Vehicle recognition and tracking using a generic multi-sensor and multi-algorithm fusion approach

Abstract : This paper tackles the problem of improving the robustness of vehicle detection for Adaptive Cruise Control (ACC) applications. Our approach is based on a multisensor and a multialgorithms data fusion for vehicle detection and recognition. Our architecture combines two sensors: a frontal camera and a laser scanner. The improvement of the robustness stems from two aspects. First, we addressed the vision-based detection by developing an original approach based on fine gradient analysis, enhanced with a genetic AdaBoost-based algorithm for vehicle recognition. Then, we use the theory of evidence as a fusion framework to combine confidence levels delivered by the algorithms in order to improve the classification 'vehicle versus non-vehicle'. The final architecture of the system is very modular, generic and flexible in that it could be used for other detection applications or using other sensors or algorithms providing the same outputs. The system was successfully implemented on a prototype vehicle and was evaluated under real conditions and over various multisensor databases and various test scenarios, illustrating very good performances.
Type de document :
Article dans une revue
International Journal of Vehicle Autonomous Systems, Inderscience, 2008, Special Issue on "Intelligent Vehicles", 6 (1/2), pp.134-154
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00922518
Contributeur : Fawzi Nashashibi <>
Soumis le : vendredi 27 décembre 2013 - 13:21:13
Dernière modification le : vendredi 27 octobre 2017 - 17:30:01
Document(s) archivé(s) le : jeudi 27 mars 2014 - 23:35:35

Fichier

ArticleFawzi_RevueIJVAS_2008.p...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00922518, version 1

Collections

Citation

Fawzi Nashashibi, Ayoub Khammari, Claude Laurgeau. Vehicle recognition and tracking using a generic multi-sensor and multi-algorithm fusion approach. International Journal of Vehicle Autonomous Systems, Inderscience, 2008, Special Issue on "Intelligent Vehicles", 6 (1/2), pp.134-154. 〈hal-00922518〉

Partager

Métriques

Consultations de la notice

1334

Téléchargements de fichiers

815