
HAL Id: hal-00921261
https://inria.hal.science/hal-00921261

Submitted on 20 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved and Generalized Upper Bounds on the
Complexity of Policy Iteration

Bruno Scherrer

To cite this version:
Bruno Scherrer. Improved and Generalized Upper Bounds on the Complexity of Policy Iteration.
Neural Information Processing Systems (NIPS) 2013, Dec 2013, South Lake Tahoe, United States.
�hal-00921261�

https://inria.hal.science/hal-00921261
https://hal.archives-ouvertes.fr


Improved and Generalized Upper Bounds on
the Complexity of Policy Iteration

Bruno Scherrer
Inria, Villers-lès-Nancy, F-54600, France

Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France
bruno.scherrer@inria.fr

Abstract

Given a Markov Decision Process (MDP) with n states and m actions per
state, we study the number of iterations needed by Policy Iteration (PI)
algorithms to converge to the optimal γ-discounted optimal policy. We con-
sider two variations of PI: Howard’s PI that changes the actions in all states
with a positive advantage, and Simplex-PI that only changes the action in
the state with maximal advantage. We show that Howard’s PI terminates

after at most n(m − 1)
⌈

1
1−γ

log
(

1
1−γ

)⌉

= O
(

nm
1−γ

log
(

1
1−γ

))

iterations,

improving by a factor O(log n) a result by [3], while Simplex-PI terminates

after at most n2(m − 1)
(

1 + 2
1−γ

log
(

1
1−γ

))

= O
(

n2m
1−γ

log
(

1
1−γ

))

iterations, improving by a factor O(log n) a result by [11]. Under some
structural assumptions of the MDP, we then consider bounds that are
independent of the discount factor γ: given a measure of the maximal tran-
sient time τt and the maximal time τr to revisit states in recurrent classes
under all policies, we show that Simplex-PI terminates after at most n2(m−
1) (⌈τr log(nτr)⌉+ ⌈τr log(nτt)⌉)

[

(m− 1)⌈nτt log(nτt)⌉+ ⌈nτt log(n2τt)⌉
]

=

Õ
(

n3m2τtτr

)

iterations. This generalizes a recent result for determin-
istic MDPs by [8], in which τt ≤ n and τr ≤ n. We explain why
similar results seem hard to derive for Howard’s PI. Finally, under
the additional (restrictive) assumption that the state space is parti-
tioned in two sets, respectively states that are transient and recurrent
for all policies, we show that Howard’s PI terminates after at most
n(m − 1) (⌈τt log nτt⌉+ ⌈τr log nτr⌉) = Õ(nm(τt + τr)) iterations while
Simplex-PI terminates after n(m − 1) (⌈nτt log nτt⌉+ ⌈τr log nτr⌉) =
Õ(n2m(τt + τr)) iterations.

1 Introduction

We consider a discrete-time dynamic system whose state transition depends on a control.
We assume that there is a state space X of finite size n. At state i ∈ {1, .., n}, the control is
chosen from a control space A of finite size1 m. The control a ∈ A specifies the transition
probability pij(a) = P(it+1 = j|it = i, at = a) to the next state j. At each transition,
the system is given a reward r(i, a, j) where r is the instantaneous reward function. In
this context, we look for a stationary deterministic policy (a function π : X → A that maps

1In the works of [11, 8, 3] that we reference, the integer “m” denotes the total number of actions,
that is nm with our notation. When we restate their result, we do it with our own notation, that
is we replace their ′′m′′ by ′′nm′′.

1



states into controls2) that maximizes the expected discounted sum of rewards from any state
i, called the value of policy π at state i:

vπ(i) := E

[

∞
∑

k=0

γkr(ik, ak, ik+1)

∣

∣

∣

∣

∣

i0 = i, ∀k ≥ 0, ak = π(ik), ik+1 ∼ P(·|ik, ak)

]

where γ ∈ (0, 1) is a discount factor. The tuple 〈X, A, p, r, γ〉 is called a Markov Decision
Process (MDP) [9, 1], and the associated problem is known as optimal control.

The optimal value starting from state i is defined as

v∗(i) := max
π

vπ(i).

For any policy π, we write Pπ for the n× n stochastic matrix whose elements are pij(π(i))
and rπ the vector whose components are

∑

j pij(π(i))r(i, π(i), j). The value functions vπ

and v∗ can be seen as vectors on X . It is well known that vπ is the solution of the following
Bellman equation:

vπ = rπ + γPπvπ,

that is vπ is a fixed point of the affine operator Tπ : v 7→ rπ + γPπv. It is also well known
that v∗ satisfies the following Bellman equation:

v∗ = max
π

(rπ + γPπv∗) = max
π

Tπv∗

where the max operator is componentwise. In other words, v∗ is a fixed point of the nonlinear
operator T : v 7→ maxπ Tπv. For any value vector v, we say that a policy π is greedy with
respect to the value v if it satisfies:

π ∈ arg max
π′

Tπ′v

or equivalently Tπv = T v. With some slight abuse of notation, we write G(v) for any policy
that is greedy with respect to v. The notions of optimal value function and greedy policies
are fundamental to optimal control because of the following property: any policy π∗ that is
greedy with respect to the optimal value v∗ is an optimal policy and its value vπ∗

is equal
to v∗.

Let π be some policy. We call advantage with respect to π the following quantity:

aπ = max
π′

Tπ′vπ − vπ = T vπ − vπ .

We call the set of switchable states of π the following set

Sπ = {i, aπ(i) > 0}.

Assume now that π is non-optimal (this implies that Sπ is a non-empty set). For any
non-empty subset Y of Sπ, we denote switch(π, Y ) a policy satisfying:

∀i, switch(π, Y )(i) =

{

G(vπ)(i) if i ∈ Y
π(i) if i 6∈ Y.

The following result is well known (see for instance [9]).

Lemma 1. Let π be some non-optimal policy. If π′ = switch(π, Y ) for some non-empty
subset Y of Sπ, then vπ′ ≥ vπ and there exists at least one state i such that vπ′(i) > vπ(i).

This lemma is the foundation of the well-known iterative procedure, called Policy Iteration
(PI), that generates a sequence of policies (πk) as follows.

πk+1 ← switch(πk, Yk) for some set Yk such that ∅ ( Yk ⊆ Sπk
.

The choice for the subsets Yk leads to different variations of PI. In this paper we will focus
on two specific variations:

2Restricting our attention to stationary deterministic policies is not a limitation. Indeed, for the
optimality criterion to be defined soon, it can be shown that there exists at least one stationary
deterministic policy that is optimal [9].

2



• When for all iterations k, Yk = Sπk
, that is one switches the actions in all states with

positive advantage with respect to πk, the above algorithm is known as Howard’s
PI; it can be seen then that πk+1 ∈ G(vπk

).

• When for all k, Yk is a singleton containing a state ik ∈ arg maxi aπk
(i), that is if

we only switch one action in the state with maximal advantage with respect to πk,
we will call it Simplex-PI3.

Since it generates a sequence of policies with increasing values, any variation of PI converges
to the optimal policy in a number of iterations that is smaller than the total number of
policies mn. In practice, PI converges in very few iterations. On random MDP instances,
convergence often occurs in time sub-linear in n. The aim of this paper is to discuss existing
and provide new upper bounds on the number of iterations required by Howard’s PI and
Simplex-PI that are much sharper than mn.

In the next sections, we describe some known results—see [11] for a recent and comprehensive
review—about the number of iterations required by Howard’s PI and Simplex-PI, along with
some of our original improvements and extensions.4

2 Bounds with respect to a Fixed Discount Factor γ < 1

A key observation for both algorithms, that will be central to the results we are about to
discuss, is that the sequence they generate satisfies some contraction property5. For any
vector u ∈ R

n, let ‖u‖∞ = max1≤i≤n|u(i)| be the max-norm of u. Let 1 be the vector of
which all components are equal to 1.

Lemma 2 (Proof in Section A). The sequence (‖v∗ − vπk
‖∞)k≥0 built by Howard’s PI is

contracting with coefficient γ.

Lemma 3 (Proof in Section B). The sequence (1T (v∗ − vπk
))k≥0 built by Simplex-PI is

contracting with coefficient 1− 1−γ

n
.

Though this observation is widely known for Howard’s PI, it was to our knowledge never
mentionned explicitly in the literature for Simplex-PI. These contraction properties have
the following immediate consequence6.

Corollary 1. Let Vmax = maxπ ‖rπ‖∞

1−γ
be an upper bound on ‖vπ‖∞ for all policies π. In

order to get an ǫ-optimal policy, that is a policy πk satisfying ‖v∗ − vπk
‖∞ ≤ ǫ, Howard’s

PI requires at most
⌈

log
Vmax

ǫ

1−γ

⌉

iterations, while Simplex-PI requires at most
⌈

n log
nVmax

ǫ

1−γ

⌉

iterations.

These bounds depend on the precision term ǫ, which means that Howard’s PI and Simplex-
PI are weakly polynomial for a fixed discount factor γ. An important breakthrough was
recently achieved by [11] who proved that one can remove the dependency with respect to ǫ,
and thus show that Howard’s PI and Simplex-PI are strongly polynomial for a fixed discount
factor γ.

Theorem 1 ([11]). Simplex-PI and Howard’s PI both terminate after at most n(m −

1)
⌈

n
1−γ

log
(

n2

1−γ

)⌉

iterations.

3In this case, PI is equivalent to running the simplex algorithm with the highest-pivot rule on a
linear program version of the MDP problem [11].

4For clarity, all proofs are deferred to the Appendix. The first proofs about bounds for the
case γ < 1 are given in the Appendix of the paper. The other proofs, that are more involved, are
provided in the Supplementary Material.

5A sequence of non-negative numbers (xk)k≥0 is contracting with coefficient α if and only if for
all k ≥ 0, xk+1 ≤ αxk.

6For Howard’s PI, we have: ‖v∗ −vπk
‖∞ ≤ γk‖v∗ −vπ0 ‖∞ ≤ γkVmax. Thus, a sufficient condition

for ‖v∗ −vπk
‖∞ < ǫ is γkVmax < ǫ, which is implied by k ≥

log
Vmax

ǫ

1−γ
>

log
Vmax

ǫ

log 1
γ

. For Simplex-PI, we

have ‖v∗ −vπk
‖∞ ≤ ‖v∗ −vπk

‖1 ≤
(

1 − 1−γ

n

)k
‖v∗ −vπ0‖1 ≤

(

1 − 1−γ

n

)k
nVmax, and the conclusion

is similar to that for Howard’s PI.

3



The proof is based on the fact that PI corresponds to the simplex algorithm in a linear
programming formulation of the MDP problem. Using a more direct proof, [3] recently
improved the result by a factor O(n) for Howard’s PI.

Theorem 2 ([3]). Howard’s PI terminates after at most (nm + 1)
⌈

1
1−γ

log
(

n
1−γ

)⌉

itera-

tions.

Our first two results, that are consequences of the contraction properties (Lemmas 2 and
3), are stated in the following theorems.

Theorem 3 (Proof in Section C). Howard’s PI terminates after at most n(m −

1)
⌈

1
1−γ

log
(

1
1−γ

)⌉

iterations.

Theorem 4 (Proof in Section D). Simplex-PI terminates after at most n(m −

1)
⌈

n
1−γ

log
(

n
1−γ

)⌉

iterations.

Our result for Howard’s PI is a factor O(log n) better than the previous best result of [3].
Our result for Simplex-PI is only very slightly better (by a factor 2) than that of [11], and
uses a proof that is more direct. Using more refined argument, we managed to also improve
the bound for Simplex-PI by a factor O(log n).

Theorem 5 (Proof in Section E). Simplex-PI terminates after at most n2(m −

1)
(

1 + 2
1−γ

log 1
1−γ

)

iterations.

Compared to Howard’s PI, our bound for Simplex-PI is a factor O(n) larger. However, since
one changes only one action per iteration, each iteration may have a complexity lower by a
factor n: the update of the value can be done in time O(n2) through the Sherman-Morrisson
formula, though in general each iteration of Howard’s PI, which amounts to compute the
value of some policy that may be arbitrarily different from the previous policy, may require
O(n3) time. Overall, both algorithms seem to have a similar complexity.

It is easy to see that the linear dependency of the bound for Howard’s PI with respect to
n is optimal. We conjecture that the linear dependency of both bounds with respect to
m is also optimal. The dependency with respect to the term 1

1−γ
may be improved, but

removing it is impossible for Howard’s PI and very unlikely for Simplex-PI. [2] describes an
MDP for which Howard’s PI requires an exponential (in n) number of iterations for γ = 1
and [5] argued that this holds also when γ is in the vicinity of 1. Though a similar result
does not seem to exist for Simplex-PI in the literature, [7] consider four variations of PI
that all switch one action per iteration, and show through specifically designed MDPs that
they may require an exponential (in n) number of iterations when γ = 1.

3 Bounds for Simplex-PI that are independent of γ

In this section, we will describe some bounds that do not depend on γ but that will be
based on some structural assumptions of the MDPs. On this topic, [8] recently showed the
following result for deterministic MDPs.

Theorem 6 ([8]). If the MDP is deterministic, then Simplex-PI terminates after at most

O(n5m2 log2 n) iterations.

Given a policy π of a deterministic MDP, states are either on cycles or on paths induced by
π. The core of the proof relies on the following lemmas that altogether show that cycles are
created regularly and that significant progress is made every time a new cycle appears; in
other words, significant progress is made regularly.

Lemma 4. If the MDP is deterministic, after at most nm⌈2(n− 1) log n⌉ iterations, either
Simplex-PI finishes or a new cycle appears.

Lemma 5. If the MDP is deterministic, when Simplex-PI moves from π to π′ where π′

involves a new cycle, we have

1
T (vπ∗

− vπ′) ≤

(

1−
1

n

)

1
T (vπ∗

− vπ).

4



Indeed, these observations suffice to prove7 that Simplex-PI terminates after
O(n4m2 log n

1−γ
) = Õ(n4m2). Removing completely the dependency with respect to the

discount factor γ—the term in O(log 1
1−γ

)—requires a careful extra work described in [8],

which incurs an extra term of order O(n log(n)).

At a more technical level, the proof of [8] critically relies on some properties of the vec-
tor xπ = (I − γP T

π )−1
1 that provides a discounted measure of state visitations along the

trajectories induced by a policy π starting from a uniform distribution:

∀i ∈ X, xπ(i) = n

∞
∑

t=0

γtP(it = i | i0 ∼ U, at = π(it)),

where U denotes the uniform distribution on the state space X . For any policy π and state

i, we trivially have xπ(i) ∈
(

1, n
1−γ

)

. The proof exploits the fact that xπ(i) belongs to the

set (1, n) when i is on a path of π, while xπ(i) belongs to the set ( 1
1−γ

, n
1−γ

) when i is on

a cycle of π. As we are going to show, it is possible to extend the proof of [8] to stochastic
MDPs. Given a policy π of a stochastic MDP, states are either in recurrent classes or
transient classes (these two categories respectively generalize those of cycles and paths).
We will consider the following structural assumption.

Assumption 1. Let τt ≥ 1 and τr ≥ 1 be the smallest constants such that for all policies
π and all states i,

(1 ≤ )xπ(i) ≤ τt if i is transient for π, and

n

(1− γ)τr

≤ xπ(i)

(

≤
n

1− γ

)

if i is recurrent for π.

The constant τt (resp. τr) can be seen as a measure of the time needed to leave transient
states (resp. the time needed to revisit states in recurrent classes). In particular, when γ
tends to 1, it can be seen that τt is an upper bound of the expected time L needed to “Leave
the set of transient states”, since for any policy π,

lim
γ→1

τt ≥
1

n
lim
γ→1

∑

i transient for π

xπ(i) =

∞
∑

t=0

P(it transient for π | i0 ∼ U, at = π(it))

= E [ L | i0 ∼ U, at = π(it)] .

Similarly, when γ is in the vicinity of 1, 1
τr

is the minimal asymptotic frequency8 in recurrent
states given that one starts from a random uniform state, since for any policy π and recurrent
state i:

lim
γ→1

1− γ

n
xπ(i) = lim

γ→1
(1− γ)

∞
∑

t=0

γtP(it = i | i0 ∼ U, at = π(it))

= lim
T →∞

1

T

T −1
∑

t=0

P(it = i | i0 ∼ U, at = π(it)).

With Assumption 1 in hand, we can generalize Lemmas 4-5 as follows.

Lemma 6. If the MDP satisfies Assumption 1, after at most
n

[

(m− 1)⌈nτt log(nτt)⌉+ ⌈nτt log(n2τt)⌉
]

iterations either Simplex-PI finishes or a
new recurrent class appears.

7This can be done by using arguments similar to the proof of Theorem 4 in Section D.
8If the MDP is aperiodic and irreducible, and thus admits a stationary distribution νπ for any

policy π, one can see that
1

τr

= min
π, i recurrent for π

νπ(i).

5



Lemma 7. If the MDP satisfies Assumption 1, when Simplex-PI moves from π to π′ where
π′ involves a new recurrent class, we have

1
T (vπ∗

− vπ′) ≤

(

1−
1

τr

)

1
T (vπ∗

− vπ).

From these generalized observations, we can deduce the following original result.

Theorem 7 (Proof in Appendix F of the Supp. Material). If the MDP satisfies Assump-
tion 1, then Simplex-PI terminates after at most

n2(m− 1) (⌈τr log(nτr)⌉+ ⌈τr log(nτt)⌉)
[

(m− 1)⌈nτt log(nτt)⌉+ ⌈nτt log(n2τt)⌉
]

iterations.

Remark 1. This new result is a strict generalization of the result for deterministic MDPs.
Indeed, in the deterministic case, we have τt ≤ n and τr ≤ n, and it is is easy to see that
Lemmas 6, 7 and Theorem 7 respectively imply Lemmas 4, 5 and Theorem 6.

An immediate consequence of the above result is that Simplex-PI is strongly polynomial for
sets of MDPs that are much larger than the deterministic MDPs mentionned in Theorem 6.

Corollary 2. For any family of MDPs indexed by n and m such that τt and τr are polyno-
mial functions of n and m, Simplex-PI terminates after a number of steps that is polynomial
in n and m.

4 Similar results for Howard’s PI?

One may then wonder whether similar results can be derived for Howard’s PI. Unfortunately,
and as quickly mentionned by [8], the line of analysis developped for Simplex-PI does not
seem to adapt easily to Howard’s PI, because simultaneously switching several actions can
interfere in a way that the policy improvement turns out to be small. We can be more
precise on what actually breaks in the approach we have described so far. On the one hand,
it is possible to write counterparts of Lemmas 4 and 6 for Howard’s PI (see Appendix G of
the Supp. Material).

Lemma 8. If the MDP is deterministic, after at most n iterations, either Howard’s PI
finishes or a new cycle appears.

Lemma 9. If the MDP satisfies Assumption 1, after at most nm⌈τt log nτt⌉ iterations,
either Howard’s PI finishes or a new recurrent class appears.

However, on the other hand, we did not manage to adapt Lemma 5 nor Lemma 7. In fact,
it is unlikely that a result similar to that of Lemma 5 will be shown to hold for Howard’s PI.
In a recent deterministic example due to [4] to show that Howard’s PI may require at most
O(n2) iterations, new cycles are created every single iteration but the sequence of values

satisfies9 for all iterations k < n2

4
+ n

4
and states i,

v∗(i)− vπk+1
(i) ≥

[

1−

(

2

n

)k
]

(v∗(i)− vπk
(i)).

Contrary to Lemma 5, as k grows, the amount of contraction gets (exponentially) smaller and
smaller. With respect to Simplex-PI, this suggests that Howard’s PI may suffer from subtle
specific pathologies. In fact, the problem of determining the number of iterations required
by Howard’s PI has been challenging for almost 30 years. It was originally identified as
an open problem by [10]. In the simplest—deterministic—case, the question is still open:
the currently best known lower bound is the O(n2) bound by [4] we have just mentionned,

while the best known upper bound is O(mn

n
) (valid for all MDPs) due to [6].

9This MDP has an even number of states n = 2p. The goal is to minimize the long term expected
cost. The optimal value function satisfies v∗(i) = −pN for all i, with N = p2 + p. The policies
generated by Howard’s PI have values vπk

(i) ∈ (pN−k−1, pN−k). We deduce that for all iterations

k and states i,
v∗(i)−vπk+1

(i)

v∗(i)−vπk
(i)

≥ 1+p−k−2

1+p−k = 1 − p−k−p−k−2

1+p−k ≥ 1 − p−k(1 − p−2) ≥ 1 − p−k.

6



On the positive side, an adaptation of the line of proof we have considered so far can be
carried out under the following assumption.

Assumption 2. The state space X can be partitioned in two sets T and R such that for
all policies π, the states of T are transient and those of R are recurrent.

Indeed, under this assumption, we can prove for Howard’s PI a variation of Lemma 7
introduced for Simplex-PI.

Lemma 10. For an MDP satisfying Assumptions 1-2, suppose Howard’s PI moves from π
to π′ and that π′ involves a new recurrent class. Then

1
T (vπ∗

− vπ′) ≤

(

1−
1

τr

)

1
T (vπ∗

− vπ).

And we can deduce the following original bound (that also applies to Simplex-PI).

Theorem 8 (Proof in Appendix H of the Supp. Material). If the MDP satisfies Assump-
tions 1-2, then Howard’s PI terminates after at most n(m − 1) (⌈τt log nτt⌉+ ⌈τr log nτr⌉)
iterations, while Simplex-PI terminates after at most n(m− 1) (⌈nτt log nτt⌉+ ⌈τr log nτr⌉)
iterations.

It should however be noted that Assumption 2 is rather restrictive. It implies that the algo-
rithms converge on the recurrent states independently of the transient states, and thus the
analysis can be decomposed in two phases: 1) the convergence on recurrent states and then
2) the convergence on transient states (given that recurrent states do not change anymore).
The analysis of the first phase (convergence on recurrent states) is greatly facilitated by the
fact that in this case, a new recurrent class appears every single iteration (this is in contrast
with Lemmas 4, 6, 8 and 9 that were designed to show under which conditions cycles and
recurrent classes are created). Furthermore, the analysis of the second phase (convergence
on transient states) is similar to that of the discounted case of Theorems 3 and 4. In other
words, if this last result sheds some light on the practical efficiency of Howard’s PI and
Simplex-PI, a general analysis of Howard’s PI is still largely open, and constitutes our main
future work.

A Contraction property for Howard’s PI (Proof of Lemma 2)

For any k, using the facts that {∀π, Tπvπ = vπ}, {Tπ∗
vπk−1

≤ Tπk
vπk−1

} and
{Lemma 1 and Pπk

is positive definite}, we have

vπ∗
− vπk

= Tπ∗
vπ∗
− Tπ∗

vπk−1
+ Tπ∗

vπk−1
− Tπk

vπk−1
+ Tπk

vπk−1
− Tπk

vπk

≤ γPπ∗
(vπ∗

− vπk−1
) + γPπk

(vπk−1
− vπk

) ≤ γPπ∗
(vπ∗

− vπk−1
).

Since vπ∗
− vπk

is non negative, we can take the max norm and get: ‖vπ∗
− vπk

‖∞ ≤
γ‖vπ∗

− vπk−1
‖∞.

B Contraction property for Simplex-PI (Proof of Lemma 3)

By using the fact that {vπ = Tπvπ ⇒ vπ = (I − γPπ)−1rπ}, we have that for all pairs of
policies π and π′.

vπ′ − vπ = (I − γPπ′)−1rπ′ − vπ = (I − γPπ′)−1(rπ′ + γPπ′vπ − vπ)

= (I − γPπ′)−1(Tπ′vπ − vπ). (1)

On the one hand, by using this lemma and the fact that {Tπk+1
vπk
− vπk

≥ 0}, we have for

any k: vπk+1
− vπk

= (I − γPk+1)−1(Tπk+1
vπk
− vπk

) ≥ Tπk+1
vπk
− vπk

, which implies that

1
T (vπk+1

− vπk
) ≥ 1

T (Tπk+1
vπk
− vπk

). (2)

On the other hand, using Equation (1) and the facts that {‖(I − γPπ∗
)−1‖∞ =

1
1−γ

and (I − γPπ∗
)−1 is positive definite}, {maxs Tπk+1

vπk
(s) = maxs,π̃ Tπ̃vπk

(s)} and

7



{∀x ≥ 0, maxs x(s) ≤ 1T x}, we have:

vπ∗
− vπk

= (I − γPπ∗
)−1(Tπ∗

vπk
− vπk

) ≤
1

1− γ
max

s
Tπ∗

vπk
(s)− vπk

(s)

≤
1

1− γ
max

s
Tπk+1

vπk
(s)− vπk

(s) ≤
1

1− γ
1

T (Tπk+1
vπk
− vπk

),

which implies (using {∀x, 1
T x ≤ n‖x‖∞}) that

1
T (Tπk+1

vπk
− vπk

) ≥ (1− γ)‖vπ∗
− vπk

‖∞ ≥
1− γ

n
1

T (vπ∗
− vπk

). (3)

Combining Equations (2) and (3), we get:

1
T (vπ∗

− vπk+1
) = 1

T (vπ∗
− vπk

)− 1
T (vπk+1

− vπk
)

≤ 1
T (vπ∗

− vπk
)−

1− γ

n
1

T (vπ∗
− vπk

) =

(

1−
1− γ

n

)

1
T (vπ∗

− vπk
).

C A bound for Howard’s PI when γ < 1 (Proof of Theorem 3)

For any k, by using Equation (1) and the fact {v∗ − vπk
≥ 0 and Pπk

positive definite}, we
have:

v∗ − Tπk
v∗ = (I − γPπk

)(v∗ − vπk
) ≤ v∗ − vπk

.

Since v∗−Tπk
v∗ is non negative, we can take the max norm and, using Lemma 2, Equation (1)

and the fact that {‖(I − γPπ0
)−1‖∞ = 1

1−γ
}, we get:

‖v∗ − Tπk
v∗‖∞ ≤ ‖v∗ − vπk

‖∞ ≤ γk‖vπ∗
− vπ0

‖∞

= γk‖(I − γPπ0
)−1(v∗ − Tπ0

v∗)‖∞ ≤
γk

1− γ
‖v∗ − Tπ0

v∗‖∞. (4)

By definition of the max-norm, there exists a state s0 such that v∗(s0) − [Tπ0
v∗](s0) =

‖v∗ − Tπ0
v∗‖∞. From Equation (4), we deduce that for all k,

v∗(s0)− [Tπk
v∗](s0) ≤ ‖v∗ − Tπk

v∗‖∞ ≤
γk

1− γ
‖v∗ − Tπ0

v∗‖∞ =
γk

1− γ
(v∗(s0)− [Tπ0

v∗](s0)).

As a consequence, the action πk(s0) must be different from π0(s0) when γk

1−γ
< 1, that is for

all values of k satisfying k ≥ k∗ =
⌈

log 1
1−γ

1−γ

⌉

>
⌈

log 1
1−γ

log 1
γ

⌉

. In other words, if some policy π

is not optimal, then one of its non-optimal actions will be eliminated for good after at most
k∗ iterations. By repeating this argument, one can eliminate all non-optimal actions (they
are at most n(m− 1)), and the result follows.

D A bound for Simplex-PI when γ < 1 (Proof of Theorem 4)

Using {∀x ≥ 0, ‖x‖∞ ≤ 1
T x}, Lemma 3, {∀x, 1

T x ≤ n‖x‖∞}, Equation (1) and {‖(I −
γPπ0

)−1‖∞ = 1
1−γ
}, we have for all k,

‖vπ∗
− Tπk

vπ∗
‖∞ ≤ ‖vπ∗

− vπk
‖∞ ≤ 1

T (vπ∗
− vπk

)

≤

(

1−
1− γ

n

)k

1
T (vπ∗

− vπ0
) ≤ n

(

1−
1− γ

n

)k

‖vπ∗
− vπ0

‖∞

= n

(

1−
1− γ

n

)k

‖(I − γPπ0
)−1(v∗ − Tπ0

v∗)‖∞ ≤
n

1− γ

(

1−
1− γ

n

)k

‖vπ∗
− Tπ0

vπ∗
‖∞

Similarly to the proof for Howard’s PI, we deduce that a non-optimal action is eliminated

after at most k∗ =
⌈

n
1−γ

log n
1−γ

⌉

≥

⌈

log n
1−γ

log(1− 1−γ

n )

⌉

, and the overall number of iterations is

obtained by noting that there are at most n(m− 1) non optimal actions to eliminate.

8



References

[1] D.P. Bertsekas and J.N. Tsitsiklis. Neurodynamic Programming. Athena Scientific,
1996.

[2] J. Fearnley. Exponential lower bounds for policy iteration. In Proceedings of the 37th
international colloquium conference on Automata, languages and programming: Part
II, ICALP’10, pages 551–562, Berlin, Heidelberg, 2010. Springer-Verlag.

[3] T.D. Hansen, P.B. Miltersen, and U. Zwick. Strategy iteration is strongly polynomial
for 2-player turn-based stochastic games with a constant discount factor. J. ACM,
60(1):1:1–1:16, February 2013.

[4] T.D. Hansen and U. Zwick. Lower bounds for howard’s algorithm for finding minimum
mean-cost cycles. In ISAAC (1), pages 415–426, 2010.

[5] R. Hollanders, J.C. Delvenne, and R. Jungers. The complexity of policy iteration is
exponential for discounted markov decision processes. In 51st IEEE conference on
Decision and control (CDC’12), 2012.

[6] Y. Mansour and S.P. Singh. On the complexity of policy iteration. In UAI, pages
401–408, 1999.

[7] M. Melekopoglou and A. Condon. On the complexity of the policy improvement algo-
rithm for markov decision processes. INFORMS Journal on Computing, 6(2):188–192,
1994.

[8] I. Post and Y. Ye. The simplex method is strongly polynomial for deterministic markov
decision processes. Technical report, arXiv:1208.5083v2, 2012.

[9] M. Puterman. Markov Decision Processes. Wiley, New York, 1994.

[10] N. Schmitz. How good is howard’s policy improvement algorithm? Zeitschrift für
Operations Research, 29(7):315–316, 1985.

[11] Y. Ye. The simplex and policy-iteration methods are strongly polynomial for the markov
decision problem with a fixed discount rate. Math. Oper. Res., 36(4):593–603, 2011.

9



Supplementary Material

E Another bound for Simplex-PI when γ < 1 (Proof of
Theorem 5)

This second bound for Simplex-PI is a factor O(log n) better, but requires a slightly more careful
analysis.

At each iteration k, let sk be the state in which an action is switched. We have (by definition of
the algorithm):

Tπk+1
vπk

(sk) − vπk
(sk) = max

π,s
Tπvπk

(s) − vπk
(s).

Starting with arguments similar to those for the contraction property of Simplex-PI, we have:

vπ∗ − vπk
= (I − γPπ∗ )−1(Tπ∗ vπk

− vπk
) {Lemma 1}

≤
1

1 − γ
max

s
Tπ∗ vπk

(s) − vπk
(s) {‖(I − γPπ∗ )−1‖∞ =

1

1 − γ
and (I − γPπ∗ )−1 ≻ 0}

≤
1

1 − γ
(Tπk+1

vπk
(sk) − vπk

(sk)), {By definition of sk}

which implies that

‖vπ∗ − vπk
‖∞ ≤

1

1 − γ
(Tπk+1

vπk
(sk) − vπk

(sk)). (5)

On the other hand, we have:

vπk+1
− vπk

= (I − γPπk+1
)−1(Tπk+1

vπk
− vπk

) {Lemma 1}

≥ Tπk+1
vπk

− vπk
, {(I − γPπk+1

)−1 ≻ 0 and Tπk+1
vπk

− vπk
≥ 0}

which implies that

vπk+1
(sk) − vπk

(sk) ≥ Tπk+1
vπk

(sk) − vπk
(sk). (6)

Write ∆k = vπ∗ − vπk
. From Equations (5) and (6), we deduce that:

∆k+1(sk) ≤ ∆k(sk) − (1 − γ)‖∆k‖∞

=

(

1 − (1 − γ)
‖∆k‖∞

∆k(sk)

)

∆k(sk).

This implies in particular that

∆k+1(sk) ≤ γ∆k(sk),

but also—since ∆k(sk) and ∆k+1(sk) are non-negative—that

‖∆k‖∞ ≤
1

1 − γ
∆k(sk).

Now, write nk the vector on the state space such that nk(s) is the number of times state s has been
switched until iteration k (including k). Since by Lemma 1 the sequence (∆k)k≥0 is non-increasing,
we have

‖∆k‖∞ ≤
1

1 − γ
∆k(sk)

≤
γnk−1(sk)

1 − γ
∆0(sk)

≤
γnk−1(sk)

1 − γ
‖∆0‖∞.

10



At any iteration k, let s∗
k = arg maxs nk−1(s). Since at each iteration k, one of the n component is

increased by 1, we necessarily have

nk−1(s∗
k) ≥

⌊

k − 1

n

⌋

.

Write k∗ ≤ k − 1 the last iteration when the state s∗
k was updated, such that we have

nk−1(s∗
k) = nk∗−1(sk∗ ).

Since (‖∆k‖∞)k≥0 is non-increasing (using again Lemma 1), we have

‖∆k‖∞ ≤ ‖∆k∗ ‖∞

≤
γnk∗−1(sk∗ )

1 − γ
‖∆0‖∞

=
γnk−1(s∗

k
)

1 − γ
‖∆0‖∞

≤
γ⌊ k−1

n ⌋

1 − γ
‖∆0‖∞.

We are now ready to finish the proof. We have

‖vπ∗ − Tπk
vπ∗ ‖∞ ≤ ‖∆k‖∞

≤
γ⌊ k−1

n ⌋

1 − γ
‖∆0‖∞

≤
γ⌊ k−1

n ⌋

(1 − γ)2
‖vπ∗ − Tπ0 vπ∗ ‖∞.

Using the relation n
⌊

k−1
n

⌋

≥ k − n and arguments similar to the previous proofs, we deduce that a

non-optimal action is eliminated after at most n
(

1 + 2
1−γ

log 1
1−γ

)

iterations, and the result follows

from the fact that there are at most n(m − 1) non-optimal actions.

F A general bound for Simplex-PI (Proof of Theorem 7)

The proof we give here is strongly inspired by that for the deterministic case of [8]: the steps
(a series of lemmas) are similar. There are essentially two differences. First our arguments are
somewhat more direct in that we do not refer to linear programming. Second, it is more general:
for any policy π, we need to consider the set of transient states (respectively recurrent classes)
instead of the set of path states (respectively cycles).

For any policy π, write R(π) for the set of states that are recurrent for π. Recall that xπ =
(I − γPπ

T )−1
1. A useful corollary of Lemma 1 is that for any pair of policies π and π′,

1
T (vπ′ − vπ) = xπ′

T (Tπ′vπ − vπ). (7)

With some slight abuse of notation, we will write that s ∈ R(π) if there exists a recurrent class
R ∈ R(π) that contains s. We will repeatedly exploit Assumption 1, that we restate here for clarity:

∀s ∈ R(π),
n

(1 − γ)τr

≤ xπ(s) ≤
n

1 − γ
, (8)

∀s 6∈ R(π), xπ(s) ≤ τt. (9)

As mentioned, before, the proof is structured in two steps: first, we will show that recurrent classes
are created often; then we will show that significant progress is made every time a new recurrent
class appears.

F.1 Part 1: Recurrent classes are created often

Lemma 11. Suppose one moves from policy π to policy π′ without creating any recurrent class.
Let π† be the final policy before either a new recurrent class appears or the algorithm terminates.
Then

1
T (vπ†

− vπ′) ≤
(

1 −
1

nτt

)

1
T (vπ†

− vπ).

11



Proof. The arguments are similar to those for the proof of Theorem 4. On the one hand, we have:

1
T (vπ′ − vπ) ≥ 1

T (Tπ′vπ − vπ). (10)

On the other hand, we have

1
T (vπ†

− vπ) = 1
T (I − γPπ†

)−1(Tπ†
vπ − vπ)

= x
T
π†

(Tπ†
vπ − vπ)

=
∑

s6∈R(π†)

xπ†
(s)(Tπ†

vπ(s) − vπ(s)) +
∑

s∈R(π†)

xπ†
(s)(Tπ†

vπ(s) − vπ(s))

≤ nτt max
s6∈R(π†)

Tπ†
vπ(s) − vπ(s) +

n2

1 − γ
max

s∈R(π†)
Tπ†

vπ(s) − vπ(s). {Equations (8)-(9)}

Since by assumption cycles of π† are also cycles of π, we deduce that for all s ∈ R(π†), π†(s) = π(s),
so that maxs∈R(π†) Tπ†

vπ(s) − vπ(s) = 0. Thus, the second term of the above r.h.s. is null and

1
T (vπ†

− vπ) ≤ nτt max
s

Tπ†
vπ(s) − vπ(s)

≤ nτt max
s

Tπ′ vπ(s) − vπ(s) {max
s

Tπ′vπ(s) = max
s,π̃

Tπ̃vπ(s)}

= nτt1
T (Tπ′vπ − vπ). (11)

Combining Equations (10) and (11), we get:

1
T (vπ†

− vπ′ ) = 1
T (vπ†

− vπ) − 1
T (vπ′ − vπ)

≤
(

1 −
1

nτt

)

1
T (vπ†

− vπ).

Lemma 12. While Simplex-PI does not create any recurrent class nor finishes:

• an action is eliminated from policies after at most ⌈nτt log(nτt)⌉ iterations;

• a recurrent class is broken after at most ⌈nτt log(n2τt)⌉ iterations.

Proof. Let π be the policy in some iteration, π† be the last policy before a new recurrent class
appears, and π′ any policy between π and π†. Since

0 ≤ 1T (vπ†
− vπ) {vπ†

≥ vπ}

= xπ
T (vπ†

− Tπvπ†
) {Equation (7)}

=
∑

s6∈R(π)

xπ(s)(vπ†
(s) − Tπvπ†

(s)) +
∑

C∈R(π)

∑

s∈C

xπ(s)(vπ†
(s) − Tπvπ†

(s)),

there must exist either a state s0 6∈ R(π) such that

xπ(s0)(vπ†
(s0) − Tπvπ†

(s0)) ≥
1

n
xπ

T (vπ†
− Tπvπ†

) ≥ 0. (12)

or a recurrent class R0 such that
∑

s∈R0

xπ(s)(vπ†
(s) − Tπvπ†

(s)) ≥
1

n
xπ

T (vπ†
− Tπvπ†

) ≥ 0. (13)

We consider these two cases separately below.

• case 1: Equation (12) holds for some s0 6∈ R(π). If π′(s0) = π(s0), then

1
T (vπ†

− vπ′ ) ≥ vπ†
(s0) − vπ′ (s0) {vπ†

≥ vπ′}

= vπ†
(s0) − Tπ′vπ′ (s0) {vπ′ = Tπ′ vπ′}

≥ vπ†
(s0) − Tπ′vπ†

(s0) {vπ†
≥ vπ′}

= vπ†
(s0) − Tπvπ†

(s0) {π(s0) = π
′(s0)}

≥
1

τt

xπ(s0)(vπ†
(s0) − Tπvπ†

(s0)) {Equation (9)}

≥
1

nτt

xπ
T (vπ†

− Tπvπ†
) {Equation (12)}

=
1

nτt

1
T (vπ†

− vπ). {Equation (7)}

12



If there is no recurrent class creation, the contraction property given in Lemma 11 implies

that after k = ⌈nτt log(nτt)⌉ >
log(nτt)

log 1

1− 1
nτt

iterations we have

1
T (vπ†

− vπ′ ) <
1

nτt

1
T (vπ†

− vπ),

and thus π′(s0) 6= π(s0).

• case 2: Equation (13) holds for some R0 ∈ R(π). Write T be the set of states that are
transient for π (formally, T = X\R(π)). For any subset Y of the state space X, write
P Y

π for the stochastic matrix of which the ith row is equal to that of Pπ if i ∈ Y , and is 0
otherwise, and write 1Y the vectors of which the ith component is equal to 1 if i ∈ Y and
0 otherwise. Using the fact that P R0

π P T
π = 0, one can first observe that

(I − γP
R0
π )(I − γP

T
π ) = I − γ(P R0

π + P
T
π ),

from which we can deduce that

1T ∪R0

T (I − γP )−1 = 1T ∪R0

T (I − γ(P R0
π + P

T
π ))−1

= 1T ∪R0

T (I − γP
T
π )−1(I − γP

R0
π )−1

. (14)

Also, writing hT = (I − γP T
π

T
)−1

1T , that satisfies

hT = 1T + γP
T
π

T
hT ,

we can see that:

∀s ∈ R0, hT (s) = γ
∑

s′∈T

ps′s(π(s′))hT (s′), {s ∈ R0 ⇒ 1T (s) = 0} (15)

and thus:

(I − γP
T
π

T
)−1

1T ∪R0(s) = (I − γP
T
π

T
)−1

1T (s) + 1 {P
T
π

T
1R0 = 0}

= hT (s) + 1

≤ γ
∑

s′∈T

ps′s(π(s′))hT (s′) + 1 {Equation (15)}

≤
∑

s′∈T

hT (s′) + 1

=
∑

s′∈T

xπ(s′) + 1 {∀s
′ ∈ T , hT (s′) = xπ(s′)}

≤ (n − 1)τt + 1 {|T | ≤ (n − 1) and Equation (9)}

≤ nτt. {τt ≥ 1}
(16)

13



Writing δ the vector that equals vπ†
− Tπvπ†

on R0 and that is null everywhere else, we
have
∑

s∈R0

xπ(s)(vπ†
(s) − Tπvπ†

(s))

=
∑

s∈R0

[(I − γP
T
π )−1

1](s)δ(s)

=
∑

s∈R0

[(I − γP
T
π )−1

1T ∪R0 ](s)δ(s)
{

∀s ∈ R0, [(I − γP
T
π )−1

1X\(T ∪R0)(s) = 0
}

=
∑

s

[(I − γP
T
π )−1

1T ∪R0 ](s)δ(s) {∀s 6∈ R0, δ(s) = 0}

= 1T ∪R0

T (I − γPπ)−1
δ

= 1T ∪R0

T (I − γP
T
π )−1(I − γP

R0
π )−1

δ {Equation (14)}

=
∑

s

[(I − γP
T
π

T
)−1

1T ∪R0 ](s)[(I − γP
R0
π )−1

δ](s)

=
∑

s∈R0

[(I − γP
T
π

T
)−1

1T ∪R0 ](s)[(I − γP
R0
π )−1

δ](s) {∀s 6∈ R0, δ(s) = 0}

=
∑

s∈R0

[(I − γP
T
π

T
)−1

1T ∪R0 ](s)(vπ†
(s) − vπ(s)) {Lemma 1}

≤ nτt1R0(vπ†
− vπ). {Equation (16)}

(17)

Now, one can deduce from this that if R0 is also a recurrent class of π′, which implies
1R0

T vπ = 1R0

T vπ′ , then

1
T (vπ†

− vπ′ ) ≥ 1R0

T (vπ†
− vπ′ ) {vπ†

≥ vπ′}

= 1R0

T (vπ†
− vπ) {1R0

T
vπ = 1R0

T
vπ′}

≥
1

nτt

∑

s∈R0

xπ(s)(vπ†
(s) − Tπvπ†

(s)) {Equation (17)}

≥
1

n2τt

xπ
T (vπ†

− Tπvπ†
) {Equation (13)}

=
1

n2τt

1
T (vπ†

− vπ). {Equation (7)}

If there is no recurrent class creation, the contraction property given in Lemma 11 implies

that after k = ⌈nτt log(n2τt)⌉ >
log(n2τt)

log 1

1− 1
nτt

iterations we have

1
T (vπ†

− vπ′ ) <
1

n2τt

1
T (vπ†

− vπ),

and thus R0 cannot be a recurrent class of π′.

A direct consequence of the above result is Lemma 6 that we originally stated page 5, and that we
restate for clarity.

Lemma 6. After at most n
[

(m − 1)⌈nτt log(nτt)⌉ + ⌈nτt log(n2τt)⌉
]

iterations, either Simplex-PI
finishes or a new recurrent class appears.

Proof. Before a recurrent class is created, at most n recurrent classes need to be broken and n(m−1)
actions to be eliminated, and the time required by these events is bounded thanks to the previous
lemma.

14



F.2 Part 2: A new recurrent class implies a significant step towards the
optimal value

We now proceed to the second part of the proof, and begin by proving Lemma 7 (originally stated
page 6).

Lemma 7. Suppose Simplex-PI moves from π to π′ and that π′ involves a new recurrent class.
Then

1
T (vπ∗ − vπ′ ) ≤

(

1 −
1

τr

)

1
T (vπ∗ − vπ).

Proof. Let s0 be the state such that π′(s) 6= π(s). On the one hand, since π′ contains a new
recurrent class R (necessarily containing s0), we have

1
T (vπ′ − vπ) = xπ′

T (Tπ′vπ − vπ) {Equation (7)}

= xπ′(s0)(Tπ′vπ(s0) − vπ(s0)) {Simplex-PI switches 1 action}

≥
n

(1 − γ)τr

(Tπ′vπ(s0) − vπ(s0)). {Equation 8 with s0 ∈ R ⊂ R(π′)} (18)

On the other hand,

vπ∗ − vπ = (I − γPπ∗ )−1(Tπ∗ vπ − vπ) {Lemma 1}

≤
1

1 − γ
max

s
Tπ∗ vπ(s) − vπ(s) {‖(I − γPπ∗ )−1‖∞ ≤

1

1 − γ
and (I − γPπ∗ )−1 ≻ 0}

≤
1

1 − γ
max

s
Tπ′ vπ(s) − vπ(s) {max

s
Tπ′vπ(s) = max

s,π̃
Tπ̃vπ(s)}

=
1

1 − γ
(Tπ′vπ(s0) − vπ(s0)). {Simplex-PI switches 1 action}(19)

Combining these two observations, we obtain:

1
T (vπ∗ − vπ′ ) = 1

T (vπ∗ − vπ′ ) − 1
T (vπ′ − vπ)

≤ 1
T (vπ∗ − vπ′ ) −

n

(1 − γ)τr

(Tπ′vπ(s0) − vπ(s0)) {Equation (18)}

≤ 1
T (vπ∗ − vπ′ ) −

n

τr

max
s

vπ∗(s) − vπ′ (s) {Equation (19)}

≤
(

1 −
1

τr

)

1
T (vπ∗ − vπ′ ). {∀x, 1

T
x ≤ n max

s
x(s)}

Lemma 14. While the algorithm does not terminate,

• some non-optimal action is eliminated from recurrent states after at most ⌈τr log(nτr)⌉
recurrent class creations;

• some non-optimal action is eliminated from policies after at most ⌈τr log(nτt)⌉ recurrent
class creations.

Proof. Let π be the policy in some iteration and π′ be any policy between π and π∗. Let s0 =
arg maxs xπ(s)(vπ∗ (s) − Tπvπ∗ (s)). We have

xπ(s0)(vπ∗ (s0) − Tπvπ∗ (s0)) ≥
1

n
xπ

T (vπ∗ − Tπvπ∗ ) {∀x, 1
T

x ≤ n max
s

x(s)}

= 1
T (vπ∗ − vπ). {Equation (7)} (20)

We now consider two cases.

• case 1: s0 6∈ R(π). If π′(s0) = π(s0), then

1
T (vπ∗ − vπ′ ) = xπ′

T (vπ∗ − Tπ′ vπ∗ ) {Equation (7)}

≥ xπ′(s0)(vπ∗ (s0) − Tπ′vπ∗ (s0)) {vπ∗ ≥ Tπ′vπ∗ }

≥ vπ∗ (s0) − Tπ′vπ∗ (s0) {xπ′(s0) ≥ 1}

= vπ∗ (s0) − Tπvπ∗ (s0) {π(s0) = π
′(s0)}

≥
1

τt

xπ(s0)(vπ∗ (s0) − Tπvπ∗ (s0)) {Equation (9)}

≥
1

nτt

1
T (vπ∗ − vπ). {Equation (20)}

15



After k = ⌈τr log nτt⌉ > log nτt

log 1

1− 1
τ r

new recurrent classes are created, we have by the

contraction property of Lemma 7 that

1
T (vπ∗ − vπ′ ) <

1

nτt

1
T (vπ∗ − vπ).

This implies that π′(s0) 6= π(s0).

• case 2: s0 ∈ R(π). If π′(s0) = π(s0) and s0 ∈ R(π′), then

1
T (vπ∗ − vπ′ ) = xπ′

T (vπ∗ − Tπ′vπ∗ ) {Equation (7)}

=
∑

s

xπ′(s)(vπ∗(s) − Tπ′vπ∗ (s))

≥
∑

s∈R0

xπ′(s)(vπ∗(s) − Tπ′vπ∗ (s)) {vπ∗ ≥ Tπ′ vπ∗ }

≥
n

(1 − γ)τr

∑

s∈R0

vπ∗ (s) − Tπ′ vπ∗ (s) {Equation 8}

≥
n

(1 − γ)τr

vπ∗ (s0) − Tπ′ vπ∗ (s0) {vπ∗ ≥ Tπ′ vπ∗ }

=
n

(1 − γ)τr

vπ∗ (s0) − Tπvπ∗ (s0) {π(s0) = π
′(s0)}

=
1

τr

xπ(s0)(vπ∗ (s0) − Tπvπ∗ (s0)) {xπ(s0) ≤
n

1 − γ
}

≥
1

nτr

1
T (vπ∗ − vπ). {Equation (20)}

After k = ⌈τr log nτr⌉ > log nτr

log 1

1− 1
τ r

new recurrent classes are created, we have by the

contraction property of Lemma 7 that

1
T (vπ∗ − vπ′ ) <

1

nτr

1
T (vπ∗ − vπ).

This implies that π′(s0) 6= π(s0) if s0 is recurrent for π′.

We are ready to conclude: At most, the n(m−1) non-optimal actions may need to be eliminated from
recurrent and transient states, requiring at most a total of n(m − 1)(⌈τr log(nτr)⌉ + ⌈τr log(nτt)⌉)
recurrent classes creations. The result follows from the fact that each class creation requires at
most n

[

(m − 1)⌈nτt log(nτt)⌉ + ⌈nτt log(n2τt)⌉
]

iterations.

G Cycle and recurrent classes creations for Howard’s PI (Proofs
of Lemmas 8 and 9)

Lemma 8. If the MDP is deterministic, after at most n iterations, either Howard’s PI finishes or
a new cycle appears.

Proof. Consider a sequence of l generated policies π1, · · · , πl from an initial policy π0 such that no
new cycle appears. By induction, we have

vπl
− vπk

= Tπl
vπl

− Tπl
vπk−1

+ Tπl
vπk−1

− Tπk
vπk−1

+ Tπk
vπk−1

− Tπk
vπk

{∀π, Tπvπ = vπ}

≤ γPπl
(vπl

− vπk−1
) + γPπk

(vπk−1
− vπk

) {Tπl
vπk−1

≤ Tπk
vπk−1

}

≤ γPπl
(vπl

− vπk−1
). {Lemma 1 and Pπk

≻ 0}

≤ (γPπl
)k(vπl

− vπ0 ). {by induction on k}
(21)

16



Since the MDP is deterministic and has n states, (Pπl
)n will only have non-zero values on columns

that correspond to R(πl). Furthermore, since no cycle is created, R(πl) ⊂ R(π0), which implies
that vπl

(s) − vπ0 (s) = 0 for all s ∈ R(πl). As a consequence, we have (Pπl
)n(vπl

− vπ0 ) = 0. By
Equation (21), this implies that vπl

= vπn . If l > n, then the algorithm must have terminated.

Lemma 9. If the MDP satisfies Assumption 1, after at most nm⌈τt log nτt⌉ iterations, either
Howard’s PI finishes or a new recurrent class appears.

Proof. It can be seen that the proof of Lemma 6 also applies to Howard’s PI.

H A bound for Howard’s PI and Simplex-PI under
Assumption 2 (proof of Theorem 8)

We here consider that the state space is decomposed into 2 sets: T is the set of states that are
transient under all policies, and R is the set of states that are recurrent under all policies. From
this assumption, it can be seen that when running Howard’s PI or Simplex-PI, the values and
actions chosen on T have no influence on the evolution of the values and policies on R. So we
will study the convergence of both algorithms in two steps: We will first bound the number of
iterations to converge on R. We will then add the number of iterations for converging on T given
that convergence has occurred on R.

Convergence on the set R of recurrent states Without loss of generality, we consider
that the state space is only made of the set of recurrent states.

First consider Simplex-PI. If all states are recurrent, new recurrent classes are created at every
iteration, and Lemma 6 holds. Then, in a way similar to the proof of Lemma 14, it can be shown
that every ⌈τr log nτr⌉ iterations, a non-optimal action can be eliminated. As there are at most
n(m−1) non-optimal actions, we deduce that Simplex-PI converges in at most n(m−1)⌈τr log nτr⌉
iterations on R.

Now consider Howard’s PI. We can prove Lemma 10, that we restate for clarity.

Lemma 10. For an MDP satisfying Assumptions 1-2, suppose Howard’s PI moves from π to π′

and that π′ involves a new recurrent class. Then

1
T (vπ∗ − vπ′ ) ≤

(

1 −
1

τr

)

1
T (vπ∗ − vπ).

Proof. In the case we focus on the convergence on the set R of recurrent states, new recurrent
classes are created at every iteration. So we will prove that the inequality holds for every k. On
the one hand, we have for all iterations k,

1
T (vπk+1

− vπk
) = xπk+1

T (Tπk+1
vπk

− vπk
) {Equation (7)}

≥
n

(1 − γ)τr

1
T (Tπk+1

vπk
− vπk

{Equation (8)}

≥
n

(1 − γ)τr

‖Tπk+1
vπk

− vπk
‖∞. {∀x ≥ 0,1

T
x ≥ ‖x‖∞} (22)

On the other hand,

1
T (vπ∗ − vπk

) = xπ∗

T (Tπ∗ vπk
− vπk

) {Equation (7)}

≤
n

1 − γ
‖Tπ∗ vπk

− vπk
)‖∞ {

∑

i

xπ∗ (i) ≤
n

1 − γ
}

≤
n

1 − γ
‖Tπk+1

vπk
− vπk

‖∞. (23)

By combining Equations (22) and (23), we obtain:

1
T (vπ∗ − vπk+1

) = 1
T (vπ∗ − vπk

) − 1
T (vπk+1

− vπk
)

≤
(

1 −
1

τr

)

1
T (vπ∗ − vπk

).

Then, similarly to Simplex-PI, we can prove that after every ⌈τr log nτr⌉ iterations a non-optimal
action must be eliminated. And as there are at most n(m − 1) non-optimal actions, we deduce that
Howard’s PI converges in at most n(m − 1)⌈τr log nτr⌉ iterations on R.

17



Convergence on the set T of transient states Consider now that convergence has oc-
curred on the recurrent states R. A simple variation of the proof of Lemma 6/Lemma 9 (where
we use the fact that we don’t need to consider the events where recurrent classes are broken since
recurrent classes do not evolve anymore) allows to show that the extra number of iterations to
converge on the transient states is n(m − 1)⌈τt log nτt⌉ for Howard’s PI and n2(m − 1)⌈τt log nτt⌉
for Simplex-PI, and the result follows.

18


	Introduction
	Bounds with respect to a Fixed Discount Factor <1
	Bounds for Simplex-PI that are independent of 
	Similar results for Howard's PI?
	Contraction property for Howard's PI (Proof of Lemma 2)
	Contraction property for Simplex-PI (Proof of Lemma 3) 
	A bound for Howard's PI when <1 (Proof of Theorem 3)
	A bound for Simplex-PI when <1 (Proof of Theorem 4)
	Another bound for Simplex-PI when <1 (Proof of Theorem 5)
	A general bound for Simplex-PI (Proof of Theorem 7)
	Part 1: Recurrent classes are created often
	Part 2: A new recurrent class implies a significant step towards the optimal value

	Cycle and recurrent classes creations for Howard's PI (Proofs of Lemmas 8 and 9)
	A bound for Howard's PI and Simplex-PI  under Assumption 2 (proof of Theorem 8)

