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Abstract. In this paper, we introduce and explore ways to include a no-
tion of partiality of information in knowledge representation formalisms.
This leads to the definition of an algebraic structure based on observa-
tion and partial representation, and to the study of the logical behaviour
of those structures, with the characterization of a new modal logic called
OL.

1 Introduction

In the process of the formalization of some system, any information available
about its constitution or its state comes from observations which can be per-
formed on the system. Thus, this notion of observation, and that of knowledge
acquisition has to be taken into account, be considered when defining a model.

This idea is not new, and has already been studied [1, 9], focusing on the fact
that it is only possible to have some finite information about the state of the
system. This approach leads to the fact that only semi-decidable properties can
be used for expressing informations about the system.

In the present article, we will study another approach. Instead of focusing
on the finiteness of observations, we will rather take the fact that they have to
be partial and imperfect as their most important property. Thus, we will use
the notion of partial description as a formalization of the state of the system.
Those descriptions can be embedded in a partially ordered set, a representation,
where the informational content is used to define the ordering. We will also con-
siderer the existence of severals points of observation of the system (and several
representations). As all those representations are related to the same system, it
is possible to exhibit some correlations between the descriptions appearing in
different representations. Thus, in this context, we will replace the study of the
behaviour of the system by the study of the relationships that exist between
the different representations, and will forget the existence of the system, leading
to the definition of a modal logic which formalizes the way partial information
behaves.

In the following, we will introduce two algebraic structures : representations

and representations systems which contain several representations and some ways



to relate them. Then, we will define a logic on those structures, and characterize
its behaviour, leading to the definition of the observational logic OL. Finally, we
will discuss some properties of this logic and show that there exists very weak
relations between the knowledge accessible from different points of view.

2 Knowledge Representation Formalism

Let us first discuss what approach we want to take in order to formalize data. Any
piece of information about the studied system can be seen as a partial description
of its state. In the following, we will call such a piece of information a description,
so that we only want to take into account the elements of information which
are related to the state of the system, and forget anything about the physical
implementation of the description. Another important notion which comes with
descriptions, is that of comparison. As the descriptions we consider are partial,
it follows that it is possible to compare them, by telling whether a description is
more precise than another. This comparison relation acts as a partial order on
descriptions, and we will include it in our framework, so that we get the following
definition :

Definition 1. A representation is a pair R = 〈R,≤〉 where R is a set of de-

scriptions and ≤ is a partial order on the descriptions.

Conventionally, if two descriptions are comparable then the smallest element
corresponds to a more accurate description than the other : if d1 ≤ d2, d1 is the
most accurate, and d2 can be seen as an approximation of d1.

With this definition, it appears that a representation is nothing more than
a poset. Actually, many refinements of the definition could be considered, such
as the existence of extremal elements or of internal operations such as the meet
and the join. But since they shall play no role in the logical study we want to
make, we will keep the previous definition unchanged, and use the terminology
of representation and description instead of poset and element only in order
to keep in mind the fact that they are related to an observation and a formal
representation of a system. For notation convenience, we will always identify a
representation with its set of descriptions.

2.1 Representation System

A collection of representations A representation, as we have just defined it,
is a set of elements which correspond to the descriptions that can possibly be
made from a given point of view. But in the presence of partial observations,
one should more generally consider that there exist several points of view. For
instance, different observations may correspond to different resolutions. If an
observation yields information on a determined part of the system, one can
imagine a point of view observing another part of it. Many other possibilities
may exist. The main reason for this lies in the word “partial” itself : knowing
that a point of view is partial implies that there exists some information that



is not available or accessible from this point of view, so that there might exist
other points of view which permit to have access to those informations.

As a representation is associated to a point of view, one should in general
consider the existence of several representations. In the following, let I be a set
of indexes corresponding to the existing points of view, and for each i ∈ I, let
Ri be the representation associated to the observation process indexed by i.

A set of transformation functions Since all the representations are supposed
to be a formalization of a unique system, there should in general exist relations
between the different representations. We will define a collection of functions
between the representations to express this relationship. Here is the idea : sup-
pose one has a description di ∈ Ri corresponding to the point of view i. This
description correspond to some information about the state of the system. This
implies pieces of information which can be accessible from another point of view
Rj (possibly including no information at all). Let dj be the best description of
Rj corresponding to this and define fj|i(di) = dj .

This way, it is possible to define a collection of description transformation
functions fj|i : Ri → Rj . If the previous considerations are rather informal, they
allow us to give a characterization of those functions. First of all, the function
which has the same representation as range and domain has to be the identity
function on this representation, since the best description of a given state remains
itself : ∀ d, fi|i(d) = d. Moreover, the fj|i’s have to be monotonous : if one has
two description d1 ≤ d2 in Ri (this inequality means that d1 represents more
information that d2), then any piece of information present in fj|i(d2) has to be
present in fj|i(d1).

Finally, from the definition of the fi|j ’s, one may conclude that a description
d ∈ Ri corresponds to more information that fj|i(d), even though they do not
belong to the same representation. It is possible to express this fact using a third
representation, and translate those two descriptions into this third representa-
tion. This leads to the following : let i, j, k be three indexes, and let dk be a
description of Rk. If fj|k(dk) has fewer information that dk, then it implies that
fi|j ◦fj|k(dk) also has fewer information than fi|k(dk). This can be seen as a gen-
eralization of the monotony condition. This can be expressed by the following
inequality :

∀ i, j, k ∈ I, ∀ d ∈ Rk, fi|k(d) ≤ fi|j ◦ fj|k(d) (1)

We think that those conditions provide a good characterization of what a set
of transformation functions should verify. They actually express very strong
constraints on the different observations. First, they imply that they are all
related to the same system. But more important, the last condition also means
that they all correspond to observations of the system in a single state, since it
also provides a way to relate the results of the different observations.

We can now combine those two elements together, in order to define the main
algebraic structure which will be used to formalize and study observed systems.



Definition 2. A representation system is a tuple :

S =
〈

I, {Ri}i∈I ,
{

fi|j

}

i,j∈I

〉

where I is a set of indexes, for each i ∈ I, Ri is a representation, and for any

i, j ∈ I, fi|j is a monotonous function from Rj to Ri. Moreover, those functions

verify :

∀ i ∈ I, fi|i = idi

∀ i, j, k ∈ I, fi|k ≤ fi|j ◦ fj|k

Using this structure, we will now provide some ways to explore and charac-
terize the logical behaviors which comes from the observational approach we are
using.

3 Logical Characterization

In order to express facts about the system which is studied, we are now going to
define a propositional language which sentences will be interpreted as assertions
about the state of the system. Let Ψ denote a countable set of atomic propositions
about the system. We define LΨ as the smallest language including Ψ , the false
element ⊥ (we assume that ⊥ 6∈ Ψ), and closed for ∨, ∧, →. We define ¬ϕ as
a short-cut for ϕ → ⊥, but as we will soon show, the logics we will exhibit are
based on intuitionnistic logic, so that we cannot define ∧ as a combination of ∨
and ¬.

We also need to define LI,Ψ , which also contains a set of modal operators
{Ki}i∈I . Those operators will be used to express facts such that a given assertion
can be proved using observations made from point of view i. This use of modal
operators is similar to that in the field of epistemic logic [5].

3.1 Single Representations

In this section, we will first focus of the use of a single representation as the
interpretation of logical assertions. Since we are considering only one point of
view, we shall restrict ourselves to LΨ , that is we do not consider the modal
operators. Let R be a representation. Our first objective is to define an interpre-
tation function [[·]] which associates a sentence ϕ ∈ LΨ to a set of descriptions.
More precisely, we define [[ϕ]] as the set of descriptions which provide enough
information about the state of the system for proving that ϕ holds.

First, suppose that one has two descriptions d1 ≤ d2, and that d2 ∈ [[ϕ]].
From the definition, d1 provides more information than d2. But if d2 suffices
to prove that ϕ holds, then so does d1. This implies that for any ϕ ∈ LΨ , its
interpretation [[ϕ]] is an ideal of R, that is a downward-closed subset (verifying
∀ d1 ≤ d2, d2 ∈ [[ϕ]] ⇒ d1 ∈ [[ϕ]]). If ℘↓(P ) denotes the set of ideals of a poset



P , then [[·]] is a function from LΨ to ℘↓(R). We will now define this function
inductively considering the structure of the terms. For atomic propositions, one
has to provide their interpretations, so that we need an atomic interpretation
function ν : Ψ → ℘↓(R). The interpretation of the conjunction and the disjunc-
tion are straightforward, taken from their set-theoretic equivalent. For instance,
[[ϕ ∨ ψ]] = [[ϕ]]∪ [[ψ]]. It is not possible to do so for the implication → : it would be
tempting to define [[ϕ→ ψ]] as the set {d | d ∈ [[ϕ]] ⇒ d ∈ [[ψ]]}, but it is generally
not an ideal. Instead, one has to restrict to the greatest ideal included in that
set. We summarize this definition in figure 1.

∀ψ ∈ Ψ, [[ψ]]R,ν = ν(Ψ)

[[ϕ ∨ ψ]]R,ν = [[ϕ]]R,ν ∪ [[ψ]]R,ν

[[ϕ ∧ ψ]]R,ν = [[ϕ]]R,ν ∩ [[ψ]]R,ν

[[ϕ→ ψ]]R,ν =
{

d | ∀ d′ ≤ d, d
′ ∈ [[ϕ]]R,ν ⇒ d

′ ∈ [[ψ]]R,ν

}

[[¬ϕ]]R,ν =
{

d | ∀ d′ ≤ d, d
′ 6∈ [[ϕ]]R,ν

}

[[⊥]]R,ν = ∅

Fig. 1. Definition of [[·]]R,ν : LΨ → ℘↓(R)

With this function, we can define a validation symbol as follows : given
a representation R, an atomic interpretation function ν : Ψ → ℘↓(R), and
a description d ∈ R, we say that a proposition ϕ ∈ LΨ is valid for d and
write R, ν, d |=R ϕ if and only if d ∈ [[ϕ]]R,ν . We also define R, ν |=R ϕ for
[[ϕ]]R,ν = R and |=R ϕ if and only if R, ν |=R ϕ for all representations R and
atomic interpretations ν : Ψ → ℘↓(R).

In the next proposition, we will show that this validation symbol |=R is ex-
actly equivalent to intuitionnistic logic. This logic, which formulation is given
in figure 2, was defined as an alternative to classical logic, where the excluded
middle principle is rejected, and where implication embodies a cause to conse-
quence relation much stronger that its equivalent in classical logic. Let us write
⊢IL ϕ to denote that ϕ can be proved using the axioms of intuitionnistic logic.

Proposition 1

Given a sentence ϕ ∈ LΨ , one has the equivalence :

⊢IL ϕ ⇔ |=R ϕ

Proof. This comes from the fact that representation, which are just posets, can
be seen as Kripke structures, where the accessibility relation is reflexive and
transitive. Such structures are the usual models for intuitionnistic logic [6, 4].

Now that we have precisely characterized the logic associated to represen-
tations, we will turn to representation systems. This time, there will be several



ϕ→ ϕ ∧ ϕ ϕ ∧ ψ → ψ ∧ ϕ (ϕ→ ψ) → (ϕ ∧ ϑ) → (ψ ∧ ϑ)

ϕ→ ϕ ∨ ψ ϕ ∨ ψ → ψ ∨ ϕ (ϕ→ ϑ) ∧ (ψ → ϑ) → (ϕ ∨ ψ) → ϑ

ϕ→ (ψ → ϕ) ϕ ∧ (ϕ→ ψ) → ψ ⊥ → ϕ

Ax
⊢ ϕ

⊢ ϕ→ ψ ⊢ ϕ
M.P.

⊢ ψ

Fig. 2. Axioms and rules of intuitionnistic logic

points of view to consider, so that it is the full language LI,Ψ which will be used
now.

3.2 General Representation Systems

Extension of the interpretation function We will now consider a represen-
tation system S =

〈

I, {Ri} ,
{

fi|j

}〉

. We have defined an interpretation function
[[·]] associated to a given representation. Since a representation system is made
of several representation, one will have to consider as many interpretation func-
tions [[·]]i : LI,Ψ → ℘↓(Ri). Moreover, as an interpretation function is based on
an atomic interpretation function (previously denoted ν), we will also need to
consider a collection of atomic interpretations νi : Ψ → ℘↓(Ri) in order to define
the [[·]]i.

We also need to define the interpretation of the modal Ki operators. For
doing this, consider d ∈ [[Ki ϕ]]j (in particular, d ∈ Rj). From the interpretation
of Ki, this means that d corresponds to a description which contains enough
information to assert that the property ϕ in the representation Ri. Since the
description d belongs to Rj , it follows that if it is transformed into an Rj de-
scription using fi|j , it is included in the interpretation of ϕ for i. Stated formally,
one has :

d ∈ [[Ki ϕ]]j ⇔ fi|j(d) ∈ [[ϕ]]i

This leads to the definition of {[[·]]S,ν,i}i∈I given in figure 3, where S is

a representation system, and ν denotes the collection
{

νi : Ψ → ℘↓(Ri)
}

. We
define the notation |=S ϕ which means that for any representation system S,
and for any atomic interpretation functions ν = {νi}i∈I , one has :

∀ i ∈ I, [[ϕ]]S,ν,i = Ri

Before starting the characterization of the logic which corresponds to |=S , we
first give two useful propositions. The first one, which concerns intuitionnistic
logic, gives a simpler version of the validation of an implication.



∀ψ ∈ Ψ, [[ψ]]S,ν,i = νi(Ψ)

[[ϕ ∨ ψ]]S,ν,i = [[ϕ]]S,ν,i ∪ [[ψ]]S,ν,i

[[ϕ ∧ ψ]]S,ν,i = [[ϕ]]S,ν,i ∩ [[ψ]]S,ν,i

[[ϕ→ ψ]]S,ν,i =
{

d | ∀ d′ ≤ d, d
′ ∈ [[ϕ]]S,ν,i ⇒ d

′ ∈ [[ψ]]S,ν,i

}

[[⊥]]S,ν,i = ∅

[[Kj ϕ]]S,ν,i =
{

d | fj|i(d) ∈ [[ϕ]]S,ν,j

}

Fig. 3. Definition of
{

[[·]]S,ν,i : LΨ → ℘↓(Ri)
}

i∈I

Proposition 2

Given two terms ϕ and ψ, one has :

|=S ϕ→ ψ ⇔ ∀S, ν, i, [[ϕ]]S,ν,i ⊆ [[ψ]]S,ν,i

Proof It comes from the following simple calculation :

|=S ϕ→ ψ ⇔ ∀S, ν, i, [[ϕ→ ψ]]S,ν,i = Ri

⇔ ∀S, ν, i, ∀ d ∈ Ri, d ∈ [[ϕ]]S,ν,i ⇒ d ∈ [[ψ]]S,ν,i

⇔ ∀S, ν, i, [[ϕ]]S,ν,i ⊆ [[ψ]]S,ν,i

�

The second one relates, for a given index i, the modal operator Ki and the
interpretation [[·]]i.

Proposition 3

Given an index i ∈ I and a term ϕ, one has :

[[Ki ϕ]]i = [[ϕ]]i

Proof It comes from the fact that fi|i is the identity on Ri, so that :

[[Ki ϕ]]i =
{

d | fi|i(d) ∈ [[ϕ]]i
}

= {d | d ∈ [[ϕ]]i} = [[ϕ]]i

�

Identification of the corresponding logic Since the definition of the inter-
pretation [[·]]S is an adaptation of the previous interpretation defined on single
representations, it follows that the logic modelized by representations systems
will be based on intuitionnistic logic.

Some axioms have to be added to it in order to give a formalization of the
behaviour of the modal operators, so that we will now study the validation



of modal axioms. First, we will consider some classic axioms taken from the
literature [3, 8] : we will explore the validation of K, D, T, 4 and 5.

The first axiom, K : Ki (ϕ → ψ) → Ki ϕ → Ki ψ can be interpreted in the
present situation as the fact that an agent Ai associated to a given point of
view (and a representation Ri) can make deduction. In other words, if Ai has
enough information for proving that both ϕ → ψ and ϕ hold for the observed
system, then ψ also holds. This can be proved, using proposition 2, by showing
that [[Ki (ϕ→ ψ)]]j ⊆ [[Ki ϕ→ Ki ψ]]j . This is true, since :

[[Ki (ϕ→ ψ)]]j =
{

d | ∀ d′ ≤ fi|j(d), d
′ ∈ [[ϕ]]i ⇒ d′ ∈ [[ψ]]i

}

[[Ki ϕ→ Ki ψ]]j =
{

d | ∀ d′ ≤ d, fi|j(d
′) ∈ [[ϕ]]i ⇒ fi|j(d

′) ∈ [[ψ]]j
}

and using the monotony of fi|j , one has d′ ≤ d⇒ fi|j(d
′) ≤ fi|j(d).

The axiom D : Ki ϕ→ ¬Ki ¬ϕ is also valid for representation systems. Used
in conjunction with K, it is equivalent to Ki ⊥ → ⊥. It is easy to show that this
latter is valid for representation systems, since :

[[Ki ⊥]]j =
{

d | fi|j(d) ∈ [[⊥]]j
}

=
{

d | fi|j(d) ∈ ∅
}

= ∅ = [[⊥]]j

Using the previous agent interpretation, this means that the knowledge of a given
agent is consistent, since it cannot prove the absurd proposition. Yet, as we will
now show, this does not imply that the knowledge of an agent corresponds to
properties that are actually verified by the observed system. This is reflected
by the fact that the axiom T : Ki ϕ → ϕ is not valid. It is possible to show
this by considering a representation system with at least two indices i and j,
and a set of atomic interpretation function {νi}i such that νi(ψ) = Ri and
νj(ψ) = ∅ (where ψ is an atomic proposition). If T were verified, it would imply
that [[Ki ψ]]j ⊆ [[ψ]]j . But in the present case, [[Ki ψ]]j = Rj and [[ψ]]j = ∅.

Actually, a weaker version of T is valid for representation systems. This
version reduces the scope of T to proposition of the form Ki ϕ. More precisely,
we define the axiom T2 : KiKj ϕ → Kj ϕ. Its validity is the exact expression
that the transformation functions verify fi|k ≤ fi|j ◦ fj|k, since :

[[KiKj ϕ]]k ⊆ [[Kj ϕ]]k

⇔ fj|i ◦ fi|k(d) ∈ [[ϕ]]j ⇒ fj|k(d) ∈ [[ϕ]]j

⇔ fj|k(d) ≤ fj|i ◦ fi|k(d)

Thus, in this formalism, the knowledge an agent has about the studied system
might not correspond to reality, but it is consistent, and what she knows about
the knowledge of another agent is exact.

We will now turn to the introspection axioms. First, let’s consider 4 : Ki ϕ→
KiKi ϕ. This axioms expresses the fact that an agent knows that she knows
some particular proposition. It is valid for representation systems, since fi|i is



the identity on Ri. The other introspection axiom 5 : ¬Ki ϕ→ Ki ¬Ki ϕ, which
applies to things which are not known (or more precisely that cannot be known),
is not valid. This can be understood from the postulate that knowledge comes
from observation, since knowledge would in the case of 5 also come from an
absence of observation.

Using proposition 3, it is possible to define an extra axiom which expresses
more precisely how introspection occurs in the present framework. As shown
above, one has :

[[Ki ϕ]]i = [[ϕ]]i

It follows from this that if we define L : Ki (ϕ↔ Ki ϕ), this axiom is valid for
representation systems. Since the equivalence ↔ is only a notation and not a
real connector, this axiom can be split into two parts :

LT : Ki (Ki ϕ→ ϕ) L4 : Ki (ϕ→ Ki ϕ)

With those notations, it is easy to see that with K, L4 implies 4. Thus, we have
given a characterization of an agent’s knowledge about herself which is better
than just stating that 4 is verified.

To finish this survey of axioms valid for representation systems, we will also
introduce KV : Ki (ϕ∨ψ) → Ki ϕ∨Ki ψ. This axiom can be seen as an adaption
to agents of the way the disjunction operation behaves in intuitionnistic logic.
Thus, if an agents knows that ϕ ∨ ψ is true, then she knows that either ϕ or ψ
is true.

Finally, let’s take a look at the rules which can be used. First, the Nec

(necessity) rule, which allows to infer ⊢ Ki ϕ from ⊢ ϕ is valid, since [[ϕ]]i = Ri

implies that [[Ki ϕ]]j = Rj . Another rule can be defined, which expresses the
way |=S is defined. If a proposition ϕ is valid for representation systems, then it
means that given a representation system S, one has ∀ i, [[ϕ]]i = Ri. But this is
equivalent to stating that ∀ i, j, [[Ki ϕ]]j = Rj . This leads to the definition of a
new rule which we call Univ (universality) :

∀ i ∈ I, ⊢ Ki ϕ
Univ

⊢ ϕ

With all those definitions, we will now introduce the observational logic OL.
This logic is an intuitionnistic modal logic which modal axioms are K, D, L,
T2 and KV and which modal rules are Nec and Univ. A summary is given in
figure 4. This logic is exact the logic modeled by representations systems :

Proposition 4

Given a sentence ϕ ∈ LI,Ψ , one has the equivalence :

⊢OL ϕ ⇔ |=S ϕ



Ki (ϕ→ ψ) → Ki ϕ→ Ki ψ K

Ki ϕ→ ¬Ki ¬ϕ D

Ki (ϕ↔ Ki ϕ) L

Ki Kj ϕ→ Kj ϕ T2

Ki (ϕ ∨ ψ) → Ki ϕ ∨Ki ψ KV

⊢ ϕ

⊢ Ki ϕ
Nec

∀ i ∈ I, ⊢ Ki ϕ

⊢ ϕ
Univ

Fig. 4. Modal axioms and rules of OL

Proof The complete proof can be found in the appendix. �

It is interesting to remark that the logic we have just identified has strong
relationships with IS4+KV. This logic has been identified in the case of repre-
sentation systems where there exists a representation which is more expressive
than the others, and where all knowledge is related to this representation [2].
Yet, OL is neither weaker nor stronger than IS4 + KV. Rather, this logic is
a variant of the latter, and the fact that it does not verify T leads to some
interesting properties about the way the knowledge of different agents can be
related.

4 Discussion

Using this framework and the logic we have devised, it is possible to initiate a
discussion about the possible relationships that exist between the knowledge of
different agents. In the definition of OL, only one axiom does relate the existence
of different modal operators. This axiom is the one we called T2 :

T2 : KiKj ϕ→ Kj ϕ

It expresses the fact that if an agent Ai knows that another agent Aj knows a
property ϕ, then agent Aj actually knows ϕ. Yet, this axiom is weaker than T,
and does not permit to deduce any property about Ai knowing ϕ. This can be
expressed by the fact that agents do not trust each other. If it were the case, it
would mean that representation systems do verify an axiom which we call C :

C : KiKj ϕ→ Ki ϕ



This axiom is very similar to T2, except that it removes the rightmost modal
operator instead of the leftmost. Stated another way, with T2, one has to keep
the rightmost modal operator, and C would allow to remove it. It is easy to show
that this axiom is not valid for representation systems, since it would imply the
validity of T, as shows the following derivation :

∀ i, j, k, [[KiKj ϕ]]k ⊆ [[Ki ϕ]]k

⇒ ∀ i, j, k,
{

d | fi|k(d) ∈ [[Kj ϕ]]i
}

⊆
{

d | fi|k(d) ∈ [[ϕ]]i
}

⇒ ∀ i, j,
{

d | fi|i(d) ∈ [[Kj ϕ]]i
}

⊆
{

d | fi|i(d) ∈ [[ϕ]]i
}

⇒ ∀ i, j, [[Kj ϕ]]i ⊆ [[ϕ]]i

Thus, we have shown that agents cannot trust each other. A weaker way to relate
the agents’ knowledge can be expressed by a condition of global consistency,
which we formalize by axiom GD :

GD : Ki ϕ→ ¬Kj ¬ϕ

It can be shown that this axiom is not valid either, and it is even possible to
build a representation system which modelizes Ki ϕ ∧Kj ¬ϕ. This implies that
it is not even possible to ensure that for a defined state of the system, a property
and its negation cannot be observed.

As we have seen, even though we have identified the observational logic OL

from a very general algebraic structure used to formalize the notion of partial
observation, this logic expresses very weak conditions on the relations between
the knowledge of the different observers. More precisely, it appears that the only
way to relate two different agents is the use of axiom T2 which, as mentioned
earlier, forces to keep the rightmost modal operator. Thus, it is impossible to
disconnect an observation from its originating point of view.

Yet, this does not imply that OL is useless, or that it cannot express any
relation between agents. On the contrary, its behaviour shows that an important
point which has to be taken into account is that as soon as the originating point
of view is considering, thus leading to consider propositions of the form Ki ϕ,
then the information is trustworthy, and the axioms C and GD are verified. For
instance, one has :

⊢OL KiKj Kk ϕ→ KiKk ϕ

Thus, propositions of this form can be used safely to describe the state of
the system, since it does not depend on a specific representation. This suggests
the existence of a category of propositions which behave the same way, and can
be used safely.

5 Conclusion

In this article, we have introduced a simple algebraic structure in order to for-
malize knowledge and information based on partial and incomplete observation.



This led us to the definition of representation structures, using very general as-
sumptions on the structure of studied systems. Using those structures, we have
defined a specific logic, namely OL, intended to formalize the behaviour of in-
formation in such a context.

The study of this logic has permitted to identify some very interesting and
maybe counter-intuitive properties of information. The first point is that it
is based on intuitionnistic logic, rather than on classical logic. Thus, the ex-
cluded middle principle is not verified. Similarly, the modal axiom 5 : ¬Ki ϕ→
Ki ¬Ki ϕ is not verified either. This suggests that knowledge comes solely from
observations, and is obtained inductively.

Another important aspect is that there exists a category of propositions
which can be used without any reference to a particular representation, or point
of view. We have seen that propositions of the form Ki ϕ are in this category,
since a particular representation is explicitly given. Yet, there might exist other
propositions in this category, and this notion is still to be studied.
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A Proof of completeness

We will prove the completeness by defining a canonical model of OL. For this,
let us define for each index i ∈ I the representation Ri. Let this representation
be the set of all prime sets Γi of OL such that they contain ϕ ↔ Ki ϕ for all
propositions ϕ, ordered by reverse inclusion. We recall that given a logic L, a
set Γ is prime for this logic if and only if it is closed by deduction for L, it is
consistent (so that ⊥ 6∈ Γ ), and if ϕ ∨ ψ ∈ Γ , then either ϕ or ψ belongs to Γ .
This is a simple adaption of the canonical model used for intuitionnistic logic as
it can be found in [4] for instance.



We also define fi|j(Γj) = {ϕ |Ki ϕ ∈ Γj} and νi(ψ) = {Γi |ψ ∈ Γi}. With

those definitions, it is easy to check that SC =
〈

I, {Ri} ,
{

fi|j

}〉

is a repre-
sentation system. The canonical interpretation [[·]]C is defined as [[·]]SC ,ν . This
interpretation verifies :

Proposition 5

For any proposition ϕ, one has :

∀ i, [[ϕ]]C,i = {Γi |ϕ ∈ Γi}

Proof This result is proved by induction on the length of the considered term.
We will only develop the modal case :

[[Ki ϕ]]C,j =
{

Γj | fi|j(Γj) ∈ [[ϕ]]C,i

}

=
{

Γj |ϕ ∈ fi|j(Γj)
}

= {Γj |Ki ϕ ∈ Γj}

�

Proposition 6

One has :

[[ϕ]]C,i = Ri ⇒ ⊢OL Ki ϕ

Proof If [[ϕ]]C,i = Ri, then there exists a finite set {ψ1, . . . , ψn} such that :

⊢OL (ψ1 ↔ Ki ψ1) ∧ . . . ∧ (ψn ↔ Ki ψn) → ϕ

Using rule Nec, this implies :

⊢OL Ki (ψ1 ↔ Ki ψ1) ∧ . . . ∧Ki (ψn ↔ Ki ψn) → Ki ϕ

So that one can deduce ⊢OL Ki ϕ thanks to axiom L. �

Proposition 7

For all ϕ ∈ LI,Ψ , one has :

⊢OL ϕ⇔ |=S ϕ

Proof The soundness direction can easily be checked by hand, and has been
sketched in 3.2. The completeness direction

|=S ϕ⇒ ∀ i, [[ϕ]]C,i = Ri ⇒ ∀ i, ⊢OL Ki ϕ⇒ ⊢OL ϕ

The last implication comes from the application of the universality rule. �


