
HAL Id: hal-00921626
https://inria.hal.science/hal-00921626

Submitted on 20 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Overview of Process Mapping Techniques and
Algorithms in High-Performance Computing

Torsten Hoefler, Emmanuel Jeannot, Guillaume Mercier

To cite this version:
Torsten Hoefler, Emmanuel Jeannot, Guillaume Mercier. An Overview of Process Mapping Techniques
and Algorithms in High-Performance Computing. Emmanuel Jeannot and Julius Zilinskas. High
Performance Computing on Complex Environments, Wiley, pp.75-94, 2014, 978-1-118-71205-4. �hal-
00921626�

https://inria.hal.science/hal-00921626
https://hal.archives-ouvertes.fr


CHAPTER 5

AN OVERVIEW OF TOPOLOGY

MAPPING ALGORITHMS

AND TECHNIQUES

IN HIGH-PERFORMANCE COMPUTING

Torsten Hoefler1, Emmanuel Jeannot2, and Guillaume Mercier3,2

1ETH Zurich, Switzerland
2Inria Bordeaux Sud-Ouest, Talence, France
3Bordeaux Polytechnic Institute, Talence, France

Due to the advent of modern hardware architectures of high-performance comput-

ers, the way the parallel applications are laid out is of paramount importance for

performance. This chapter surveys several techniques and algorithms that efficiently

address this issue: the mapping of the application’s virtual topology (for instance its

communication pattern) onto the physical topology. Using such strategy enables to

improve the application overall execution time significantly. The chapter concludes

by listing a series of open issues and problems.

5.1 Introduction

High Performance Computing (HPC) applications are increasingly demanding in

terms of computing power. Currently, this computing power can be delivered by

High-Performance Computing on Complex Environments, First edition.

By Edited by Emmanuel Jeannot and Julius Žilinskas. Copyright c© 2013 John Wiley & Sons, Inc.

75



76 TOPOLOGY MAPPING ALGORITHMS AND TECHNIQUES IN HIGH-PERFORMANCE COMPUTING

parallel computers only. At the same time, the trend in processors and parallel archi-

tecture design is to increase the number of computing cores. Therefore, exploiting

efficiently such a complex hardware, that is, bridging the performance gap between

the target machine level and the application level is a challenging issue. Moreover,

current and future generations of applications will have to tackle this challenge in

order to scale because of the expected increase concurrency in the applications and

the input data size. As a consequence, the way the application data are organized,

accessed and moved is of paramount importance and should be improved and opti-

mized. This Locality issue exists at several levels: besides the application data layout,

locality issues also stem from the use of multicore nodes (which feature a hierarchi-

cal memory organization), network and storage units. Since the time to transfer data

between processing entities (e.g., processes or threads) of the application depends on

both, the affinity of these entities and their respective locations, a thorough analysis

of the application behavior (data-wise) and of the platform on which it is executed

is necessary. Given both pieces of information, clever algorithms and techniques

can dramatically improve the application communication time by carefully mapping

the application processing entities on the various processing units (e.g., CPUs or

cores) of the architecture. The goal of this chapter is to provide an overview of this

topology mapping issue and to present the various techniques and solutions exist-

ing in the literature. This chapter is divided into the following six parts: first we

present an overview of the problem in Sect. 5.2. Then, in Sect. 5.3, we show a pos-

sible formalization of the problem. Section 5.4 presents existing algorithms that can

yield solutions to the topology mapping problem while Sect. 5.5 exposes the various

techniques that applications can leverage to enforce the mapping computed by the

algorithm. Section 5.6 describes existing software implementing the algorithms and

the techniques seen in the previous sections. Last, in Sect. 5.7, we present a set of

open problems and research issues that need to be addressed in order to pave the road

to Exascale.

5.2 General Overview

High-Performance Computing (HPC) is more than ever a cornerstone of the develop-

ment and competitiveness of modern and knowledge-based societies and economies.

In both fields of science and technology, it is necessary to solve problems requiring

tremendous amounts of computing power, memory and storage. From an indus-

trial perspective, parallel computers are mandatory to reduce the time-to-market of

a large array of products (e.g., cars, drugs, planes, etc.) whilst from a research per-

spective, simulations require to refine models in order to solve larger problems at

longer and finer time-scales. Therefore, many scientific domains have already been

identified as in need for large amounts of computational power, as for instance by the

PRACE research infrastructure[1], which has selected the five domains: (1) Weather,

Climatology and solid Earth Sciences; (2) Astrophysics, High-Energy Physics and

Plasma Physics; (3) Materials Science, Chemistry and Nanoscience; (4) Life Sci-

ences, Medicine and (5) Engineering Sciences and Industrial Applications. Paral-



GENERAL OVERVIEW 77

lel architectures are the only ones able to deliver the much sought-after computing

power.

5.2.1 A Key to Scalability: Data Locality

However, to harness the resources of a parallel computer is by no means a trivial

undertaking since multiple challenges need to be addressed, one of the hardest being

to jump on the multicore/manycore bandwagon: the size of the machines in terms of

number of cores per node is increasing. Exascale computers are expected to feature

between hundreds of thousands to millions of nodes, each them integrating between

a hundred to ten thousands of cores. Dealing with such large scales is very chal-

lenging. Current generations of machines are already hierarchical, both in terms of

network interconnection and memory architecture (cache level, non-uniform access,

coherency, etc.) and future generations of machines will feature even deeper hierar-

chies. As a consequence, the challenge deals with scalability and can be expressed in

several ways: how to use the maximum of the available resources (e.g., CPUs, cores,

memory, network, etc.) at their full potential? How to do so with an energy con-

sumption that remains (economically and environmentally) acceptable? One global

and practical answer to these questions is to improve the Data Locality of parallel

applications, that is, the way the data are placed, accessed and moved by the multiple

hardware processing units of the underlying target architecture.

This is coherent with the behavior of a parallel application that dispatches its

workload among software processing entities (e.g., tasks, processes, threads) run-

ning in parallel on the hardware processing units of the target architecture. These

processing entities access and exchange data during the application’s execution but

not necessarily in a regular fashion. As a consequence, these data accesses and

exchanges can be optimized to fully exploit the hardware. For instance, entities ex-

changing or sharing lots of data could be placed on hardware processing units physi-

cally close one to the other. By doing so, the communication costs are reduced, thus

decreasing the application’s overall execution time and as a consequence its energy

consumption, as emphasized by the IESP roadmap [2]: “Since much of the power in

an Exascale system will be expended moving data, both locally between processors

and memory as well as globally, the X-stack must provide mechanisms and APIs for

expressing and managing data locality. These will also help minimize the latency of

data accesses.”

5.2.2 Data Locality Management in Parallel Programming Models

One other possible answer to the scalability issue would be to use a new parallel

programming paradigm. However, currently, no existing paradigm seems viable,

as parallel application developers still rely on proven and wide-spread tools created

years ago. This fact is a consequence of a software inertia as well as the huge number

of existing legacy applications.

Nevertheless, data locality has to be taken into account to improve scalability of

present and future parallel applications, regardless of the chosen paradigm. Hence,



78 TOPOLOGY MAPPING ALGORITHMS AND TECHNIQUES IN HIGH-PERFORMANCE COMPUTING

current existing paradigms can be improved/enhanced to better express this locality

management. They indeed offer a simplified view of the architecture: the Mes-

sage Passing Interface (MPI) relies on a distributed memory model with a flat net-

work whilst OpenMP uses a global address space and Partitioned Global Address

Space (PGAS) languages use similarly to MPI a flat, partitioned address space. As a

consequence, the gap between the underlying hardware and the simple view exposed

by the programming model widens. To bridge this gap, paradigm implementations

should first be optimized to better reflect the locality management and second, these

paradigms’ definition and utilization (locality-wise) should be more specific.

More precisely, the necessary interactions between the applications (relying on

paradigm implementations) and the underlying hardware should be explicitly defined

and expressed in a synthetic fashion. Improving an application’s data locality may

carry different results, depending on the context and on the programming paradigm

used. For instance, in the realm of message passing-based applications, it may lead

to a decrease of the overall communication costs whilst for applications based on

multithreading, the expected results shall be a better sharing of the data between the

application threads. This implies to better use the underlying hardware: the network,

the memory hierarchy and of course the processing units available.

5.2.3 Virtual Topology: Definition and Characteristics

A simple, yet efficient way to improve data locality is to dedicate physical processing

units to their specific software processing entities. This means that a matching be-

tween the application virtual topology and the target hardware architecture has to be

determined. In this chapter, the expression of virtual topology designates a mean to

express the existing dependencies between software processing entities. For instance,

in programming paradigms with explicit communications (e.g., as in message pass-

ing), these dependencies are expressed as messages exchanged between processes

whilst for implicit communications paradigms (e.g., OpenMP) these dependencies

are expressed as accesses to common memory locations by the application threads.

This virtual topology representation is also tailored for task-based programming en-

vironments as the various tasks depend one from the others: indeed, a task can only

be scheduled once a set of “previous” tasks is completely executed. Virtual topolo-

gies are also often referred to as application communication patterns.

Such communication pattern can be either static or dynamic. Static means that the

number of processing entities remains constant during the course of the application

and that the dependencies between these entities do not change between consecutive

application steps. The pattern can be qualified as dynamic when one of the two

above conditions (possibly both) is not fulfilled. For instance, an OpenMP-based

application features a dynamic pattern since new threads are created/destroyed when

entering/exiting each new parallel section. This communication pattern (or virtual

topology) can be considered as a key characteristic of the application [3].



FORMALIZATION OF THE PROBLEM 79

5.2.4 Understanding the Hardware

If, on one hand, understanding the behavior of the application is necessary, on the

other hand, the maximum of details regarding the target hardware have to be gath-

ered. Achieving this in a convenient and portable fashion is of paramount importance

in order to address the largest spectrum possible of parallel architectures. This issue

is increasingly complex due to the advent of multicore/manycore CPUs. Indeed,

parallel computers used to follow the cluster paradigm that possessed an architec-

tural complexity only at the network level. But multicore CPUs pushed the envelope

further because of their intricate and hierarchical memory organization, inducing

NUMA effects. Performance of data accesses and movements between processing

units is now heterogeneous. As a consequence, both the physical network topology

and the multicore node internal structure have to be considered in order to efficiently

determine the matching between the virtual and the physical topologies.

As a matter of fact, this matching between the virtual and the physical topologies

is achievable in both ways: the virtual topology can be mapped onto the physical

one, but the physical topology can also be mapped onto the virtual one. The first case

corresponds to a resource allocation problem where the software processing entities

have to be mapped onto their hardware processing counterparts. This problem is

usually referred to as a process mapping issue. In the second case, the hardware

can be tailored to fit application structure (virtual topology). This is feasible with

software-reconfigurable networks, for instance.

Hence, the key is to make use of an algorithm/heuristic that yields a satisfactory

solution to our topology mapping problem. In the following section we outline the

main algorithms used to compute such mapping as well as environments that appli-

cation developers can use to apply this mapping.

5.3 Formalization of the Problem

Abstractly seen, the topology mapping problem can be phrased as a minimization

problem of various metrics. We will now discuss the static topology mapping prob-

lem and later generalize to a dynamic version that is relevant for task-based environ-

ments.

The network is typically modeled by a weighted graph H = (VH ,ωH ,RH)
where the set of vertices, VH ∈ N, represents the execution units and the weighted

edges ωH(u, v) ∈ R with u, v ∈ VH represent the weight of the edge between the

two vertices u and v. Non-existing edges can be modeled by the weight zero. The

function RH(u, v) represents the routing as a probability distribution on the set of

simple paths P (u, v) between vertices u and v. Various previous works choose to

model the network as a specialized subset of this abstract specification (for example,

the routing function RH is most commonly ignored and the weights ωH(u, v) are

often replaced by binary values to indicate the existence of an unweighted edge).

The static application graph is often modeled as a weighted graph A = (VA,ωA),
where VA represents the set of communicating processes and ωA(u, v) some metric



80 TOPOLOGY MAPPING ALGORITHMS AND TECHNIQUES IN HIGH-PERFORMANCE COMPUTING

for the communication between two processes u, v ∈ VA. There is no general agree-

ment on how application communication is modeled. Some works propose the total

message volume of a certain phase of communication, others propose message size,

or the number of messages as a model for application communication. Again, almost

all previous models fit our general specification.

The topology mapping now considers mappings σ : VA → VH , i.e., σ assigns

each vertex s ∈ VA in the application graph a target vertex t ∈ VH in the architec-

ture (host) graph. Some works assume σ to be injective or surjective, however, in

the general case, it has to be neither (it may map multiple vertices in VA to the same

target vertex in VH and it may also leave target vertices in VH unassigned).

Each concrete mapping σ has an associated cost metric, which is typically the

target of the optimization (often minimization) problem. As for the communication

metrics, there is no general agreement. We distinguish two fundamentally differ-

ent metrics: dilation and congestion. Informally, dilation is defined as either the

maximum or the sum of the pairwise distances of neighbors in A mapped to H .

For example, let dH(x, y) be the shortest distance between vertices x, y ∈ VH , the

weighted sum of the dilation is defined as

∑

u,v∈VA

dH(σ(u),σ(v)) × ω(u, v).

We note that the routing function RH can increase the dilation if routes are not

along shortest paths. Thus, an algorithm that includes the routing function may find

more practical process mappings. The sum (or average) dilation allows a compar-

ison of the number of times packets are transmitted over network interfaces, Thus,

this metric often correlates strongly with the dynamic energy consumption of the

network.

A second fundamental metric is the congestion, which counts how many commu-

nication pairs use a certain link. Here, it is necessary to define a routing of messages.

However, if RH(u, v) is not specified or known, one can always use shortest path

routing between u and v (i.e., all edges on a single shortest path between u and v

have routing probability 1 while all other edges have probability 0). Let pe(u, v) be

the probability that any of the routes from u to v crosses an edge e ∈ VH . Then, we

can define the congestion of this edge e as:

Ce =
∑

u,v∈VA

pe(u, v).

Again, we can define various reduction functions to generate an overall measure

of congestion across all network links. Most common is a measure for the maximum

congestion

Cmax = max
e

Ce,

which often correlates strongly with the execution time of bulk-synchronous paral-

lel (BSP) applications.

Optimization algorithms would now strive to minimize any of those metrics in our

presented model or a subset thereof. For example, if one was to find a mapping that



ALGORITHMIC STRATEGIES FOR TOPOLOGY MAPPING 81

optimizes dynamic energy consumption, one would strive to minimize dilation while

one would minimize the maximum congestion in order to optimize the completion

time of a BSP application.

A simple generalization can be made for tasking systems. Here, the graph A is

the data-dependency graph of all active tasks in the system. Static optimizations can

be performed as before (we ignore the orthogonal load balancing problem in this

regard). If a new task is to be spawned, one could either solve the whole mapping

problem from the start with an updated A′ or one could place the task heuristically

“close” to its neighbors.

5.4 Algorithmic Strategies for Topology Mapping

It can be shown that most specific problems of mapping arbitrary A to arbitrary

H with regards to any of the metrics are NP-hard. In fact, many of the generic

optimization problems can be phrased as a quadratic assignment problem, which

belongs, even for highly structured inputs, to the class of strongly NP-hard problems.

This means that the problem cannot be approximated well. Using today’s solvers,

quadratic assignment problems may be solved for very small input instances, but are

generally unpractical for data centers or large-scale computing networks.

On the other hand, certain idealized mapping cases can be solved in polynomial

time. For example, embedding a k × l cube (2D Torus) into another k × l cube is

simple, or embedding a line of length l into the same cube is simple as well. Numer-

ous works have studied such special and idealized mappings in the past. However,

such ideal structures are rarely found in reality. Thus, and due to space reasons, we

limit our report to the mapping of arbitrary A to arbitrary H (with some relevant

exceptions, such as k-ary n-cubes).

Various heuristics have been developed in the past. This section provides a quick

overview of the methods. References to specific works using those methods are

provided later. New schemes are invented continuously making this list a quickly

moving target. Such schemes may or may not fit into this classification, however, we

believe that those classes cover most of the existing works in the field of topology

mapping. Each of those schemes performs well for a certain class of graphs. An

exact classification and identification of such graph classes is subject of ongoing

research.

5.4.1 Greedy Algorithm Variants

The probably simplest schemes for mapping are derived from well-known greedy

strategies. For example, in a local greedy scheme, one selects two starting vertices

u ∈ VH and v ∈ VA, and adds other vertices to the mappings walking along the

neighborhood of both vertices. A global greedy scheme would greedily select the

next vertex based on some global property, i.e., the weight of all out-edges. One can

also mix local and global schemes on the two graphs A and H .



82 TOPOLOGY MAPPING ALGORITHMS AND TECHNIQUES IN HIGH-PERFORMANCE COMPUTING

5.4.2 Graph Partitioning

A second general scheme that is often used for topology mapping is graph partition-

ing. For example k-way partitioning or it’s special case bipartitioning (i.e., when k

equals 2) can be used to recursively cut both graphs (A and H) into smaller pieces,

which are then mapped while unfolding the recursion. A well-known heuristic for

bipartitioning is Kernighan-Lin [4].

5.4.3 Schemes Based on Graph Similarity

Another class of schemes, first explored in [5], is based on graph similarity. Here,

the adjacency lists of the two graphs are permuted into some canonical form (e.g.,

minimizing the bandwidth of the adjacency matrix using well known heuristics) such

that the two graphs can be mapped based on this similarity.

5.4.4 Schemes Based on Subgraph Isomorphism

Some schemes base on subgraph isomorphism. For this, we assume that H has more

vertices than A and that we try to find a set of target vertices in H to map A to.

Several fast algorithms exist for approximating this problem.

5.5 Mapping Enforcement Techniques

In this section, we detail the various techniques that application programmers can use

in order to enforce the mapping computed by the dedicated algorithms described in

the previous section. We remind that this computation is the outcome of a three-step

process:

1. The virtual topology (communication pattern) of the target application is gath-

ered.

2. The physical topology of the target underlying architecture is gathered (or mod-

eled).

3. The matching between both topologies is computed thanks to the relevant algo-

rithm/heuristic, and then applied.

It is worth to note that the question of how both pieces of information regarding

the topologies are gathered (i.e., the first two aforementioned steps) is out of the

scope of this survey that focuses only on the last step. As explained previously,

mapping the virtual topology onto the physical one can be achieved by determining

the number of the assigned physical processing unit for each of the application’s

processing elements. As a consequence, enforcing such a mapping comes down to

applying a certain placement policy for the considered application. In the remainder

of this section, we give details about the various techniques that allow a programmer

to apply such a placement policy.



MAPPING ENFORCEMENT TECHNIQUES 83

5.5.1 Resource Binding

In order to apply the relevant placement policy, one first obvious technique is to bind

the processing elements to their dedicated hardware processing units. For instance,

in a GNU/Linux-based system, commands such as numactl or taskset fulfill

this goal. However, there is no portable solution available across a wide spectrum

of systems and architectures. The Hardware Locality tool (Hwloc) [6] partly solves

this problem by providing a generic, system-independent interface that exposes and

abstracts the underlying memory hierarchy and processors layout in order to manage

the placement of processing elements. Binding a processing element to its hardware

unit is, to some extent, a way of regaining control over the scheduling policy of the

operating system. As a matter of fact, when no binding is enforced, the operating

system scheduler can swap any processing entity to any processing unit, thus leading

to cache misses that may harm performance. Moreover, as the scheduling of pro-

cesses/threads is not deterministic, the impact on the performance may vary from

one run to an other: application performance is thus less predictable than in the case

of bound entities. For instance, in Table 5.1, we compare the same execution of a

CFD application (ZEUS-MP), when either processes are bound to cores or not. We

show the mean execution time, the standard deviation and the coefficient of varia-

tion – CV (the standard deviation normalized by the mean) for ten runs and different

numbers of iterations. As the means are not equal, only the CV is significant, we

include all data for completeness. We see that in all cases, the CV is lower for the

binding case than for the non-binding case, meaning that binding processes to cores

leads to decreased system noise and more stable execution times.

Table 5.1: Statistics for ten runs of ZEUS-MP/2 CFD application with 64 pro-

cesses (MHD blast case) comparing the binding case and the non binding case (Cour-

tesy of Jeannot and Mercier).

Number of No Binding Binding

Iterations Mean Std. Dev. Coef. of Var. Mean Std. Dev. Coef. of Var.

2000 2.8627 0.127 0.044 2.6807 0.062 0.023

3000 4.1691 0.112 0.027 4.0023 0.097 0.024

4000 5.4724 0.069 0.013 5.2588 0.052 0.010

5000 7.3187 0.289 0.039 6.8539 0.121 0.018

10000 13.9583 0.487 0.035 13.3502 0.194 0.015

15000 20.4699 0.240 0.012 19.8752 0.154 0.008

20000 27.0855 0.374 0.014 26.3821 0.133 0.005

25000 33.7065 0.597 0.018 32.8058 0.247 0.008

30000 40.6487 0.744 0.018 39.295 0.259 0.007

35000 46.7287 0.780 0.017 45.7408 0.299 0.007

40000 53.3307 0.687 0.013 52.2164 0.227 0.004

45000 59.9491 0.776 0.013 58.8243 0.632 0.011

50000 66.6387 1.095 0.016 65.3615 0.463 0.007



84 TOPOLOGY MAPPING ALGORITHMS AND TECHNIQUES IN HIGH-PERFORMANCE COMPUTING

Since it usually relies on commands that are outside of the programming paradigm

itself (e.g., the process manager in MPI implementations), binding can be performed

without any application modifications. However, this induces two issues: first, porta-

bility is not guaranteed, as commands may vary from one system to the other. Sec-

ond, changing this binding during the course of the application execution can be

difficult to achieve in a standard fashion.

5.5.2 Rank Reordering

Another technique to enforce the placement policy determined by the matching algo-

rithm is called rank reordering [7],[8]. Each processing entity of the parallel applica-

tion possesses its own identification number. This number can be used, for instance,

to exchange data or to synchronize the entities. The rank reordering technique al-

lows to modify these identification numbers, so as to better reflect the application’s

virtual topology. Rank reordering does often not rely on external commands/tools of

the system and may be part of the programming standard itself (e.g., in MPI). There-

fore, legacy applications have to be modified to take advantage of this technique, the

scope of theses changes varying from one paradigm to the other. However, relying

on a standard feature ensures portability, transparency and dynamicity since it can be

issued multiple times during an application execution.

However, reordering the ranks is not by itself a sufficient mean to improve appli-

cation performance. Indeed, side-effects of poor scheduling decisions (cache misses,

etc.) can still apply to applications using only rank reordering. That is why a joint

use of resource binding and rank reordering is the most sensible combination of

techniques to apply the placement policy. This can be achieved in a two-step pro-

cess: first, processing entities are bound to processing units when the application is

launched. For this step, there is no relevant placement policy to apply, since this bind-

ing is enforced just to avoid the scheduling side-effects. Then, in a second phase (and

during the application execution itself), the ranks of the processing entities are effec-

tively reordered according to the results yielded by the matching algorithm.

5.5.3 Other Techniques

Resource binding and rank reordering are the most prevalent schemes in high-

performance computing. However, other fields, such as Operating Systems and Dis-

tributed Systems may use different mechanisms. For instance, an operating system

may observe memory traffic in a NUMA node and move processes closer to their

respective memory banks in order to minimize cross-link traffic [9]. Another ex-

ample would be optimized network placement algorithms [10]. However, a detailed

explanation of such techniques, outside the realm of high-performance computing,

is beyond the scope of this survey.



SURVEY OF SOLUTIONS 85

5.6 Survey of Solutions

In this section, we provide an overview of work related to the generic topology

mapping problem. As mentioned earlier, we have to omit many specialized solu-

tions (e.g., for certain graph classes) for space reasons. However, we aim at covering

all generic topology mapping schemes at a rather high level and refer to the original

publications for details.

We classify each work as either a purely algorithmic solution or as a software

implementation (which may include algorithmic work as well). Works that fall in

both categories default to the software solution section.

5.6.1 Algorithmic Solutions

The topology mapping problem is often modeled as a Graph Embedding Problem:

one formulation of the embedding problem is introduced by Hatazaki [11] while

Rosenberg [12] discusses the complexity and an algorithm for the embedding prob-

lem.

Bokhari [13] models the mapping problem as a graph isomorphism problem.

However, the strategy described ignores edges that are not mapped. It was shown

later that such edges can have a detrimental effect on the congestion and dilation

of the mapping. Lee and Aggarwal [14] improve those results and defines a more

accurate model which includes all edges of the communication graph and propose

a two-stage optimization function consisting of initial greedy assignment and later

pairwise swaps. Bollinger and Midkiff [15] use a similar model and simulated an-

nealing to optimize topology mappings.

Sudheer and Srinivasan [16] model the optimization problem for minimizing the

weighted average dilation metric (called hop-byte) as a quadratic assignment prob-

lem. However, the conclusion is that only very small instances can be solved by this

approach. A heuristic to minimize the average hop distance is proposed.

Many practical schemes that will be described in the next section use recursive

partitioning (or bisection as a special case) for topology mapping. However, Simon

and Teng [17] show that recursive bisection does not always lead to the best parti-

tions.

5.6.2 Existing Implementations

In this section, we describe existing software packages that can be used to approach

the topology mapping problem. We start with graph partitioning software that can be

employed in conjunction with the recursive partitioning schemes. Then, we discuss

specialized solutions and analyses for various network topologies, followed by a

description of generic mapping software. Finally, we discuss support for topology

mapping in current parallel programming frameworks.

5.6.2.1 Graph Partitioning Software We now list some graph partitioning soft-

ware packages. The typical use-case for those packages is the partitioning of large



86 TOPOLOGY MAPPING ALGORITHMS AND TECHNIQUES IN HIGH-PERFORMANCE COMPUTING

graphs for the parallelization of scientific computing problems. The heuristics used

in those packages may thus not always be suitable for partitioning small graphs.

Metis [18] and its parallel version ParMetis [19] are among the most used well

established graph partitioners. The Chaco [20] and Zoltan [21] graph partitioners

maintained by Sandia National Laboratories employs a variety of different partition-

ing schemes. SCOTCH [22] is a graph partitioning framework able to deal with tree-

structured input data (called tleaf) to perform the mapping. Scotch is based on dual

recursive bipartitioning. Other graph partitioners, such as Jostle [23], are available

but less commonly used in larger software packages.

5.6.2.2 Mapping for Specific Topologies The mapping problem is often studied

in the context of particular network topologies or technologies. We proceed to give a

quick overview of current network technologies: Torus networks are used in differ-

ent variations in IBM’s Blue Gene series (BG/L, BG/P [24] and BG/Q [25]), Cray’s

Gemini network [26], and Fujitsu’s K computer [27]. A second large class of topolo-

gies is the family of fat tree networks [28, 29, 30] which is often used in commodity

datacenters and high performance interconnects. Fat trees usually offer higher bisec-

tion bandwidth than torus networks. The Dragonfly topology [31] and variants are

used in IBM’s PERCS system [31, 32] and Cray’s Aries network [33] and promises

high bisection bandwidth at lower costs. Those three classes of topologies form the

base of most of today’s supercomputer networks. Thus, topology mapping schemes

should aim at supporting those topologies.

Some research works thus address only generic application topologies (used to

express the communication pattern) but consider only the network physical topology

for the hardware aspects. Balaji et al. [34], Smith and Bode [35], and Yu et al. [36]

provide mapping strategies and software for Blue Gene systems as target architec-

tures. Subramoni et al.[37] discuss how to map processes on InfiniBand networks.

Other works, by Rashti et al. [38], Träff [39], and Ito et al. [40] target specifically

multicore networks.

Von Alfthan et al. [41] target several classes of architectures such as the Cray

XT, the BlueGene/P and the generic multicore networks. They use a custom, non-

standard interface to build the graph representing the topologies, despite the presence

of this functionality in MPI. The network topology is gathered dynamically in the

case of Cray and IBM hardware, but is considered flat in case of the generic multicore

network.

TREEMATCH ([42],[43]) is an algorithm and a library for performing topology-

aware process placement. Its main target are networks of multicore NUMA nodes. It

provides a permutation of the processes to the processors/cores in order to minimize

the communication cost of the application. It assumes that the topology is a tree and

does not require valuation of the topology (e.g. communication speeds). Therefore,

TREEMATCH solution is based only on the structure of the application and the topol-

ogy and is therefore independent from the way communication speeds are assessed.

TREEMATCH also implements different placement algorithms that are switched ac-

cording to the input size in order to provide a fast execution time, allowing dynamic

load-balancing for instance.



SURVEY OF SOLUTIONS 87

5.6.2.3 Mapping Frameworks/Libraries LibTopoMap [5] is a generic mapping

library that implements MPI-2.2’s topology interface [44] using various heuristics

such as recursive bisection, k-way partitioning, simple greedy strategies, and Cuthill

McKee [45] for graph mapping. It introduces the idea of graph mapping based on

similarity metrics (e.g., bandwidth of the adjacency matrices) and offers an exten-

sible framework to implement algorithms on InfiniBand, Ethernet, BlueGene, and

Cray networks.

MPIPP [46] is a framework dedicated to MPI applications. Its goal it to reduce

the communication costs between groups of processes. The original targets of this

work are the meta-cluster architectures, but it could be adapted also in a context of

multicore nodes if the node internal topology and organization information was to be

gathered, which is currently not the case.

The resource binding technique is applied for MPI applications in several works.

[47], as well as [48] use it to reduce communication costs in multicore nodes. Both

works rely on the SCOTCH [22] partitioning software to compute the mapping.

Also, Rodrigues et al. [47] use a purely quantitative approach while the approach

in Mercier and Clet-Ortega [48] is qualitative since it uses the structure of the mem-

ory hierarchy of a node.

Brandfass et al. [7] also strive to reduce the communication costs of CFD MPI

applications. It uses a so called rank reordering technique, but it is not the same

technique that we described in a previous section of this chapter. Indeed, Brandfass

et al. [7] reorganize the file containing the nodes’ name (a.k.a. the hosts file), thus

changing the way processes are dispatched on the nodes. By doing so, it manages to

regroup physically processes that communicate a lot with each other. However, the

processes are not bound to dedicated processing units and the application does not

actually rely on the reordering mechanism available in the MPI standard (as shown

in the next paragraph).

It is also possible to map several types of processing entities. This case occurs

when so-called hybrid programming paradigm are used (e.g., message passing and

multithreading). For instance, Dümmler et al. [49] explore the issue of hybrid, MPI

+ OpenMP application multithreaded process mapping.

In some cases, a thorough knowledge of the application is very helpful. For in-

stance, Aktulga et al. [50] discuss works on topology aware mapping of an eigenvalue

solver. They conducted an in-depth study of their application and have been able to

propose a communication model based on the dilatation, the traffic and the conges-

tion. They show that minimizing these factors by performing a relevant mapping

induces execution time gains up to a factor of 2.5.

5.6.2.4 Topology Mapping Support in the Message Passing Interface As seen

in the previous section, MPI applications are often the target of topology mapping

techniques and frameworks. Actually, both leading free MPI-2 implementations, that

is, MPICH2 [51] and Open MPI [52] provide options to bind the MPI processes at

launch time thanks to their respective process manager (resp. Hydra and ORTE).

The user can choose among some predefined placement policies (e.g., [53]). As for

vendor implementations, several offer mechanisms that allow the use to better control



88 TOPOLOGY MAPPING ALGORITHMS AND TECHNIQUES IN HIGH-PERFORMANCE COMPUTING

it execution environment by binding the MPI processes. Cray’s [54, 55], HP’s [56]

and IBM’s [57] MPI versions offer this possibility.

As a matter of fact, the MPI standard itself features several functions dealing

with virtual topology building and management. Both Cartesian and generic pro-

cess topologies can be created at the application level and several of the functions

even possess a reorder parameter. However, as Träff [39] explains, the actual

implementation of these routines are rather trivial and usually do nothing to reorder

the processes, except in the case of a few vendor implementations, such as the one

provided by NEC [39].

In revision 2.2 of the MPI standard, more scalable versions of the virtual topol-

ogy creation and management routines have been introduced. For instance, it is the

case of the MPI Dist graph create function [44]. Implementations actually

performing reordering of this routine are available: [8] relies on the Hwloc tool to

gather hardware information and bind processes, while TREEMATCH is in charge of

computing the reordering of MPI process ranks. LibTopoMap [5] also implements

this part of the MPI interface with various strategies.

There are also specific parts of the MPI standard that can take advantage of an

optimized process placement. I/O operations fall in this category, as the process

placement can be performed in order to optimize the pattern of accesses to files

between the processes. Venkatesan et al. [58] describe an implementation of such

feature, and is based on an algorithm called SetMatch, which is a simplified version

of the TREEMATCH algorithm.

5.6.2.5 Other Programming Models and Standards Other programming models

also address the issue of virtual topology mapping. For instance, CHARM++ [59, 60]

features optimizations for specific topologies [61]. CHARM++ also performs dy-

namic load-balancing of internal objects (chares). Such load balancing is done by

the CHARM++ runtime system and does not require to modify specific parts of the

application code. Moreover, the load balancer can be chosen and its parameters set

at the beginning of the execution. Thanks to CHARM++ modularity, user-defined

load-balancers can be easily added to the set of existing ones. There are several cri-

teria to perform load-balancing. Among the possible ones, a topology-aware load-

balancing, called NucoLB (non-uniform communication costs load balancer) has re-

cently been proposed [62]. The idea is to gather the topology information and to

dynamically monitor the volume of data exchanged by the chares. Then, the Nu-

coLB load-balancer migrate the chares according to the topology and their affinity in

order to reduce the communication cost of the application among and within com-

pute nodes. Results show improvement up to 20% in execution time.

It is also possible to perform topology-aware mapping in PGAS languages (e.g.,

UPC [63]). PGAS languages expose a simple two-levels scheme (local and remote)

for memory affinity that can be used to map the processes depending on the ex-

changed data and the underlying physical topology. Indeed, in some PGAS pro-

grams, it is possible to know the communication pattern based on the code and the

distribution of the data arrays. With this information, it is natural to apply a process

mapping algorithm to carefully map the processes onto the architecture.



CONCLUSION AND OPEN PROBLEMS 89

5.7 Conclusion and Open Problems

In order for modern parallel machines to deliver their peak performance to appli-

cations, it is necessary to bridge the increasing gap between programming models

and the underlying architecture. Among the various factors influencing the perfor-

mance, process placement plays a key role as it impacts the communication time of

the application. This problem has gained a huge momentum with the appearance of

NUMA architectures as the communication cost between two processes can vary of

several orders of magnitude depending on their location.

In this paper, we have surveyed different techniques, algorithms and tools to per-

form a topology-aware process placement. In all cases, the problem consist in match-

ing the virtual topology (that may represents communication pattern of the applica-

tion) to the physical topology of the architecture.

While there exist many solutions to address the topology mapping problem, we

can list a set of open problems that shall need to be solved in order to reach larger

scale machines.

A first important issue is the ability to handle very large problems. Some high-

performance computing applications feature hundred of thousands of processes.

Mapping these processes onto the architecture require a huge computing power.

It is therefore necessary to improve the scalability of the algorithms by reducing

their complexity and implementing their most costly parts in parallel.

Fault-tolerance is also an important issue as failures are becoming a “normal”

feature of current parallel computers. Computing mappings that are able to

cope with failures is therefore of high interest. A way to tackle this problem is

to couple the fault-tolerant part and the mapping part of the runtime system in

order to take joint decisions when necessary.

Reducing the communication part has a huge impact on the energy consumption

as between 25% and 50% of the energy spent is due to data movement. How-

ever, we are lacking studies about the real gain of topology-aware mapping and

energy savings. Moreover, it should also be possible to devise energy-centric

metrics for this specific problem.

Many applications have a communication pattern that varies during the exe-

cution (dynamic). Its should be interesting to study how the mapping can be

adapted, according to these changes. Several solutions could be tested from a

global remapping requiring migration of the processes and changes of the inter-

nal organization of the application (e.g., MPI communicators) to local remap-

ping within a NUMA node with the advantage of being able to distribute this

remapping and doing it transparently, application wise.

Extracting the communication pattern is a difficult task. It requires a thorough

knowledge of the target application or to monitor it in order to extract its pattern.

However, other techniques are possible such as source-code analysis through



90 TOPOLOGY MAPPING ALGORITHMS AND TECHNIQUES IN HIGH-PERFORMANCE COMPUTING

compilation techniques or software engineering techniques (skeleton, compo-

nent) that, by design, provides important information of the application behav-

ior.

Another important research issue is the link between the different aspects of

process affinity: within node (cache), between nodes (network) and between

node and storage. Each of these aspects may incur contradictory objectives in

terms of placement. Therefore, it requires to find compromises or to be able to

adapt, at runtime, the mapping according to the dominating factor.

Acknowledgments

This work is supported by the COST Action IC0805 “Open European Network for

High Performance Computing on Complex Environments”.

Bibliography

1. “Prace scientific case for hpc in europe 2012 – 2020,” 2012. http://www.

prace-ri.eu/PRACE-The-Scientific-Case-for-HPC.

2. J. Dongarra et al., “The international exascale software project: A call to cooperative

action by the global high-performance community,” International Journal of High Per-

formance Computing Applications, vol. 23, no. 4, pp. 309–322, 2009.

3. C. Ma, Y. M. Teo, V. March, N. Xiong, I. R. Pop, Y. X. He, and S. See, “An ap-

proach for matching communication patterns in parallel applications,” in Proceedings of

23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS’09),

(Rome, Italy), IEEE Computer Society Press, 2009.

4. B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,”

Bell System Technical Journal, vol. 49, no. 2, pp. 291–307, 1970.

5. T. Hoefler and M. Snir, “Generic topology mapping strategies for large-scale parallel

architectures,” in ICS (D. K. Lowenthal, B. R. de Supinski, and S. A. McKee, eds.),

pp. 75–84, ACM, 2011.

6. F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,

S. Thibault, and R. Namyst, “Hwloc: a generic framework for managing hardware affini-

ties in HPC applications,” in Proceedings of the 18th Euromicro International Confer-

ence on Parallel, Distributed and Network-Based Processing (PDP2010), (Pisa, Italia),

IEEE Computer Society Press, 2010.

7. B. Brandfass, T. Alrutz, and T. Gerhold, “Rank reordering for MPI communication opti-

mization,” Computer & Fluids, vol. 80, pp. 372–380, 2013.

8. G. Mercier and E. Jeannot, “Improving MPI applications performance on multicore clus-

ters with rank reordering,” in EuroMPI, vol. 6960 of Lecture Notes in Computer Science,

(Santorini, Greece), pp. 39–49, Springer, 2011.

9. T. Ogasawara, “NUMA-aware memory manager with dominant-thread-based copying

GC,” in Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Pro-

gramming Systems Languages and Applications, OOPSLA ’09, (New York, NY, USA),

pp. 377–390, ACM, 2009.



BIBLIOGRAPHY 91

10. Q. Yin and T. Roscoe, “VF2x: fast, efficient virtual network mapping for real testbed

workloads,” in Testbeds and Research Infrastructure. Development of Networks and

Communities (T. Korakis, M. Zink, and M. Ott, eds.), vol. 44 of Lecture Notes of the

Institute for Computer Sciences, Social Informatics and Telecommunications Engineer-

ing, pp. 271–286, Springer Berlin Heidelberg, 2012.

11. T. Hatazaki, “Rank reordering strategy for MPI topology creation functions,” in Recent

Advances in Parallel Virtual Machine and Message Passing Interface (V. Alexandrov

and J. Dongarra, eds.), vol. 1497 of Lecture Notes in Computer Science, pp. 188–195,

Springer Berlin / Heidelberg, 1998.

12. A. L. Rosenberg, “Issues in the study of graph embeddings,” in WG’80, (London, UK),

pp. 150–176, 1981.

13. S. Bokhari, “On the mapping problem,” IEEE Transactions on Computers, vol. 30, no. 3,

pp. 207–214, 1981.

14. S.-Y. Lee and J. K. Aggarwal, “A mapping strategy for parallel processing,” IEEE Trans-

actions on Computers, vol. 36, no. 4, pp. 433–442, 1987.

15. S. W. Bollinger and S. F. Midkiff, “Heuristic technique for processor and link assignment

in multicomputers,” IEEE Transactions on Computers, vol. 40, no. 3, pp. 325–333, 1991.

16. C. Sudheer and A. Srinivasan, “Optimization of the hop-byte metric for effective topol-

ogy aware mapping,” in 19th International Conference on High Performance Comput-

ing (HiPC), pp. 1–9, 2012.

17. H. D. Simon and S.-H. Teng, “How good is recursive bisection?,” SIAM Journal on

Scientific Computing, vol. 18, pp. 1436–1445, 1997.

18. G. Karypis and V. Kumar, “METIS – unstructured graph partitioning and sparse matrix

ordering system, version 2.0,” tech. rep., 1995.

19. K. Schloegel, G. Karypis, and V. Kumar, “Parallel multilevel algorithms for multi-

constraint graph partitioning (distinguished paper),” in Proceedings from the 6th In-

ternational Euro-Par Conference on Parallel Processing, Euro-Par ’00, (London, UK),

pp. 296–310, Springer-Verlag, 2000.

20. B. Hendrickson and R. Leland, “The Chaco user’s guide: Version 2.0,” Tech. Rep.

SAND94–2692, Sandia National Laboratory, 1994.

21. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, “Zoltan data man-

agement services for parallel dynamic applications,” Computing in Science and Engi-

neering, vol. 4, no. 2, pp. 90–97, 2002.

22. F. Pellegrini, “Static mapping by dual recursive bipartitioning of process and architecture

graphs,” in Proceedings of SHPCC’94, Knoxville, pp. 486–493, IEEE, 1994.

23. C. Walshaw and M. Cross, “JOSTLE: parallel multilevel graph-partitioning software –

an overview,” in Mesh Partitioning Techniques and Domain Decomposition Techniques

(F. Magoules, ed.), pp. 27–58, Civil-Comp Ltd., 2007. (Invited chapter).

24. N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa, P. Heidel-

berger, S. Singh, B. D. Steinmacher-Burow, T. Takken, M. Tsao, and P. Vranas, “Blue

Gene/L torus interconnection network,” IBM Journal of Research and Development,

vol. 49, no. 2, pp. 265–276, 2005.

25. D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar, V. Sala-

pura, D. L. Satterfield, B. Steinmacher-Burow, and J. J. Parker, “The IBM Blue Gene/Q



92 TOPOLOGY MAPPING ALGORITHMS AND TECHNIQUES IN HIGH-PERFORMANCE COMPUTING

interconnection network and message unit,” in Proceedings of 2011 International Con-

ference for High Performance Computing, Networking, Storage and Analysis, SC ’11,

(New York, NY, USA), pp. 26:1–26:10, ACM, 2011.

26. R. Alverson, D. Roweth, and L. Kaplan, “The Gemini system interconnect,” in Proceed-

ings of the 2010 18th IEEE Symposium on High Performance Interconnects, HOTI ’10,

(Washington, DC, USA), pp. 83–87, IEEE Computer Society, 2010.

27. Y. Ajima, S. Sumimoto, and T. Shimizu, “Tofu: A 6D mesh/torus interconnect for exas-

cale computers,” IEEE Computer, vol. 42, no. 11, pp. 36–40, 2009.

28. C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient supercomputing,”

IEEE Transactions on Computers, vol. 34, no. 10, pp. 892–901, 1985.

29. F. Petrini and M. Vanneschi, “K-ary n-trees: High performance networks for massively

parallel architectures,” tech. rep., 1995.

30. S. R. Öhring, M. Ibel, S. K. Das, and M. J. Kumar, “On generalized fat trees,” in IPPS

’95: Proceedings of the 9th International Symposium on Parallel Processing, (Washing-

ton, DC, USA), p. 37, IEEE Computer Society, 1995.

31. J. Kim, W. Dally, S. Scott, and D. Abts, “Cost-efficient dragonfly topology for large-

scale systems,” IEEE Micro, vol. 29, no. 1, pp. 33–40, 2009.

32. B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup, T. Hoefler, J. Joyner,

J. Lewis, J. Li, N. Ni, and R. Rajamony, “The PERCS high-performance interconnect,”

in Proc. of 18th Symposium on High-Performance Interconnects (HotI’10), 2010.

33. G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson, J. Kop-

nick, M. Higgins, and J. Reinhard, “Cray cascade: a scalable HPC system based on

a Dragonfly network,” in Proceedings of the International Conference on High Per-

formance Computing, Networking, Storage and Analysis, SC ’12, (Los Alamitos, CA,

USA), pp. 103:1–103:9, IEEE Computer Society Press, 2012.

34. P. Balaji, R. Gupta, A. Vishnu, and P. H. Beckman, “Mapping communication layouts

to network hardware characteristics on massive-scale Blue Gene systems,” Computer

Science – R&D, vol. 26, no. 3-4, pp. 247–256, 2011.

35. B. E. Smith and B. Bode, “Performance effects of node mappings on the IBM Blue-

Gene/L machine,” in Euro-Par (J. C. Cunha and P. D. Medeiros, eds.), vol. 3648 of

Lecture Notes in Computer Science, pp. 1005–1013, Springer, 2005.

36. H. Yu, I.-H. Chung, and J. E. Moreira, “Blue Gene system software – topology mapping

for Blue Gene/L supercomputer,” in SC, p. 116, ACM Press, 2006.

37. H. Subramoni, S. Potluri, K. Kandalla, B. Barth, J. Vienne, J. Keasler, K. Tomko,

K. Schulz, A. Moody, and D. Panda, “Design of a scalable infiniband topology service

to enable network-topology-aware placement of processes,” in Proceedings of the 2012

ACM/IEEE conference on Supercomputing (CDROM), (Salt Lake City, Utah, United

States), p. 12, IEEE Computer Society, 2012.

38. M. J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp, “Multi-core and network

aware MPI topology functions,” in EuroMPI (Y. Cotronis, A. Danalis, D. S. Nikolopou-

los, and J. Dongarra, eds.), vol. 6960 of Lecture Notes in Computer Science, pp. 50–60,

Springer, 2011.

39. J. L. Träff, “Implementing the MPI process topology mechanism,” in Supercomput-

ing ’02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing, (Los

Alamitos, CA, USA), pp. 1–14, IEEE Computer Society Press, 2002.



BIBLIOGRAPHY 93

40. S. Ito, K. Goto, and K. Ono, “Automatically optimized core mapping to subdomains of

domain decomposition method on multicore parallel environments,” Computer & Fluids,

vol. 80, pp. 88–93, 2013.

41. S. von Alfthan, I. Honkonen, and M. Palmroth, “Topology aware process mapping,” in

Applied Parallel and Scientific Computing (P. Manninen and P. Öster, eds.), vol. 7782 of

Lecture Notes in Computer Science, pp. 297–308, Springer, 2013.

42. E. Jeannot and G. Mercier, “Near-optimal placement of MPI processes on hierarchical

NUMA architectures,” Euro-Par 2010-Parallel Processing, pp. 199–210, 2010.

43. E. Jeannot, G. Mercier, and F. Tessier, “Process placement in multicore clusters: Algo-

rithmic issues and practical techniques,” IEEE Transactions on Parallel and Distributed

Systems, 2013. To be published.

44. T. Hoefler, R. Rabenseifner, H. Ritzdorf, B. R. de Supinski, R. Thakur, and J. L. Traeff,

“The scalable process topology interface of MPI 2.2,” Concurrency and Computation:

Practice and Experience, vol. 23, no. 4, pp. 293–310, 2010.

45. E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” in

Proceedings of the 1969 24th national conference, ACM ’69, (New York, NY, USA),

pp. 157–172, ACM, 1969.

46. H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, “MPIPP: an automatic profile-

guided parallel process placement toolset for SMP clusters and multiclusters,” in ICS

(G. K. Egan and Y. Muraoka, eds.), pp. 353–360, ACM, 2006.

47. E. Rodrigues, F. Madruga, P. Navaux, and J. Panetta, “Multicore aware process mapping

and its impact on communication overhead of parallel applications,” in Proceedings of

the IEEE Symp. on Comp. and Comm., pp. 811–817, 2009.

48. G. Mercier and J. Clet-Ortega, “Towards an efficient process placement policy for MPI

applications in multicore environments,” in EuroPVM/MPI, vol. 5759 of Lecture Notes

in Computer Science, (Espoo, Finland), pp. 104–115, Springer, 2009.

49. J. Dümmler, T. Rauber, and G. Rünger, “Mapping algorithms for multiprocessor tasks

on multi-core clusters,” in Proceedings of the 2008 37th International Conference on

Parallel Processing, pp. 141–148, 2008.

50. H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary, “Topology-aware mappings

for large-scale eigenvalue problems,” in Euro-Par 2012 Parallel Processing – 18th Inter-

national Conference, vol. 7484 of Lecture Notes in Computer Science, (Rhodes Island,

Greece), pp. 830–842, 2012.

51. Argonne National Laboratory, “MPICH2.” http://www.mcs.anl.gov/mpi/2004.

52. E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,

P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,

and T. S. Woodall, “Open MPI: Goals, concept, and design of a next generation MPI

implementation,” in Proceedings of the 11th European PVM/MPI Users’ Group Meeting,

(Budapest, Hungary), pp. 97–104, 2004.

53. J. Hursey, J. M. Squyres, and T. Dontje, “Locality-aware parallel process mapping for

multi-core HPC systems,” in 2011 IEEE International Conference on Cluster Comput-

ing (CLUSTER), pp. 527–531, IEEE, 2011.

54. National Institute for Computational Sciences, “MPI tips on Cray XT5.” http://

www.nics.tennessee.edu/user-support/mpi-tips-for-cray-xt5.



94 TOPOLOGY MAPPING ALGORITHMS AND TECHNIQUES IN HIGH-PERFORMANCE COMPUTING

55. G. B. Justin L. Whitt and M. Fahey, “Cray MPT: MPI on the Cray XT,” 2011. http:

//www.nccs.gov/wp-content/uploads/2011/03/MPT-OLCF11.pdf.

56. D. Solt, “A profile based approach for topology aware MPI rank placement,”

2007. http://www.tlc2.uh.edu/hpcc07/Schedule/speakers/hpcc_

hp-mpi_solt.ppt.

57. E. Duesterwald, R. W. Wisniewski, P. F. Sweeney, G. Cascaval, and S. E. Smith, “Method

and system for optimizing communication in MPI programs for an execution environ-

ment,” 2008. http://www.faqs.org/patents/app/20080288957.

58. V. Venkatesan, R. Anand, E. Gabriel, and J. Subhlok, “Optimized process placement for

collective I/O operations,” in EuroMPI, Lecture Notes in Computer Science, (Madrid,

Spain), Springer, 2013. to appear.

59. L. Kale and S. Krishnan, “CHARM++: A portable concurrent object oriented system

based on C++,” in Proceedings of Object-Oriented Programming, Systems, Languages

and Applications (OOPSLA) 93, pp. 91–108, ACM Press, 1993.

60. A. Bhatelé, L. V. Kalé, and S. Kumar, “Dynamic topology aware load balancing al-

gorithms for molecular dynamics applications,” in ICS ’09, (New York, NY, USA),

pp. 110–116, ACM, 2009.

61. A. Bhatel and L. V. Kal, “Benefits of topology aware mapping for mesh interconnects,”

Parallel Processing Letters, vol. 18, no. 04, pp. 549–566, 2008.

62. L. L. Pilla, C. P. Ribeiro, D. Cordeiro, C. Mei, A. Bhatele, P. O. Navaux, F. Broquedis,

J.-F. Méhaut, and L. V. Kale, “A hierarchical approach for load balancing on parallel

multi-core systems,” in 41st International Conference on Parallel Processing (ICPP),

pp. 118–127, IEEE, 2012.

63. U. Consortium, “UPC language specifications, v1.2,” in Lawrence Berkeley National

Lab Tech Report LBNL-59208, 2005.


