SLT-LoG: A Vesicle Segmentation Method with Automatic Scale Selection and Local Thresholding Applied to TIRF Microscopy

Abstract : Accurately detecting cellular structures in fluorescence microscopy is of primary interest for further quantitative analysis such as counting, tracking or classification. We aim at segmenting vesicles in TIRF images. The optimal segmentation scale is automatically selected, relying on a multiscale feature detection stage, and the segmentation consists in thresholding the Laplacian of Gaussian of the intensity image. In contrast to other methods, the threshold is locally adapted, resulting in better detection rates for complex images. Our method is mostly on par with machine learning-based techniques, while offering lower computation time and requiring no prior training. It is very competitive with existing unsupervised detection algorithms.
Type de document :
Communication dans un congrès
ISBI - 2014 IEEE International Symposium on Biomedical Imaging, Apr 2014, Beijing, China. 2014
Liste complète des métadonnées

https://hal.inria.fr/hal-00921793
Contributeur : Antoine Basset <>
Soumis le : samedi 21 décembre 2013 - 14:57:24
Dernière modification le : jeudi 11 janvier 2018 - 01:50:31

Identifiants

  • HAL Id : hal-00921793, version 1

Collections

Citation

Antoine Basset, Jérôme Boulanger, Patrick Bouthemy, Charles Kervrann, Jean Salamero. SLT-LoG: A Vesicle Segmentation Method with Automatic Scale Selection and Local Thresholding Applied to TIRF Microscopy. ISBI - 2014 IEEE International Symposium on Biomedical Imaging, Apr 2014, Beijing, China. 2014. 〈hal-00921793〉

Partager

Métriques

Consultations de la notice

322