How regular can maxitive measures be?

Paul Poncet 1, 2
2 MAXPLUS - Max-plus algebras and mathematics of decision
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : We examine domain-valued maxitive measures defined on the Borel subsets of a topological space. Several characterizations of regularity of maxitive measures are proved, depending on the structure of the topological space. Since every regular maxitive measure is completely maxitive, this yields sufficient conditions for the existence of a cardinal density. We also show that every outer-continuous maxitive measure can be decomposed as the supremum of a regular maxitive measure and a maxitive measure that vanishes on compact subsets under appropriate conditions.
Type de document :
Article dans une revue
Topology and its Applications, Elsevier, 2013, 160 (4), pp.606-619. 〈10.1016/j.topol.2013.01.007〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00922372
Contributeur : Paul Poncet <>
Soumis le : jeudi 26 décembre 2013 - 11:55:39
Dernière modification le : mercredi 25 avril 2018 - 10:45:36

Lien texte intégral

Identifiants

Collections

Citation

Paul Poncet. How regular can maxitive measures be?. Topology and its Applications, Elsevier, 2013, 160 (4), pp.606-619. 〈10.1016/j.topol.2013.01.007〉. 〈hal-00922372〉

Partager

Métriques

Consultations de la notice

199