Resource Centered Computing delivering high parallel performance

Abstract : Modern parallel programming requires a combination of differentparadigms, expertise and tuning, that correspond to the differentlevels in today's hierarchical architectures. To cope with theinherent difficulty, ORWL (ordered read-write locks) presents a newparadigm and toolbox centered around local or remote resources, suchas data, processors or accelerators. ORWL programmers describe theircomputation in terms of access to these resources during criticalsections. Exclusive or shared access to the resources is grantedthrough FIFOs and with read-write semantic. ORWL partially replaces aclassical runtime and offers a new API for resource centric parallelprogramming. We successfully ran an ORWL benchmark application ondifferent parallel architectures (a multicore CPU cluster, a NUMAmachine, a CPU+GPU cluster). When processing large data we achievedscalability and performance similar to a reference code built on topof MPI+OpenMP+CUDA. The integration of optimized kernels of scientificcomputing libraries (ATLAS and cuBLAS) has been almost effortless, andwe were able to increase performance using both CPU and GPU cores onour hybrid hierarchical cluster simultaneously. We aim to make ORWL anew easy-to-use and efficient programming model and toolbox forparallel developers.
Type de document :
Communication dans un congrès
Heterogeneity in Computing Workshop (HCW 2014), May 2014, Phenix, AZ, United States. IEEE, 2014, Heterogeneity in Computing Workshop (HCW 2014), workshop of 28th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2014)
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00921128
Contributeur : Jens Gustedt <>
Soumis le : jeudi 19 décembre 2013 - 17:02:03
Dernière modification le : dimanche 20 mai 2018 - 20:20:10
Document(s) archivé(s) le : jeudi 20 mars 2014 - 10:50:27

Fichier

RR-8433.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00921128, version 1

Citation

Jens Gustedt, Stéphane Vialle, Patrick Mercier. Resource Centered Computing delivering high parallel performance. Heterogeneity in Computing Workshop (HCW 2014), May 2014, Phenix, AZ, United States. IEEE, 2014, Heterogeneity in Computing Workshop (HCW 2014), workshop of 28th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2014). 〈hal-00921128〉

Partager

Métriques

Consultations de la notice

754

Téléchargements de fichiers

219