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ABSTRACT
In order to evaluate the performance of ontology matching

algorithms it is necessary to confront them with test ontolo-

gies and to compare the results. The most prominent cri-

teria are precision and recall originating from information

retrieval. However, it can happen that an alignment be very

close to the expected result and another quite remote from

it, and they both share the same precision and recall. This

is due to the inability of precision and recall to measure

the closeness of the results. To overcome this problem, we

present a framework for generalizing precision and recall.

This framework is instantiated by three different measures

and we show in a motivating example that the proposed mea-

sures are prone to solve the problem of rigidity of classical

precision and recall.

Categories and Subject Descriptors
D.2.12 [Software]: Interoperability; I.2.4 [Artificial Intel-

ligence]: Knowledge Representation Formalisms and Meth-

ods; D.2.8 [Software Engineering]: Metrics

General Terms
Measurement, Performance, Experimentation

Keywords
Ontology alignment, evaluation measures, precision, recall

1. INTRODUCTION
Ontology matching is an important problem for which many

algorithms (e.g., PROMPT[11], GLUE[3], Ontrapro[1],

OLA[7], FOAM[4]) have been provided. In order to eval-

uate the performance of these algorithms it is necessary to

confront them with test ontologies and to compare the re-

sults. The most prominent criteria are precision and re-

call originating from information retrieval and adapted to
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the ontology matching task. Precision and recall are based

on the comparison of the resulting alignment with another

standard alignment, effectively comparing which correspon-

dences are found and which are not. These criteria are well

understood and widely accepted.

However, as we have experienced in last year’s Ontology

Alignment Contest [13], they have the drawback to be of the

all-or-nothing kind. An alignment may be very close to the

expected result and another quite remote from it and both re-

turn the same precision and recall. The reason for this is that

the criteria only compare two sets of correspondences with-

out considering if these are close or remote to each other:

if they are not the same exact correspondences, they score

zero. They both score identically low, despite their differ-

ent quality. It may be helpful for users to know whether the

found alignments are close to the expected one and easily re-

pairable or not. It is thus necessary to measure the proximity

between alignments instead of their strict equality.

In this paper we investigate some measures that generalize

precision and recall in order to overcome the problems pre-

sented above. We first provide the basic definitions of align-

ments, precision and recall as well as a motivating example

(§2). We then present a framework for generalizing preci-

sion and recall (§3). This framework is instantiated by four

different measures (including classical precision and recall)

(§4) and we show on the motivating example that the pro-

posed measures do not exhibit the rigidity of classical preci-

sion and recall (§5).

2. FOUNDATIONS

2.1 Alignment
DEFINITION 1 (ALIGNMENT, CORRESPONDENCE).

Given two ontologies O and O′, an alignment between

O and O′ is a set of correspondences (i.e., 4-uples):

〈e, e′, r, n〉 with e ∈ O and e′ ∈ O′ being the two matched

entities, r being a relationship holding between e and

e′, and n expressing the level of confidence [0..1] in this

correspondence.

A matching algorithm returns an alignment A which is com-

pared with a reference alignment R.
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Let us illustrate this through a simple example. Figure 1

presents two ontologies together with two alignments A1

and R. In this example, for the sake of simplification, the

relation is always ‘=’ and the confidence is always 1.0.

The alignment A1 is defined as follows:

<o1:Vehicle,o2:Thing,=,1.0>

<o1:Car,o2:Porsche,=,1.0>

<o1:hasSpeed,o2:hasProperty,=,1.0>

<o1:MotorKA1,o2:MarcsPorsche,=,1.0>

<o1:250kmh,o2:fast,=,1.0>

We present another reasonable alignment A2:

<o1:Car,o2:Thing,=,1.0>

<o1:hasSpeed,o2:hasProperty,=,1.0>

<o1:MotorKA1,o2:MarcsPorsche,=,1.0>

<o1:250kmh,o2:fast,=,1.0>

and an obviously wrong alignment A3:

<o1:Object,o2:Thing,=,1.0>

<o1:Owner,o2:Volkswagen,=,1.0>

<o1:Boat,o2:Porsche,=,1.0>

<o1:hasOwner,o2:hasMotor,=,1.0>

<o1:Marc,o2:fast,=,1.0>

Further, we have the following reference alignment (R):

<o1:Object,o2:Thing,=,1.0>

<o1:Car,o2:Automobile,=,1.0>

<o1:Speed,o2:Characteristic,=,1.0>

<o1:250kmh,o2:fast,=,1.0>

<o1:PorscheKA123,o2:MarcsPorsche,=,1.0>

2.2 Precision and Recall
The usual approach for evaluating the returned alignments is

to consider them as sets of correspondences and check for

the overlap of the two sets. This is naturally obtained by

applying the classical measure of precision and recall [14],

which are the ratio of the number of true positive (|R ∩ A|)
and retrieved correspondences (|A|) or those to be retrieved

(|R|), respectively.

DEFINITION 2 (PRECISION, RECALL). Given a refer-

ence alignment R, the precision of some alignment A is

given by

P (A,R) =
|R ∩ A|

|A|

and recall is given by

R(A,R) =
|R ∩ A|

|R|
.

2.3 Problems with Current Measures
However, even if the above measurements are easily un-

derstandable and widespread, they are often criticized for

two reasons: Neither do they discriminate between a totally

wrong and an almost correct alignment, nor do they measure

user effort to adapt the alignment.

Indeed, it often makes sense to not only have a decision

whether a particular correspondence has been found or not,

but measure the proximity of the found alignments. This

implies that also “near misses” are taken into consideration

instead of only the exact matches.

As a matter of example, it will be clear to anybody that

among the alignments presented above, A3 is not a very

good alignment and A1 and A2 are better alignments. How-

ever, they score almost exactly the same in terms of precision

(.2) and recall (.2).

Moreover, the alignments will have to go through user

scrutiny and correction before being used. It is worth mea-

suring the effort required by the user for correcting the pro-

vided alignment instead of only if some correction is need-

ing. This also calls for a relaxation of precision and recall.

3. GENERALIZING PRECISION AND RE­

CALL
Because precision and recall are well-known and easily ex-

plained measures, it is good to adhere to them and extend

them. It also brings the benefit that measures derived from

precision and recall, such as f-measure, can still be com-

puted. For these reasons, we propose to generalize these

measures.

If we want to generalize precision and recall, we should be

able to measure the proximity of correspondence sets rather

than their strict overlap. Instead of the taking the cardinal of

the intersection of the two sets (|R ∩ A|), we measure their

proximity (ω).

DEFINITION 3 (GENERALIZED PRECISION AND RECALL).

Given a reference alignment R and an overlap function

ω between alignments, the precision of an alignment A is

given by

Pω(A,R) =
ω(A,R)

|A|

and recall is given by

Rω(A,R) =
ω(A,R)

|R|
.

3.1 Basic properties
In order, for these new measures to be true generalizations,

we would like ω to share some properties with |R ∩ A|. In

particular, the measure should be positive:

∀A,B, ω(A,B) ≥ 0 (positiveness)

and not exceeding the minimal size of both sets:

∀A,B, ω(A,B) ≤ min(|A|, |B|) (maximality)
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Figure 1: Two Aligned Ontologies

If we want to preserve precision and recall results, ω should

only add more flexibility to the usual precision and recall.

So their values cannot be worse than the initial evaluation:

∀A,B, ω(A,B) ≥ |A ∩ B| (boundedness)

Hence, the main constraint faced by the proximity is the fol-

lowing:

|A ∩ R| ≤ ω(A,R) ≤ min(|A|, |R|)

This is indeed a true generalization because, |A∩R| satisfies

all these properties. One more property satisfied by precision

and recall that we will not enforce here is symmetry. This

guarantees that the precision and recall measures are true

normalized similarities.

∀A,B, ω(A,B) = ω(B,A) (symmetry)

We will not require symmetry, especially since A and R are

not in symmetrical positions.

3.2 Designing Overlap Proximity
There are many different ways to design such a proximity

given two sets. We retain here the most obvious one which

consists of finding correspondences matching each other and

computing the sum of their proximity. This can be defined

as an overlap proximity:

DEFINITION 4 (OVERLAP PROXIMITY). A measure

that would generalize precision and recall is:

ω(A,R) =
∑

〈a,r〉∈M(A,R)

σ(a, r)

in which M(A,R) is a matching between the correspon-

dences of A and R and σ(a, r) a proximity function between

two correspondences.

Again, the standard overlap |A ∩ R| used in precision and

recall is such an overlap proximity.

There are two tasks to fulfill when designing such an overlap

proximity function:

– the first one consists of finding the correspondences to

be compared M .

– the second one is to define a proximity measure on cor-

respondences σ;

We consider these two issues below.

3.3 Matching Correspondences
A matching between alignments is a set of correspondence

pairs, i.e., M(A,R) ⊆ A × R. However, if we want to keep

the analogy with precision and recall, it will be necessary to

restrict ourselves to the matchings in which an entity from
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the ontology does not appear twice. This is compatible with

precision and recall for two reasons: (i) in these measures,

any correspondence is identified only with itself, and (ii) ap-

pearing more than once in the matching would not guarantee

an overlap proximity below min(|A|, |R|) .

There are
|A|!

(|A|−|R|)! candidate matches (if |A| ≥ |R|). The

natural choice is to select the best match because this guar-

antees that the function generalizes precision and recall.

DEFINITION 5 (BEST MATCH). The best match

M(A,R) between two sets of correspondences A and R, is

the subset of A × R which maximizes the overall proximity

and in which each element of A (resp. R) belongs to only

one pair:

M(A,R) ∈ Maxω(A,R){M ⊆ A × R}

As defined here, this best match may not be unique. This

is not a problem, because we only want to find the highest

value for ω and any of the best matches will yield the same

value.

Of course, the definitions M and ω are dependent of each

other, but this does not prevent us from computing them.

They are usually computed together but it is better to present

them separately.

3.4 Correspondence Proximity
In order to compute ω(A,R), we need to measure the prox-

imity between two matched correspondences (i.e., 〈a, r〉 ∈
M(A,R)) on the basis of how close the result is from the

ideal one. Each element in the tuple a = 〈ea, e′a, ra, na〉
will be compared with its counterpart in r = 〈er, e

′
r, rr, nr〉.

For any two correspondences (the found a and the reference

r) we compute three similarities σpair, σrel, and σconf . If

elements are identical, proximity has to be one (maximal-

ity). If they differ, proximity is lower, always according to

the chosen strategy. In contrast to the standard definition of

similarity, the mentioned proximity measures do not neces-

sarily have to be symmetric. We will only consider normal-

ized proximities, i.e., measures whose values are within the

unit interval [0..1], because this guarantees that

ω(A,R) ≤ min(|A|, |R|)

The component proximity measure is defined in the follow-

ing way:

σpair(〈ea, er〉, 〈e
′
a, e′r〉): How is one entity pair similar to

another entity pair? In ontologies we can in principal

follow any relation which exists (e.g., subsumption, in-

stantiation), or which can be derived in a meaningful

way. The most important parameters are the relations

to follow and their effect on the proximity.

σrel(ra, rr): Often the alignment relations are more com-

plex, e.g., represent subsumption, instantiation, or

compositions. Again, one has to assess the similarity

between these relations. The two relations of the align-

ment cell can be compared based on their distance in a

conceptual neighborhood structure [6, 8].

σconf (na, nr): Finally, one has to decide, what to do with

different levels of confidence. The similarity could

simply be the difference. Unfortunately, none of the

current alignment approaches have an explicit meaning

attached to confidence values, which makes it rather

difficult in defining an adequate proximity.

Once these proximities are established, they have to be

aggregated. The constraints on the aggregation function

(Aggr) are:

– normalization preservation (if ∀i, 0 ≤ ci ≤ 1 then 0 ≤
Aggrici ≤ 1);

– maximality (if ∀i, ci = 1 then Aggrici = 1);

– local monotonicity (if ∀i 6= j, ci = c′i = c′′j and cj ≤
c′j ≤ c′′j then Aggrici ≤ Aggric

′
i ≤ Aggric

′′
i ).

Here, we consider aggregating them through multiplica-

tion without further justification. Other aggregations (e.g.,

weighted sum) are also possible.

DEFINITION 6 (CORRESPONDENCE PROXIMITY).

Given two correspondences 〈ea, e′a, ra, na〉 and

〈er, e
′
r, rr, nr〉, their proximity is:

σ(〈ea, e′a, ra, na〉, 〈er, e
′
r, rr, nr〉) =

σpair(〈ea, er〉, 〈e
′
a, e′r〉) × σrel(ra, rr) × σconf (na, nr)

We have provided constraints and definitions for M , ω, and

σ. We now turn to concrete measures.

4. CONCRETE MEASURES
We consider four cases of relaxed precision and recall mea-

sures based on the above definitions. We first give the defi-

nition of usual precision and recall within this framework.

4.1 Standard Precision and Recall
For standard precision and recall, the value of ω is |A ∩ R|.
This is indeed an instance of this framework, if the proxim-

ity used is based on the strict equality of the components of

correspondences.

DEFINITION 7 (EQUALITY PROXIMITY). The equality
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proximity is charaterized by:

σpair(〈ea, e′a〉, 〈er, e
′
r〉) =

{

1 if 〈ea, e′a〉 = 〈er, e
′
r〉

0 otherwise

σrel(ra, rr) =

{

1 if ra = rr

0 otherwise

σconf (na, nr) =

{

1 if na = nr

0 otherwise

4.2 Symmetric Proximity
The easiest way to relax precision and recall is to have some

distance δ on the elements in ontologies and to weight the

proximity with the help of this distance: the higher the dis-

tance between two entities in the matched correspondences,

the lower their proximity. This can be defined as:

δ(ea, er) ≤ δ(eb, er)
and δ(e′a, e′r) ≤ δ(e′b, e

′
r)

}

=⇒ σ(〈ea, e′a〉, 〈er, e
′
r〉) ≥ σ(〈eb, e

′
b〉, 〈er, e

′
r〉)

As a simple example of such a symmetric similarity, we use

a distance in which a class is at distance 0 of itself, at dis-

tance 0.5 of its direct sub- and superclasses, and at a distance

1 of any other class. This could be further refined by having

a similarity inversely proportional to the distance in the sub-

sumption tree. Likewise, this similarity may also be applied

to properties and instances (through part-of relationships in

the latter case). The similarity between pairs is the comple-

ment of these similarities The result is displayed in Table 1.

We always mention the assumed alignment and the actual

correct alignment.

found closest correct similarity comment
e,e′ e,e′ σpair

e,e′ e,e′ 1 correct correspondence

c,c′ c,sup(c′) 0.5 returns more specialized instances
c,c′ sup(c),c′ 0.5 returns more general instances
c,c′ c,sub(c′) 0.5 returns more general instances
c,c′ sub(c),c′ 0.5 returns more specialized instances

r,r′ r,sup(r′) 0.5 returns more spec. relation instances
r,r′ sup(r),r′ 0.5 returns more gen. relation instances
r,r′ r,sub(r′) 0.5 returns more gen. relation instances
r,r′ sub(r),r′ 0.5 returns more spec. relation instances

i,i′ i,super(i′) 0.5 returns a more restricted instance
i,i′ super(i),i′ 0.5 returns a too broad instance
i,i′ i,sub(i′) 0.5 returns a too broad instance
i,i′ sub(i),i′ 0.5 returns a more restricted instance

Table 1: Similarities based on Entity Pairs

Table 2 consider the proximity between relations. It only

presents the similarity between equality (=) and other rela-

tions.

For the confidence distance we simply take the complement

of the difference. The final precision is calculated according

to the formula presented in the previous section:

found correct similarity comment
relation relation σrel

e = e′ e = e′ 1 correct relation

c = c′ c ⊂ c′ 0.5 returns more instances than correct
c = c′ c ⊃ c′ 0.5 returns less instances than possible,

but these are correct

r = r′ r ⊂ r′ 0.5
r = r′ r ⊃ r′ 0.5

i = i′ i partOf i′ 0.5
i = i′ i consistsOf i′ 0.5

Table 2: Similarities based on Relations

DEFINITION 8 (SYMMETRIC PROXIMITY). The sym-

metric proximity is characterized by:

σpair(〈ea, e′a〉, 〈er, e
′
r〉) as defined in Table 1

σrel(ra, rr) as defined in Table 2

σconf (na, nr) = 1 − |na − nr|.

4.3 Measuring Correction Effort
If users have to check and correct alignments, the quality of

alignment algorithms can be measured through the effort re-

quired for transforming the obtained alignment into the (cor-

rect) reference one [2].

This measure can be implemented as an edit distance [10]:

an edit distance defines a number of operations by which an

object can be corrected (here the the operations on corre-

spondences authorized) and assigns a cost to each of these

operations (here the effort required to identify and repair

some mistake). The cost of a sequence of operations is the

sum of their cost and the distance between two objects is

the cost of the less costly sequence of operations that trans-

form one object into the other one. The result can always

be normalized in function of the size of the largest object.

Such a distance can be turned into a proximity by taking its

complement with regard to 1.

Table 3 provides such plausible weights. Usually classes

are organized in a taxonomy in which they have less direct

super- than subclasses. It is thus easier to correct a class to

(one of) its superclass than to one of its subclasses. As a con-

sequence, the proximity is dissymmetric. Such a measure

should also add some effort when classes are not directly

related, but this has not been considered here.

The edit distance between relations is relatively easy to de-

sign since, generally, changing from one relation to another

can be done with just one click. Thus, the relational similar-

ity equals 1 if the relations are the same and 0.5 otherwise.

In this correction effort measure, the confidence factor does

not play an important role: ordering the correspondences can

only help the user to know that after some point she will have

to discard many correspondences. We thus decided to not

take confidence into account and thus, their proximity will

always be 1.
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found closest correct effort similarity comment
e,e′ e,e′ σpair

e,e′ e,e′ 0 1 correct alignment

c,c′ c,sup(c′) 0.4 0.6 returns more spec. instances
c,c′ sup(c),c′ 0.4 0.6 returns more gen. instances
c,c′ c,sub(c′) 0.6 0.4 returns more gen. instances
c,c′ sub(c),c′ 0.6 0.4 returns more spec. instances

r,r′ r,sup(r′) 0.4 0.6
r,r′ sup(r),r′ 0.4 0.6
r,r′ r,sub(r′) 0.6 0.4
r,r′ sub(r),r′ 0.6 0.4

i,i′ i,super(i′) 0.4 0.6 returns a more restricted inst.
i,i′ super(i),i′ 0.4 0.6 returns a too broad inst.
i,i′ i,sub(i′) 0.6 0.4 returns a too broad inst.
i,i′ sub(i),i′ 0.6 0.4 returns a more restricted inst.

Table 3: Effort-based proximity between Entity Pairs

DEFINITION 9 (EFFORT-BASED PROXIMITY). The

effort-based proximity is charaterized by:

σpair(〈ea, e′a〉, 〈er, e
′
r〉) as defined in Table 3

σrel(ra, rr) =

{

1 if ra = rr

0.5 otherwise

σconf (na, nr) =

{

1 if na 6= 0 and nr 6= 0
0 otherwise

To be accurate, such an effort proximity would have been

better aggregated with an additive and normalized aggrega-

tion function rather than multiplication.

4.4 Precision­ and Recall­oriented Measures
One can also decide to use two different similarities depend-

ing on their application for evaluating either precision or

recall. We here provide two such measures and justify the

given weights. Precision is normally a measure of accuracy

i.e., the returned results need to be correct. Every wrong re-

sult will therefore entail a penalty. We assume the user poses

a query to the system as follows: “return me all instances of

e”. The system then returns any instance corresponding to

the alignment i.e. e′. Vice versa, for the relaxed recall we

want to avoid missing any correct result. This affects the

similarity relations and weights.

4.4.1 Relaxed Precision
In Table 4 and 5 we present the precision similarity for pairs

and relations. The comments in each line explain the deci-

sion for the weights.

For the distance within the confidence we again use the com-

plement of the difference.

DEFINITION 10 (PRECISION-ORIENTED PROXIMITY).

The precision-recall oriented proximity is characterized by:

σpair(〈ea, e′a〉, 〈er, e
′
r〉) as defined in Table 4

σrel(ra, rr) as defined in Table 5

σconf (na, nr) = 1 − |na − nr|.

found closest correct similarity comment
e,e′ e,e′ σpair

e,e′ e,e′ 1 correct correspondence

c,c′ c,sup(c′) 1 returns more specialized instances,
these are correct

c,c′ sup(c),c′ 0.5 returns more general instances,
includes some correct results

c,c′ c,sub(c′) 0.5 returns more general instances,
includes some correct results

c,c′ sub(c),c′ 1 returns more specialized instances,
these are correct

r,r′ r,sup(r′) 1
r,r′ sup(r),r′ 0.5
r,r′ r,sub(r′) 0.5
r,r′ sub(r),r′ 1

i,i′ i,super(i′) 0.5 returns a more restricted instance
i,i′ super(i),i′ 0 returns a too broad instance
i,i′ i,sub(i′) 0 returns a too broad instance
i,i′ sub(i),i′ 0.5 returns a more restricted instance

Table 4: Similarities for Relaxed Precision based on En-

tity Pairs

found correct similarity comment
relation relation σrel

e = e′ e = e′ 1 correct relation

c = c′ c ⊂ c′ 0.5 returns more instances than correct
c = c′ c ⊃ c′ 1 returns less instances than possible,

but these are correct

r = r′ r ⊂ r′ 0.5
r = r′ r ⊃ r′ 1

i = i′ i partOf i′ 0.5
i = i′ i consistsOf i′ 1

Table 5: Similarities for Relaxed Precision based on Re-

lations

4.4.2 Relaxed Recall
In Table 6 and 7 we present the recall similarity for pairs

and relations. Basically many distances are just mirrored

compared to the precision case.

found closest correct similarity comment
e,e′ e,e′ σpair

e,e′ e,e′ 1 correct correspondence

c,c′ c,sup(c′) 0.5 returns more specialized instances,
misses some

c,c′ sup(c),c′ 1 returns more general instances,
includes the correct results

c,c′ c,sub(c′) 1 returns more general instances,
includes the correct results

c,c′ sub(c),c′ 0.5 returns more specialized instances,
misses some

r,r′ r,sup(r′) 0.5
r,r′ sup(r),r′ 1
r,r′ r,sub(r′) 1
r,r′ sub(r),r′ 0.5

i,i′ i,super(i′) 0 returns a more restricted instance,
misses correct

i,i′ super(i),i′ 0.5 returns a broader instance
i,i′ i,sub(i′) 0.5 returns a broader instance
i,i′ sub(i),i′ 0 returns a more restricted instance,

misses correct

Table 6: Similarities for Relaxed Recall based on Entity

Pairs
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found correct similarity comment
relation relation σrel

e = e′ e = e′ 0 correct relation

c = c′ c ⊂ c′ 0 returns more instances than correct
c = c′ c ⊃ c′ 0.5 returns less instances than possible,

misses some

r = r′ r ⊂ r′ 0
r = r′ r ⊃ r′ 0.5

i = i′ i partOf i′ 0
i = i′ i consistsOf i′ 0.5

Table 7: Similarities for Relaxed Recall based on Rela-

tions

The final recall is computed as usual:

DEFINITION 11 (RECALL-ORIENTED PROXIMITY).

The recall-oriented proximity is characterized by:

σpair(〈ea, e′a〉, 〈er, e
′
r〉) as defined in Table 6

σrel(ra, rr) as defined in Table 7

σconf (na, nr) = 1 − |na − nr|.

5. EXAMPLE
In the introduction of this paper we have presented a pair of

ontologies, the reference alignment, and three different iden-

tified alignments. We will now apply the different proposed

precision and recall measures to these example alignments.

Please note that they mainly illustrate entity pair similarities,

as relations and confidences are always identical. Table 8

provides the results. For the oriented measure we assume

that the query is given in ontology 1 and the answer has to

be retrieved in ontology 2. As the oriented measure is dis-

symmetric, one has to define this direction beforehand.

ω (R, R) (R, A1) (R, A2) (R, A3)
P R P R P R P R

standard 1.0 1.0 0.2 0.2 0.25 0.2 0.2 0.2
symmetric 1.0 1.0 0.4 0.4 0.375 0.3 0.2 0.2
edit 1.0 1.0 0.44 0.44 0.35 0.28 0.2 0.2
oriented 1.0 1.0 0.5 0.5 0.375 0.4 0.2 0.2

Table 8: Precision recall result on the alignments of Fig-

ure 1

The measures which have been introduced address the prob-

lems raised in the introduction and fulfill the requirements:

– They keep precision and recall untouched for the best

alignment (R);

– They help discriminating between irrelevant align-

ments (A3) and not far from target ones (A1 and A2);

– Specialized measures are able to emphasize some char-

acteristics of alignments: ease of modification, correct-

ness or completeness. For instance, let’s consider the

oriented measures. In our example A1 has two very

near misses, which leads to a relatively high preci-

sion. In A2 however the miss is bigger, but by aligning

one concept to its superconcept recall rises relatively

to precision.

These results are based on only one example. They have to

be systematized in order to be extensively validated. Our

goal is to implement these measures within the Alignment

API and to use them on the forthcoming results of the On-

tology Alignment Evaluation 20051 in order to have real

data on which the relevance of the proposed measures can

be more openly debated.

6. RELATED WORK
The naturally relevant work is [2] which has considered pre-

cisely the evaluation of schema matching. However, the au-

thors only note the other mentioned problem (having two

measures instead of one) and use classical aggregation (over-

all and F-measure) of precision and recall.

In computational linguistics, and more precisely multilin-

gual text alignment, [9] has considered extending precision

and recall. Their goal is the same as ours: increasing the

discriminating power of the measures. In this work, the

mathematical formulation is not changed but the granularity

of compared sets changes: instead of comparing sentences

in a text, they compare words in sentences in a text. This

helps having some contribution to the measures when most

of the words are correctly aligned while the sentences are

not strictly aligned.

In the Alignment API [5], there is another evaluation mea-

sure which directly computes a distance based on a weighted

symmetric difference (weights are the confidences of each

correspondence in the alignment). This measure could be

used in the generalization proposed here (the distance would

then be based on confidence difference and would generally

satisfy P ′(A,R) ≤ P (A,R) and R′(A,R) ≤ R(A,R).

The deeper proposal for extending precision and recall

comes from hierarchical text categorization in which texts

are attached to some category in a taxonomy [12]. Usually,

texts are attached to the leaves, but when algorithms attach

them to the intermediate categories, it is useful to discrimi-

nate between a category which is irrelevant and a category

which is an immediate super category of the expected one.

For that purpose, they introduce an extension of precision

(recall is redefined similarly) such that:

PCS =
max(0, |A ∩ R| + FpCon + FnCon)

|A| + FnCon

in which FpCon (resp. FnCon) is the contribution to false

positive (resp. false negative), i.e., the way incorrectly clas-

sified documents could contribute to its incorrect category

anyway. The maximization is necessary to prevent the result

from being negative (because the contribution is defined with

respect to the average such contribution). The contribution

is measured in two ways. The first one is a category similar-

ity that is computed on the features of categories (categories

and documents are represented by a vector of features and

the membership to some category is based on a distance be-

1http://oaei.inrialpes.fr/2005/
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tween these vectors). The second one is based on the dis-

tance between categories in the taxonomy.

This measure does not seem to be a generalization of stan-

dard precision and recall as the one presented here. In partic-

ular, because the contributions can be negative, this measure

can be lower than standard precision and recall. The idea

of retracting the contribution from wrongly classified docu-

ments is not far from the idea developed here. However, the

computation of this contribution with regard to some aver-

age and the addition of some contribution to the divisor do

not seem justified.

7. DISCUSSION
Evaluation of matching results is often made on the basis

of the well-known and well-understood precision and recall

measures. However, these measures do not discriminate ac-

curately between methods which do not provide the exact

results. In the context where the result of alignments have to

be screened by humans, this is an important need.

We have proposed a framework for generalizing preci-

sion and recall when comparing ontology alignments. It

keeps the advantages of usual precision and recall but helps

discriminating between alignments by identifying for near

misses instead of completely wrong correspondences.

The framework has been instantiated in three different mea-

sures, each one aiming at favoring some particular aspects

of alignment utility. We show that these measures indeed

avoid the shortcomings of standard evaluation criteria. They

should however, be further investigated in order to find bet-

ter formulations: more discrepancy needs to be considered,

more progressive distance (e.g., not direct subclasses) and

rationalized design of weights.

This generalization framework is not the only possible one

since we have made a number of choices:

– on the form of the alignment similarity (Definition 4);

– on the kind of alignment matching (Definition 5);

– on the form of the correspondence similarity (Defini-

tion 6).

More work has to be done in order to assess the potential of

other choices in these functions.

The most important work is to consider these proposed mea-

sures in real evaluation of alignment systems and to identify

good measures for further evaluations. We plan to imple-

ment these measures within the Alignment API [5] and pro-

cess the results of the Ontology Alignment Evaluation 2005.
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