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Abstract It is a fundamental problem to calculate Jacobian

coefficients of constraint equations in assembly constraint

solving because most approaches to solving an assembly

constraint system will finally resort to a numerical itera-

tive method that requires the first-order derivatives of the

constraint equations. The most-used method of deriving

the Jacobian coefficients is to use virtual rotation which

is originally presented to derive the equations of motion

of constrained mechanical systems. However, when Euler

parameters are adopted as the state variables to represent the

transformation matrix, using the virtual rotation will yield

erroneous formulae of Jacobian coefficients. The reason is

that Euler parameters are incompatible with virtual rotation.

In this paper, correct formulae of Jacobian coefficients of

geometric constraints with respect to Euler parameters are

presented in both Cartesian coordinates and relative gen-

eralized coordinates. Experimental results show that our

proposed formulae make Newton–Raphson iterative method

converge faster and more stable.
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1 Introduction

Assembly modeling plays an important role in product

design activities because most products are composed of

a number of parts. Instead of designating the position and

orientation of each part, a designer usually specifies geo-

metric constraints or kinematic constraints between parts,

which involves solving those constraints to obtain the pos-

tures of parts [1–3]. Numerous approaches to solving 2D

or 3D geometric constraint problems have been proposed

in recent decades. The main idea of them is to split a large

geometric constraint problem into smaller and easier ones

using graph-based decomposing algorithm, rule-based strat-

egy, algebraic theory, or numerical methods. Except for a

small set of subproblems that can be solved analytically [4,

5], most of them will resort to numerical methods, e.g., a

Newton-type iterative method or mathematical optimization

method [6–11].

To use a numerical method, the geometric constraints

are converted into a set of nonlinear equations first. Those

nonlinear equations are called primitive constraints or basic

constraints. The selections of state variables can be clas-

sified into two categories: Cartesian coordinates and gen-

eralized coordinates. The Cartesian coordinate formulation

yields a maximal set of highly sparse equations, but the

form of the equations is independent on the topological

structure of assembly systems. On the other hand, recur-

sive generalized coordinate formulation can dramatically

reduce the number of constraint equations and variables, but

the form of the equations varies with the topological struc-

ture of assembly systems. In both cases, to compute the
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Jacobian coefficients of constraint equations, a variational-

vector calculus approach is widely adopted in literature,

which is originally presented for deriving the equations of

motions in dynamics [12–16]. The approach introduces a

concept called virtual rotation, with which, it is convenient

to derive the Jacobian coefficients of primitive constraints

with respect to the state variables. However, this concept

should not be applied when Euler parameters are taken

as the state variables, because Euler parameters break its

prerequisites. Otherwise, taking the concept of the virtual

rotation will yield wrong formulae of Jacobian coefficients,

as presented in literature [6, 9]. In this paper, the prereq-

uisites of virtual rotation are discussed. The correct Jaco-

bian coefficients in Cartesian coordinates are derived using

variational-vector calculus method. Moreover, a recursive

formulation of Jacobian coefficients of constraint equations

in relative generalized coordinates is also derived, which can

be applied to any type of relative generalized coordinates,

compared with the restricted formulation presented in [6].

The rest of this paper is organized as follows. In

Section 2, we first generalize primitive constraints in liter-

ature to a formal representation. The reason of the wrong

formulae presented in literature is discussed. Then the cor-

rect formulae of Jacobian coefficients with respect to Euler

parameters in both Cartesian coordinates and recursive gen-

eralized coordinates are derived. In Section 3, four examples

are provided to illustrate the correctness and efficiency

of presented formulae. Finally, conclusions are made in

Section 4.

2 Problem statement

In an assembly system, the posture of a rigid body i, could

be identified by ri and Ai , where ri is the origin and Ai is

the transformation matrix from the local reference frame to

the global reference frame. The values in the global refer-

ence frame, of a vector vi and point Pi fixed on body i can

be obtained from the following transformations

vi = Aiv
′
i

Pi = ri + vP
i = ri + Aiv

P ′
i ,

where the symbols with a superscript ′ denote the values of

the vector or point in the local reference frame. There exists

an orthogonal condition

AiA
T
i = I (1)

and then the variation δAi satisfies

δAiA
T
i = −AiδAT

i (2)

A tilde (∼) operator on a vector v =
[
vx vy vz

]T
, forms

a skew symmetric matrix ṽ =

⎡
⎣

0 −vz vy

vz 0 −vx

−vy vx 0

⎤
⎦. From

Eq. 2, the virtual rotation δπ i is defined by δπ̃ i = δAiA
T
i

and δπ ′
i = AT

i δπ i .

First, we generalize primitive constraints introduced in

[15] to the following formal definition.

Definition 1 A primitive constraint is a scalar function f =
f (ri1, ri2, · · · , riM , vj1

, vj2
, · · · , vjN ), where rik denotes

the origin of body ik , and vjk be any vector fixed on body jk .

In this paper, we use this formal definition to illustrate the

derivations of Jacobian coefficients of primitive constraints,

instead of a concrete constraint. The derivations of Jacobian

coefficients with respect to both Cartesian coordinates and

relative generalized coordinates are presented.

2.1 Cartesian coordinates and Euler parameters

A spatial mechanism, or assembly, constructed using Carte-

sian coordinates and Euler parameters, is defined in terms

of the state variables q =
[
r1 p1 · · · rn pn

]T
, where

pi =
[
e0i e1i e2i e3i

]T
denotes Euler parameters of body

i and satisfies the normalization condition pT
i pi = 1. Let

ei =
[
e1i e2i e3i

]T
, Ei =

[
−ei , ẽi + e0iI

]
, and Gi =[

−ei, −ẽi + e0iI
]
. Ai can be expressed as Ai = EiG

T
i . In

[15], δπ ′
i is derived as

δπ ′
i = 2Giδpi (3)

Using the virtual rotation, Peng et al. [9] derived the

variation of a vector vi as

δvi = δAiv
′
i = Aiδπ̃

′
iv

′
i = −Ai ṽ

′
iδπ

′
i = −2Ai ṽ

′
iGiδpi .

(4)

Then the variation of the function f is derived as

δf =
∑

k

∂f

∂rik

δrik +
∑

k

∂f

∂vjk

δvjk

=
∑

k

∂f

∂rik

δrik − 2
∑

k

∂f

∂vjk

Ajk ṽ′
jk

Gjk δpjk (5)

from which the Jacobian coefficients of f are obtained as

frik
= ∂f

∂rik

, k = 1, · · · , M (6a)

fpjk
= −2

∂f

∂vjk

Ajk ṽ′
jk

Gjk , k = 1, · · · , N, (6b)

where the partial derivatives
∂f
∂rik

and
∂f

∂vjk
are only deter-

mined by the form of f itself and easy to compute.
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As is pointed out by Yen et al. [17], however, Eq. 6b is

not the true derivative of f with respect to Euler parameters

pjk , because the definition of the virtual rotation implies the

establishment of Eqs. 1 and 2, which requires pT
i pi = 1 and

pT
i δpi = 0. It results in a contradiction. Yen et al. presented

a formula of the variation of a vector vi to compute the cor-

rect Jacobian coefficients of primitive constraints, but his

formula is complicated. In this paper, using the variational-

vector calculus method, we derive this variation in a more

concise form as follows.

δvi = δ
(
Aiv

′
i

)
= δ

(
EiG

T
i v′

i

)

= δ
((

eie
T
i + ẽi ẽi + 2e0i ẽi + e2

0iI
)

v′
i

)

= δ
(

eie
T
i v′

i

)
+ δ

(
ẽi ẽiv

′
i

)
+ δ

(
2e0i ẽiv

′
i

)
+ δ

(
e2

0iv
′
i

)

= δeie
T
i v′

i + eiδeT
i v′

i + δẽi ẽiv
′
i + ẽiδẽiv

′
i + 2δe0i ẽiv

′
i

+ 2e0iδẽiv
′
i + 2e0iv

′
iδe0i

= eT
i v′

iδei + eiv
′T
i δei − ˜̃eiv

′
iδei − ẽi ṽ

′
iδei + 2ẽiv

′
iδe0i

− 2e0i ṽ
′
iδei + 2e0iv

′
iδe0i

= 2
(
ẽi + e0iI

)
v′
iδe0i

+
(

eT
i v′

iI + eiv
′T
i − ˜̃eiv

′
i − ẽi ṽ

′
i − 2e0i ṽ

′
i

)
δei

= K
(
v′
i, pi

)
δpi , (7)

where

K(u, p) =
[
2(ẽ + e0I)u eT uI + euT − ẽũ − ˜̃eu − 2e0ũ

]
.

Substituting Eq. 7 into Eq. 5 yields

fpjk
= ∂f

∂vjk

K
(

v′
jk

, pjk

)
, k = 1, · · · , N. (8)

2.2 Relative generalized coordinates

Using relative generalized coordinates, ri and Ai can be

represented recursively instead. The relation of a pair of

coupled bodies, bodies i and j , is depicted in Fig. 1. Vec-

tors that locate joint attachment points in bodies i and j are

denoted by sij and sji , respectively. Orthogonal matrices

Cij , Cji , and A′′
ij are transformations from the joint defini-

tion frames (′′) to the body frames( ′) on bodies i and j and

from the joint definition frame on body j to the joint defini-

tion frame on body i, respectively. From Fig. 1, we have the

following relations:

rj = ri + sij + dij − sji (9a)

Aj = AiCij A′′
ij CT

ji (9b)

and

dij = AiCij d′′
ij (10a)

Fig. 1 The representation of relative motions of two bodies

sij = Ais
′
ij (10b)

sji = Aj s′
ji (10c)

where s′
ij and s′

ji are fixed vectors on each body frame sep-

arately. In the equations above, A′′
ij and d′′

ij are only the

functions of relative generalized coordinates qij between

bodies i and j .

A mechanical system can be represented by a graph

G = G(V, E), in which each node of V represents a rigid

body, and each edge e ∈ E represents the joint between

two bodies. Both an open-loop and closed-loop mechani-

cal systems can be abstracted as a topological tree structure

with additional geometric constraints. Consider any body i.

There exists a unique path 0 → · · · → i − 1 → i from base

body 0 to body i. Using Eqs. 9 and 10, ri and Ai can be rep-

resented recursively by the relative generalized coordinates

q0,1, q1,2, · · · , qi−1,i [13].

Let q denote the collection of all relative generalized

coordinates. To obtain the Jacobian coefficients of f , the

variations δri and δvi should be derived first. Let δri and

δvi have the following forms

δri = Jr
i δq (11a)

δvi = Jv
i δq (11b)

The recursive formulae of Jr
i and Jv

i were derived using

the virtual rotation in [6, 11]. However, similarly, when a

free rotational joint is involved and Euler parameters are

chosen as the relative generalized coordinates, the virtual

rotation should not be applied. Otherwise, using the vir-

tual rotation will yield erroneous formulae. In this paper,

we derive the recursive formulae directly instead. First, two

auxiliary coefficient matrices are introduced.
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Definition 2 Let u be any 3D vector. The auxiliary coeffi-

cient matrices Ji−1,i(u) and Ji(u) satisfy Ji−1,i(u)δqi−1,i =
δA′′

i−1,iu and Ji(u)δq = δAiu separately.

From the definition, Ji−1,i is only determined by rel-

ative generalized coordinates qi−1,i and can be deduced

from the joint definition. For example, if qi−1,i is the Euler

parameters, we can obtain its formula from Eq. 7.

Ji−1,i(u)δqi−1,i = δA′′
i−1,iu = K(u, qi−1,i)δqi−1,i (12)

The recursive formula of Ji(u) is derived as follows

Ji(u)δq = δAiu

= δ
(

Ai−1Ci−1,iA
′′
i−1,iC

T
i,i−1

)
u

= δAi−1Ci−1,iA
′′
i−1,iC

T
i,i−1u

+ Ai−1Ci−1,iδA′′
i−1,iC

T
i,i−1u

= Ji−1

(
Ci−1,iA

′′
i−1,iC

T
i,i−1u

)
δq

+ Ai−1Ci−1,iJi−1,i

(
CT

i,i−1u
)

δqi−1,i

= Ji−1

(
Ci−1,iA

′′
i−1,iC

T
i,i−1u

)
δq

+
[
0 Ai−1Ci−1,iJi−1,i

(
CT

i,i−1u
)

0
]
δq

from which we obtain

Ji(u) = Ji−1

(
Ci−1,iA

′′
i−1,iC

T
i,i−1u

)

+
[
0 Ai−1Ci−1,iJi−1,i

(
CT

i,i−1u
)

0
]
. (13)

The variation δvi can be obtained as

δvi = δAiv
′
i = Ji

(
v′
i

)
δq (14)

from which we obtain

Jv
i = Ji

(
v′
i

)
. (15)

The variation ri is derived as follows

δri = δ
(
ri−1 + si−1,i + di−1,i − si,i−1

)

= δri−1 + δAi−1s′
i−1,i + δ

(
Ai−1Ci−1,id

′′
i−1,i

)

− δAis
′
i,i−1

= δri−1 + Ji

(
s′
i−1,i

)
δq + Ji−1

(
Ci−1,id

′′
i−1,i

)
δq

+ Ai−1Ci−1,iδd′′
i−1,i − Ji

(
s′
i,i−1

)
δq

= δri−1 + Ji

(
s′
i−1,i

)
δq + Ji−1

(
Ci−1,id

′′
i−1,i

)
δq

+ Ai−1Ci−1,iDi−1,iδqi−1,i − Ji

(
s′
i,i−1

)
δq (16)

from which we obtain

Jr
i = Jr

i−1 + Ji

(
s′
i−1,i

)
+ Ji−1

(
Ci−1,id

′′
i−1,i

)

+
[
0 Ai−1Ci−1,iDi−1,i 0

]
− Ji

(
s′
i,i−1

)
,

where Di−1,i is the Jacobian coefficient of d′′
i−1,i with

respect to local relative generalized coordinates qi−1,i . Sub-

stituting Eqs. 14 and 16 into Eq. 5 yields

δf =
∑

k

∂f

∂rik

δrik +
∑

k

∂f

∂vjk

δvjk

=
∑

k

∂f

∂rik

Jr
ik
δq +

∑

k

∂f

∂vjk

Ji

(
v′
jk

)
δq

from which, the Jacobian matrix of f is obtained as

fq =
∑

k

∂f

∂rik

Jr
ik

+
∑

k

∂f

∂vjk

Ji

(
v′
jk

)
. (17)

2.3 Jacobian coefficients of primitive constraints

Based on Haug’s work [15], some primitive geometric con-

straints were presented to build the geometric constraint

library [11]. Most important primitive constraints are dot-

1 constraint, dot-2 constraint, angle constraint, and distant

constraint.

�d1(vi, vj ) = vT
i vj = 0 (18a)

�d2(vi, dij ) = vT
i dij = vT

i dij = 0 (18b)

�ang(vi, vj ) = vT
i vj − cos α0 = 0 (18c)

�dist(dij ) = dT
ij dij − d2

0 = 0, (18d)

where

dij = Qj − Pi = rj + Aj s
Q′

j − ri − Ais
P ′
i .

The Jacobian coefficients of these constraints are derived

as follows. For Cartesian coordinates, those are

�d1
ri

= �d1
rj

= 0 (19a)

�d1
pi

= vT
j K

(
v′
i, pi

)
(19b)

�d1
pj

= vT
i K

(
v′
j , pj

)
(19c)

�d2
ri

= −vT
i (19d)

�d2
rj

= vT
i (19e)

�d2
pi

= dT
ij K

(
v′
i, pi

)
− vT

i K
(

s
p′

i , pi

)
(19f)

�d2
pj

= vT
i K

(
s
p′

j , pj

)
(19g)

�dist
ri

= −2dT
ij (19h)
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�dist
rj

= 2dT
ij (19i)

�dist
pi

= −2dT
ij K

(
s
p′

i , pi

)
(19j)

�dist
pj

= 2dT
ij K

(
s
p′

j , pj

)
, (19k)

and for relative generalized coordinates,

�d1
q = vT

j Ji

(
v′
i

)
+ vT

i Jj

(
v′
j

)
(20a)

�d2
q = dT

ij Ji

(
v′
i

)
+ vT

i

(
Jr
j + Jj

(
s
p′

j

)
− Jr

i − Ji

(
s
p′

i

))

(20b)

�dist
q = 2dT

ij

(
Jr
j + Jj

(
s
p′

j

)
− Jr

i − Ji

(
s
p′

i

))
(20c)

In the next section, experimental results will be presented

to show that the formulae presented in this paper are more

feasible than those proposed in [9].

3 Experimental results

In this section, we use the Newton–Raphson iteration

method listed in Algorithm 1 to evaluate the effectiveness of

the presented formulae. Four examples are used to illustrate

the advantages of our proposed formulae over those pre-

sented by Peng et al. [9]. Without loss of generality, all the

examples are two-body constraint systems with fixed ori-

gins so that each of them only has three rotational degrees

of freedom left. First, we use Example 1 to demonstrate

that the iteration using Eq. 6b breaks the assumption of

orthogonality of the transformation matrix, and then use

these four examples to illustrate that our formulae are more

applicable.

Example 1 Let origins of bodies 1 and 2 be coincident.

There are three dot-2 constraints (�d2(vi, Pi, Qi), i =
1 · · · 3) between the bodies. This constraint system is well

constrained.

With the parameters given in Table 1, this constraint

system has real solutions. The unknowns of the constraint

system is the q = p2 =
[
e0 e1 e2 e3

]T
. The equation set of

the constraint system is represented by

�(q) =

⎧
⎨
⎩

qT q − 1

vT
i (Qi − Pi) , i = 1 · · · 3

Algorithm 1: Newton iteration procedure

input : The initial estimate q0

the set of equations �

output: The solved status

q ← q0

n ← 0

while n < N and ‖�(q)‖ < ε do
J ← �q(q)

if J is invertible then

q ← q − J−1�(q)

end

else

/* Use Penrose-Moore inverse

instead */

q ← q − J+�(q)

end

n ← n + 1
end

if n == N then
return Failed

end

return Success

of which the Jacobian matrix �q is derived from Eqs. 19f

and 19g as

�q(q) =

⎡
⎢⎢⎢⎢⎣

2qT

(Q1 − P1)
T K

(
v′

1, q
)
− vT

1 K
(
P′

1, q
)

(Q2 − P2)
T K

(
v′

2, q
)
− vT

2 K
(
P′

2, q
)

(Q3 − P3)
T K

(
v′

3, q
)
− vT

3 K
(
P′

3, q
)

⎤
⎥⎥⎥⎥⎦

(21)

while Eq. 6b gives

�̂q(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2qT

2
(

v
′T
1 P̃′

1 − (Q1 − P1)
T Aṽ′

1

)
G

2
(

v
′T
2 P̃′

2 − (Q2 − P2)
T Aṽ′

2

)
G

2
(

v
′T
3 P̃′

3 − (Q3 − P3)
T Aṽ′

3

)
G

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

Given an initial estimate q0 =
[
0.5 −0.5 −0.5 0.5

]T
,

which satisfies the normalization constraint, we can get

A =

⎡
⎣

0 0 −1

1 0 0

0 −1 0

⎤
⎦ and AAT = I,

Substituting A into Eq. 22 yields

�̂q0
=

⎡
⎢⎢⎣

1.0000 −1.0000 −1.0000 1.0000

6.9282 1.1547 0 −5.7735

−1.7889 −2.6833 −3.5777 −4.4721

2.8284 1.4142 −2.8284 −4.2426

⎤
⎥⎥⎦ .
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Table 1 The parameters used in examples

Example Parameters

1 v′
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
5

1√
5

1√
5

⎤
⎥⎥⎥⎥⎥⎥⎦

, v′
2 =

⎡
⎢⎢⎢⎢⎣

0
2√
5

1√
5

⎤
⎥⎥⎥⎥⎦

, v′
3 =

⎡
⎢⎢⎢⎢⎣

1√
2

1√
2

0

⎤
⎥⎥⎥⎥⎦

, P′
1 =

⎡
⎢⎣

4

4

−2

⎤
⎥⎦, P′

2 =

⎡
⎢⎣

10

0

7

⎤
⎥⎦, P′

3 =

⎡
⎢⎣

0

3

10

⎤
⎥⎦, Q′

1 =

⎡
⎢⎣

0

5

1

⎤
⎥⎦, Q′

2 =

⎡
⎢⎣

3

1

−1

⎤
⎥⎦, Q′

3 =

⎡
⎢⎣

1

2

2

⎤
⎥⎦

2 P′
1 =

⎡
⎢⎣

0

0

0

⎤
⎥⎦, P′

2 =

⎡
⎢⎣

1

0

0

⎤
⎥⎦, P′

3 =

⎡
⎢⎣

0

1

0

⎤
⎥⎦, Q′

1 =

⎡
⎢⎣

0

0

1

⎤
⎥⎦, Q′

2 =

⎡
⎢⎣

2

1

0

⎤
⎥⎦, Q′

3 =

⎡
⎢⎣

1

0

2

⎤
⎥⎦, d1 = 1, d2 =

√
6, d3 =

√
5

3 u′
1 =

⎡
⎢⎣

1

0

0

⎤
⎥⎦, u′

2 =

⎡
⎢⎣

0

1

0

⎤
⎥⎦, v′

1 =

⎡
⎢⎣

1

0

0

⎤
⎥⎦, v′

2 =

⎡
⎢⎣

0

1

0

⎤
⎥⎦, u′

3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
3

1√
3

1√
3

⎤
⎥⎥⎥⎥⎥⎥⎦

, P′
1 =

⎡
⎢⎣

0

1

1

⎤
⎥⎦, Q′

1 =

⎡
⎢⎣

1

0

2

⎤
⎥⎦

4 u′
1 =

⎡
⎢⎣

1

0

0

⎤
⎥⎦, u′

2 =

⎡
⎢⎣

0

1

0

⎤
⎥⎦, v′

1 =

⎡
⎢⎣

1

0

0

⎤
⎥⎦, v′

2 =

⎡
⎢⎣

0

1

0

⎤
⎥⎦, P′

1 =

⎡
⎢⎣

1

−1

0

⎤
⎥⎦, Q′

1 =

⎡
⎢⎣

0

1

2

⎤
⎥⎦, α1 = π

6
, α2 = π

3
, d1 = 2

From Algorithm 1, we can get the next iteration point

q1 =
[
0.3750 −0.6250 −0.8750 0.1250

]T
, and the trans-

formation matrix A =

⎡
⎣

−0.2500 1.0000 −0.8125

1.1875 0.5000 0.2500

0.5000 −0.6875 −1.0000

⎤
⎦

which breaks Eq. 1. Continuing this procedure, we will find

that the iteration fails to converge. On the other hand, if we

adopt Eq. 21, the iteration converges in about 10 times given

a tolerance 10−14.

To study the convergency generally, many initial esti-

mates are generated to test whether Algorithm 1 converges,

and if it does, in how many iterations. Our tests are

Table 2 The simulation results
Experiment Estimate region Jacobian formulae Convergent cases Average iterations

Exam. 1, hyper box Proposed 10,000 9.43

body 2 movable Peng’s 9,919 23.38

hyper sphere Proposed 10,000 10.65

Peng’s 9,824 27.19

Exam. 1, hyper box Proposed 3,439 10.98

body 1 movable Peng’s 30 12.77

hyper sphere Proposed 2,666 10.07

Peng’s 238 10.83

Exam. 2 hyper box Proposed 8,120 8.92

Peng’s 651 58.74

hyper sphere Proposed 6,446 7.42

Peng’s 1,252 62.76

Exam. 3 hyper box Proposed 1,592 8.88

Peng’s 1,681 13.65

hyper sphere Proposed 1,311 8.49

Peng’s 1,531 13.63

Exam. 4 hyper box Proposed 8,250 8.42

Peng’s 7,748 10.94

hyper sphere Proposed 8,547 8.43

Peng’s 8,082 10.99
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performed as follows. For each example, we generate

10, 000 initial estimates uniformly at random from an esti-

mate region to test whether Algorithm 1 converges, using

our and compared formulae separately. We count the con-

vergent cases and calculate the average iterations needed for

each successful case. The two estimate regions to concern

are

1. {(e0, e1, e2, e3)| |ei | ≤ 1} (denoted as hyper box)

2. {q0|qT
0 q0 = 1} (denoted as hyper sphere)

The difference between these two regions is that the latter

is the set where the initial estimate satisfies the normaliza-

tion condition.

Other used examples are listed as follows:

Example 2 The constraint system consists of three distant

constraints (�dist(Pi, Qi, di), i = 1 · · · 3).

Example 3 The constraint system consists of two dot-1 con-

straints (�d1(ui , vi), i = 1, 2) and one dot-2 constraint

(�d2(u3, P1, Q1)).

Example 4 The constraint system consists of two angle

constraints (�ang(ui , vi, αi), i = 1, 2) and one distant

constraint (�dist(P1, Q1, d1)).

The parameters used in the examples are given in Table 1.

The simulation results are listed in Table 2. The results show

that the iteration methods adopting our presented formu-

lae as Jacobian coefficients are more stable. As depicted in

Table 2, there are more convergent cases in general, using

proposed formulae. Moreover, our proposed formulae will

make the iteration method converge faster in fewer itera-

tions. The experimental results demonstrate the feasibility

of the method presented in this paper.

4 Conclusion

In this paper, the erroneous derivation of Jacobian coeffi-

cients of primitive constraint equations with respect to Euler

parameters presented in literature is discussed, and cor-

rect formulae are derived using variational-vector calculus

method. A recursive formulation of Jacobian coefficients of

primitive constraints in relative generalized coordinates is

also proposed. Compared with the formulae presented in lit-

erature, this formulation can be applied to all types of joint

variables. Experimental results are presented to illustrate the

correctness and computational efficiency of the formulae

presented in this paper.
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