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Audio is a domain where signal separation has long been considered as a fascinating
objective, potentially offering a wide range of new possibilities and experiences in pro-
fessional and personal contexts, by better taking advantage of audio material and finely
analyzing complex acoustic scenes. It has thus always been a major area for research in
signal separation and an exciting challenge for industrial applications.

Starting with blind separation of toy mixtures in the mid 90’s, research has pro-
gressed up to real-world scenarios today, with applications to speech enhancement and
recognition, music editing, 3D sound rendering, and audio information retrieval, among
others. This has mostly been made possible by the development of increasingly informed
separation techniques incorporating knowledge about the sources and/or the mixtures
at hand. For instance, speech source separation for remote conferencing can benefit from
prior knowledge of the room geometry and/or the names of the speakers, while music
remastering will exploit instrument characteristics and knowledge of sound engineers
mixing habits.

After a brief historical account, we provide an overview of recent and ongoing research
in this field, illustrating a variety of models and techniques designed so as to guide the
audio source separation process towards efficient and robust solutions.

1 Audio source separation: basic concepts

Initially, audio source separation was formulated as a standard source separation prob-
lem, i.e., as a linear system identification and inversion problem. In the following, we
assume that the sources do not move and we denote the number of sources and micro-
phones by J and I, respectively, which are assumed to be known. We adopt the following
notation: scalars are represented by plain letters, vectors by bold lowercase letters, and
matrices by bold uppercase letters. The mixture signal x(t) = [x1(t), . . . , xI(t)]

T ob-
served at time t when recording the source signals s(t) = [s1(t), . . . , sJ(t)]

T can be
modeled by the convolution process

x(t) = (A ⋆ s)(t) (1)

where A(t) = [a1(t), . . . ,aJ(t)] is the matrix of room impulse responses or mixing filters

associated with sound propagation from each source to each microphone, T denotes ma-
trix transposition, and ⋆ is the convolution operator, i.e., xi(t) =

∑J
j=1

∑
∞

τ=0 aij(τ)sj(t−
τ).

1.1 Spatial images and time-frequency processing

It soon became clear that this formulation had intrinsic limitations, especially with
respect to audio specificities. Firstly, the modeling of the system as impulse responses
between each source location and each microphone location implicitly assumes that each
source emits sound from a single point in space, preventing the modeling of spatially
diffuse sources [1]. Secondly, unless extra information is available, the sources may be
recovered at best up to indetermined permutation and filtering. Thirdly, the linear
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system A(t) may be inverted only in determined scenarios involving fewer sources than
the number of microphones (J ≤ I).

In 1998, Cardoso [2] proposed to reformulate the mixing process as

x(t) =

J∑

j=1

cj(t) (2)

so that source separation became the problem of extracting the contribution cj(t) =
[cj1(t), . . . , cjI(t)]

T of each source to the mixture. The quantity cj(t) was later called
the spatial source image of the j-th source [3]. This reformulation circumvented the
filtering indeterminacy by joining aj(t) and sj(t) into a single quantity

cj(t) = (aj ⋆ sj)(t) (3)

and the general model (2) became applicable to spatially diffuse sources which cannot
be expressed as (3).

At the same time, several researchers proposed to switch to the time-frequency do-
main by means of the complex-valued short time Fourier transform (STFT). By rewriting
the mixing process in each time frame n and each frequency bin f as

x(n, f) =
J∑

j=1

cj(n, f), (4)

source separation was recast as a problem akin to clustering, whereby sound in a given
time-frequency bin must be allocated to the one or few active sources in that bin, and
separation became achievable in under-determined scenarios with more sources than mi-
crophones (J > I) [4]. In the following, x, s, A, cj , sj , and aj refer to time-domain
variables when used with the time index t and to their time-frequency domain counter-
parts when used with the frame and frequency bin indices n and f .

While early source separation techniques relied on spatial diversity, that is the as-
sumption that the sources have different directions of arrival, the move to time-frequency
domain processing enabled the exploitation of spectral diversity, that is the assumption
that their short-term spectra follow distinct distributions. This made it possible to han-
dle single-channel mixtures and mixtures of sources sharing the same direction of arrival,
such as vocals and drums which are often both mixed to the center in pop music.

1.2 Levels of guidance

Over the past years, successive breakthroughs have resulted from the development of
audio source separation techniques increasingly suited to the properties of audio sources
and to the specificities of the acoustic mixing conditions : more and more sophisticated
models and algorithms have been developed to incorporate available side information (or
to estimate it on the fly) about the sources and the mixing environment so as to guide

the separation process. Today, some of the most advanced source separation systems
integrate a fair number of spatial and spectral models into a single framework [5, 6].
Figure 1 summarizes visually this evolution.

According to conventional terminology, blind source separation does not exploit any
information about the sources nor about the mixing process. Its application domain is
essentially restricted to dealing with determined instantaneous mixtures, which practi-
cally never arise in audio.

Conversely, various terms such as semi-blind or informed have been used to charac-
terize separation techniques based on some level of informedness. For instance the use
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Figure 1: Audio source separation: a general overview of the evolution in the field.

of the adjective informed is restricted to separation techniques relying on highly precise
side information coded and transmitted along with the audio, e.g., the mixing filters
and the short-term power spectra of the sources, which can be seen as a form of audio
coding and is not covered hereafter (see [7] for a review). As these terms happen to be
used either quite specifically or rather inconsistently, we will use in the present article
the term guided source separation.

In that sense, algorithms employing information about the general behaviour of audio
sources and/or of the acoustic mixing process in general, e.g., “the sources are sparsely
distributed” or “the mixture was recorded outdoors”, can be described as weakly guided.
By contrast, algorithms taking advantage of specific information about the mixture to
be separated, e.g., the source positions, the names of the speakers or the musical score,
may be coined as strongly guided.

2 Modeling paradigms

Before we focus on specific types of guidance, let us introduce the common foundations
of blind and guided algorithms. It was proved early on that separation is unfeasible if
more than one source has a stationary white Gaussian distribution [8]. Separation hence
relies on two alternative modeling paradigms: nongaussianity or nonstationarity, where
nonstationarity may manifest itself over time, over frequency, or over both [8]. These
two paradigms are essentially interchangeable: choosing one of them does not restrict
the type of information that may be included as guidance or the practical scenarios that
can be considered.

2.1 Sparse nongaussian modeling

In the time-frequency domain, the convolutive mixing model (3) may be approximated
under a narrowband assumption by complex-valued multiplication in each frequency bin

cj(n, f) = aj(f)sj(n, f) (5)
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where the Fourier transform aj(f) of aj(t) is the so-called mixing vector for the j-th
source or, in matrix form, x(n, f) = A(f)s(n, f) where A(f) = [a1(f), . . . ,aJ(f)] is the
so-called mixing matrix.

Assuming that the source STFT coefficients have a stationary nongaussian distribu-
tion P (.), separation may be achieved in the maximum likelihood (ML) sense as [9]1

min
A,s

∑

j,n,f

− logP (sj(n, f)) subject to x(n, f) = A(f)s(n, f). (6)

A similar objective may be derived from a deterministic inverse problem perspective [9]:

min
A,s

1

2

∑

n,f

‖x(n, f)−A(f)s(n, f)‖22 + λ
∑

n,f

P(s(n, f)) (7)

where P(.) (in calligraphic font) is a penalty term. The choice of the tradeoff parameter
λ is not a trivial task. When the constraint x(n, f) = A(f)s(n, f) holds, the minimum
of

∑
n,f P(s(n, f)) subject to this constraint is obtained in the limit when λ → 0.

For typical STFT window lengths on the order of 50 to 100 ms [4], the STFT coeffi-
cients of audio signals exhibit a sparse distribution, with a sharp peak at zero and heavy
tails compared to a Gaussian. The generalized Gaussian distribution P (sj(n, f)) ∝
exp(−λ|sj(n, f)|

p) and the associated ℓp sparsity inducing norm P(s(n, f)) = ‖s(n, f)‖pp =∑J
j=1 |sj(n, f)|

p with 0 < p < 2 are popular choices to model this behavior [9, 10].

In the determined case, the objective(6) has been shown to maximize the statistical
independence of the sources, hence the name independent component analysis (ICA). In
the under-determined case, both objectives are called sparse component analysis (SCA)
and they are typically addressed by first estimating A(f) and then deriving s(n, f)
using greedy algorithms such as matching pursuit, convex optimization algorithms such
as iterative soft thresholding, or nonconvex optimization algorithms depending on the
chosen distribution P (.) or penalty P(.).

If the sources are sufficiently sparse, there is a good chance that each time-frequency
bin is dominated by a single source, i.e., x(n, f) ≈ aj(f)sj(n, f) for one source j. This
leads to approximate SCA as a clustering problem. The mixing vectors aj(f) are first
estimated by clustering the observations x(n, f) and the sources s(n, f) are derived by
grouping the time-frequency bins dominated by the same source, an operation known
as time-frequency masking. For a more detailed introduction to ICA and SCA, see [11].

2.2 Gaussian nonstationary modeling

An alternative paradigm is to assume that the vectors of STFT coefficients of the source
spatial images have a zero-mean nonstationary Gaussian distribution

P (cj(n, f)|Σcj(n,f)) =
1

det(πΣcj
(n, f))

e
−cj(n,f)

HΣ
−1
cj(n,f)

cj(n,f)
(8)

where H denotes conjugate transposition. The covariance Σcj
(n, f) depends on time

and frequency. It can be factored into the product of a scalar spectro-temporal power
vj(n, f) and a spatial covariance matrix Rj(f) [1]:

Σcj
(n, f) = vj(n, f)Rj(f). (9)

1In the absence of specific information over A or s, minimization is typically achieved under a scaling

constraint to avoid divergence of A and s to infinitely large or small values.
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Separation is typically achieved by estimating the model parameters in the ML sense

min
R,v

∑

j,n,f

− logP (cj(n, f)|R, v) subject to x(n, f) =
J∑

j=1

cj(n, f) (10)

using an expectation-maximization (EM) algorithm. Once R and v have been esti-
mated, cj(n, f) can be derived in the minimum mean square error (MMSE) sense by
multichannel Wiener filtering:

ĉj(n, f) = Σcj
(n, f)




J∑

j=1

Σcj
(n, f)




−1

x(n, f). (11)

For more detailed presentation of this paradigm, see [1].

2.3 Introducing information about the model parameters

Equations (6), (7) and (10) form the basis for all guided algorithms presented hereafter.
Without any further information about A, s, R, or v, the spatial source images cj(n, f)
may be recovered at best up to indetermined permutation in each frequency bin f .
This so-called permutation problem was historically the first reason to investigate the
incorporation of more information into the models. However, guiding separation does not
only address this problem, but also improves the accuracy of the parameter estimates,
which in turn improves separation.

Information may be introduced either in the form of deterministic constraints over
A, s, R, or v, which restrict the values that these parameters may take, or in the form
of penalty functions or probabilistic priors, which are added to the objective functions in
(6), (7) and (10) and used to estimateA, s, R, and v in the maximum a posteriori (MAP)
sense. These contraints, penalties and priors involve their own parameters, which we
call hyper-parameters. The key difference between weakly guided and strongly guided
separation is that the values of the hyper-parameters must be estimated from the mixture
in the former case, while they are fixed using expert knowledge or training in the latter
case.

3 Modeling and exploiting spatial information

A first way to introduce information in audio source separation is to account for the
fact that the mixing vectors aj(f) and the spatial covariance matrices Rj(f) are not
independent across frequency, but that they are linked by the spatial properties of the
source and the recording room. We review a number of increasingly complex properties
that may be used in this context, from the spatial location of the source to the full
acoustics of the room. Each presented model embeds the information carried by the
previous model plus some new information.

3.1 Spatial location

In the free field, the mixing vectors aj(f) would be collinear with

dj(f) =

[
1

r1j
e−2iπfr1j/c, . . . ,

1

rIj
e−2iπfrIj/c

]T
(12)
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that is the steering vector modeling the sound attenuation and delay from the source to
the microphones, with c the sound velocity and rij the distance from the j-th source to
the i-th microphone. In practical recording conditions, aj(f) deviates from dj(f) due
to reflections on the boundaries of the room, which include early echoes and dense late
echoes known as reverberation. Figure 2 shows the amount of deviation as a function of
the reverberation time RT60, that is the time taken by late echoes to decay by 60 decibels
(dB).
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Figure 2: Example distribution over the whole frequency range of the phase and intensity
differences between aj(f) and dj(f) as a function of RT60 for two microphones spaced
by 20 cm recording a source at 1 m distance at a sampling frequency of 8 kHz.

Parra and Alvino [12] were the first to exploit the proximity of aj(f) to dj(f) by
defining a penalty term P(A(f)) over the mixing matrix. Many other penalties and
priors were then suggested, including Euclidean distances and Gaussian priors on the
interchannel phase and intensity differences by Yılmaz et al. [4] and Mandel et al. [13].
One of the simplest is the squared Euclidean distance between aj(f) and dj(f)

P(aj(f)) = ‖aj(f)− dj(f)‖
2
2. (13)

Sawada et al. [14] showed that minimizing (13) w. r. t. rij is equivalent to source
localization via the generalized cross-correlation (GCC) technique. This led to a joint
iterative approach to source localization and separation where the source signals and
the source locations are alternately updated.

3.2 Spatial width

Duong et al. [1] later observed that the narrowband approximation (5) is invalid for
reverberated and/or spatially diffuse sources: the sound emitted by each source reaches
the microphones from many directions at once at each frequency instead of a single
apparent direction aj(f), so that the channels of cj(n, f) are partly uncorrelated. The
spread of the distribution of incoming directions governs the perceived spatial width of
the source at that frequency. They introduced the concept of full-rank spatial covari-
ance matrices Rj(f) which, in comparison with the rank-1 spatial covariance matrices
Rj(f) = aj(f)a

H
j (f) resulting from (5), account not only for the spatial location of the

sources but also for their width.
Assuming that the distances from the sources to the microphones are known but that

their absolute location in the room is unknown, the mean of Rj(f) over these unknown
absolute locations is approximately equal to [15]

µRj
(f) = dj(f)d

H
j (f) + σ2

echΩ(f). (14)

The first term accounts for direct sound, as modeled by the steering vector dj(f) in (12),
and the second term for echoes and reverberation, as modeled by the power of echoes
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and reverberation σ2
ech and by the covariance matrix of an isotropic sound field Ω(f).

For omni-directional microphones, the entries of Ω(f) are given by the sinc function

Ωii′(f) =
sin(2πfdii′/c)

2πfdii′/c
(15)

with dii′ the distance between microphones i and i′. Theoretical expressions are also
available for σ2

ech depending on the room dimensions and reflection coefficients. Duong et
al. [15] exploited this fact to estimate Rj(f) in the MAP sense under an inverse-Wishart
prior P (Rj(f)).

3.3 Early echoes and reverberation

Although the full-rank model (9) improved upon the narrowband model (5), it remains
an approximation of the true mixing process (3). Figure 3 illustrates the shape of a room
impulse response aij(t) over time. In typical reverberation conditions, these responses
are several hundred milliseconds long, so that they extend over several time frames.
This prompted authors to generalize (9) in the single-channel case as the convolution of
vj(n, f) and a nonnegative exponentially decaying filter qj(l, f) representing the power
of aj(t) for a delay of l time frames [16]. This model has been used for single-source
dereverberation given knowledge of RT60 and it is making its way into source separation.
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Figure 3: Schematic illustration of the magnitude of a room impulse response between
a source and a microphone for a reverberation time RT60 = 250 ms.

Going one step further, Kowalski et al. [17] argued for a move back to time-domain
modeling of the mixing filters, while still exploiting the sparsity of the sources in the
time-frequency domain. This was achieved by replacing the narrowband loss term in (7)
by the exact wideband loss term

min
A,s

1

2

∑

t

‖x(t)− (A ⋆ s)(t)‖22 + λ
∑

n,f

P(s(n, f)) (16)

and by deriving an iterative soft thresholding algorithm that effectively alternates be-
tween the time domain and the time-frequency domain at each iteration, assuming that
P(s(n, f)) is a convex penalty.

This study was the starting point for subsequent studies aiming to define penalties
over the mixing filters in the time domain. Benefiting from the fact that early echoes
are sparsely distributed over time, as can be seen from Figure 3, Benichoux et al. [18]
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exploited an ℓp penalty over the filters

P(aj) =
∑

i,t

|aij(t)|
p (17)

with 0 < p ≤ 2. The exponential decaying shape of reverberation was later included
by time-dependent rescaling of (17). The key difference with previous models is that
the deviations of aj(f) from dj(f) are not modeled as random anymore but they must
result in sparse early echoes.

3.4 Full room acoustics

Lately, in a major departure from conventional audio source separation, a number of
researchers proposed to stop modeling the room impulse responses between individual
sources and microphones but to learn them between all possible pairs of points in the
room instead, under the constraint that the source separation system is always to be
used in that room. The rationale is that room impulse responses span a manifold (said
differently, a small movement in the room results in a small deviation of the impulse re-
sponse), so that measuring impulse responses for a few points may suffice to predict them
for other points. This accounts for all possibly available spatial information, including
the direct path, the delays and amplitudes of early echoes and the shape of reverbera-
tion. Asaei et al. [19] consider each point in the room as a source and constrain most
sources to be inactive by means of a group sparsity penalty (see below). More recently,
Deleforge et al. [20] attempted to learn a smaller-dimensional representation of the man-
ifold by probabilistic local linear embedding. The latter approach achieved impressive
source separation results given thousands of room impulse response measurements, and
its extension to practical setups with a smaller number of measurements constitutes a
great avenue for research.

4 Modeling and exploiting spectro-temporal information

Besides spatial information, the source spectra and their evolution across time are the
second main supply of information for audio source separation. We review increasingly
complex properties of sj(n, f) and vj(n, f) that may be used to guide separation, from
local persistence to long-term dependencies.

4.1 Time-frequency persistence

In audio signals, significant STFT coefficients are not randomly distributed in the time-
frequency plane but they tend to cluster together. This is illustrated on Fig. 4, where
vertical and horizontal lines appear, corresponding to transient and tonal parts of musical
notes, respectively. Similar and more complex structures can be found in speech.

This persistence over time or over frequency can be promoted by the use of group
sparsity or other structured sparsity penalties on sj(n, f) [21]. For instance, the ℓ1,2
norm

P(sj) =
∑

n

√∑

f

|sj(n, f)|2, (18)

imposes sparsity over time but no constraint over frequency. An alternative technique is
to set a hidden Markov model (HMM) prior on sequences of STFT coefficients. Févotte
et al. [22] showed that the latter approach outperforms unstructured priors in a denoising
task.
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Figure 4: Spectrogram of a xylophone melody.

4.2 Short-term spectra

Beyond frequency persistence, sound sources are characterized by their short-term spec-
tra, that is the dependencies between vj(n, f) over the whole frequency range f . A
popular approach is to represent the source short-term spectra vj(n, f) as the sum of
nonnegative basis spectra wjk(f), scaled by nonnegative time-varying activation coeffi-
cients hjk(n) [23, 24]

2

vj(n, f) =
K∑

k=1

wjk(f)hjk(n). (19)

Each basis spectrum may represent, e.g., part of a speech phoneme or a musical note,
as illustrated in the top left part of Figure 5. Due to its equivalent matrix form
Vj = WjHj , this model is better known as nonnegative matrix factorization (NMF).
Considering the fact that only one speech phoneme or few musical notes may be active
at once, sparsity was enforced by reducing the sum to a single component k [25] or
by adding penalties such as the ℓ1 norm P(Hj) =

∑
k,n |hjk(n)| [23]. Group sparsity

penalties and priors were also introduced to favor simultaneous activity of basis spectra
associated with the same phoneme or note, or to select the correct speaker or instrument
among a collection of basis spectra trained on different speakers or instruments [26].

4.3 Fine spectral structure and spectral envelope

Several extensions were brought to NMF to further constrain the basis spectra. A first
idea is to decompose the basis spectra themselves by NMF as the sum of narrowband
spectral patterns bjkm(f) weighted by spectral envelope coefficients ejkm:

wjk(f) =

Mk∑

m=1

bjkm(f)ejkm. (20)

The narrowband spectra may be fixed so as to enforce harmonicity (i.e., spectral peaks
at integer multiples of a given fundamental frequency) or smoothness, which are common
structures to many sound sources, and to adapt the spectral envelope coefficients to the
mixture, which are specific to each source. These structures are suitable for sustained

2This model has been indifferently applied to magnitude spectra or to power spectra in the single-

channel case, however only the latter easily generalizes to the multichannel case.
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Figure 5: Multilevel NMF decomposition of the spectrogram in Fig. 4: Vj = WjHj =
BjEjGjTj . Top: decomposition as the product of basis spectra Wj and temporal
activations Hj . Bottom: second level decomposition of Wj as the product of harmonic
and noisy narrowband spectral patterns Bj and associated spectral envelopes Ej , and
of Hj as the product of time-localized patterns Tj activated at some time weights Gj .

and transient musical sounds for instance, as shown in the bottom left part of Figure 5.

Another refinement complying with the physical production of many natural sounds
is to decompose the source short-term spectra via the excitation-filter model

vj(n, f) = vexj (n, f)vftj (n, f) (21)

where vexj (n, f) and vftj (n, f) represent the excitation signal (e.g., the glottal source) and
the response of the filter (e.g., the vocal tract) and they are modeled by NMF [27]. This
constraint enforces similar spectra for different fundamental frequencies, in a similar way
as the shift-invariance constraint in [28], that is the constraint that all basis spectra are
spectrally translated versions of a single spectrum.

Ozerov et al. [5] lately proposed a comprehensive multilevel NMF framework inte-
grating (19)–(21) by multiplication of up to eight matrices, each of them capable of
embodying specific knowledge or constraints in a flexible way. All these extensions can
be compactly formalized as non-negative tensor factorization (NTF), an extension of
NMF to multi-dimensional arrays.

4.4 Temporal evolution

The aforementioned models do not directly model the temporal evolution of the spectra.
At a short time scale, Virtanen [23] enforced the continuity of NMF activation coefficients
by adding the penalty P(Hj) =

∑
n |hjk(n+1)−hjk(n)|

2 while Ozerov et al. [5] modeled
them in a similar fashion as (20) as the product of time-localized patterns and sparse
temporal envelopes, as depicted in the bottom right part of Figure 5. Continuous or
HMM priors on hjk(n) were also used to this aim.

At a medium time scale, Smaragdis [29] generalized (19) into the convolutive NMF

model

vj(n, f) =
K∑

k=1

∑

l

wjk(l, f)hjk(n− l) (22)
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where the basis elements wjk(l, f) are now spectro-temporal patches rather than single-
frame spectra, thus explicitly encoding the temporal evolution of sound events at each
frequency. Musicological models and spoken language models were also exploited to
favor certain note and chord progressions or certain sequences of words using longer-
term HMM priors on hjk(n). Mysore and Sahani [26] provided an efficient algorithm to
separate multiple sources, each modeled by an HMM.

In another major departure from conventional audio source separation, several re-
searchers recently proposed to exploit the information encoded by redundancy and repet-
itive patterns at very long time scales, so as to optimize the use of available information
over the whole signal duration. Robust principal component analysis (RPCA), which
decomposes an input spectrogram as the sum of a low-rank matrix and a sparse matrix,
was used by Huang et al. [30] to separate (sparse) drum and melody sources from a
(low-rank) repetitive tonal accompaniment. The search for repeating patterns in music
was also exploited by Rafii et al. [31] through the identification of repeating segments
(of up to 40 seconds duration), their modeling, and their extraction via time-frequency
masking. In the future, such ideas may be applied to automatic learning of fine-grained
models from larger and larger amounts of audio data eventually covering the sounds
arising in the mixture to be separated.

5 Impact and perspectives

Over the past fifteen years, audio source separation has recorded constant progress and
today it has reached a level of maturity which enables its integration in real-life applica-
tion contexts. For instance, multichannel NMF and NTF have improved performance by
3 to 4 dB signal-to-distortion ratio (SDR) compared to SCA in certain scenarios and they
have made it possible to separate real-world music recordings using weakly guided mod-
els for typical instruments (vocals, drums, bass) and for the remaining instruments [3].
Joint spatial and spectral modeling [5, 6] and convolutive NMF have contributed to
the reduction of the keyword error rate for small-vocabulary automatic speech recogni-
tion (ASR) from 44% down to as little as 8% in a strongly guided real-world domestic
scenario involving knowledge of the speaker and his/her spatial position [32]. Finally,
weakly guided separation of percussive and harmonic content in music has helped several
music information retrieval (MIR) tasks, reducing for instance the relative error rate for
chord recognition by 28% [33].

These and other results show that improved separation performance in many sce-
narios can be obtained by modeling and exploiting spatial and spectral properties of
sounds, i.e., by designing models and constraints which account for the specificities of
audio sources and acoustic mixing conditions. Two trends can be seen: developing com-
plex, hierarchical models with little training so as to adapt to unknown situations with
little amounts of data, or training simpler models on huge amounts of data, e.g., thou-
sands of room impulse responses and dozens of hours of speech, so as to benefit from
the power of big data and turn parameter estimation into a model selection problem.

In either case, the design of clever, computationally efficient convex relaxations and
nonconvex optimization algorithms is given increasing attention in order to handle the
optimization of all model parameters and hyper-parameters at once and to escape extra
local optima which may hinder the benefit of such models. In certain scenarios, some
hyper-parameters can be set using expert knowledge or training on separate data, and
only the remaining hyper-parameters need to be estimated from the mixture.

With few exceptions [5, 6], most separation systems currently exploit only a limited
set of constraints, penalties, or priors. Research is ongoing on the improvement of the
above models, as well as on the incorporation of side-information that has little been

11



exploited so far, e.g., visual information about the source movements. Ultimately, the
integration of the variety of developed models and schemes into a complete, fully versatile
system constitutes a challenge in itself.
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