt the rest of the proof. We leave this point for

future works.

IV. CONCLUSION

In this paper, we considered a variant of the Nevanlinna-

Pick interpolation problem with degree constraint. We have

proved that existence and uniqueness of the solution still

holds when interpolation takes place on the boundary of

the stability domain. Moreover, our proof is constructive.

Such techniques should be useful for microwave antenna and

multiplexer design.

In fact, the design of a multiplexer requires solving a more

complex of simultaneously matching several filters connected

to a common access. The following heuristics can be used:

• matching frequencies are chosen as the reflection zeros

of a single filter

• rejection frequencies are chosen so as to minimize

cross-talk between channels

• each filter is adapted alternatively, solving for P .

Although preliminary numerical results obtained by this

method seem promising, the existence of a fixed point has

not been proven yet. This remains an open issue whose

solution would have far-reaching implications in the area of

microwave multi-port design.
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