H. Noguchi and E. Tilden, COMPARATIVE STUDIES OF HERPETOMONADS AND LEISHMANIAS: I. CULTIVATION OF HERPETOMONADS FROM INSECTS AND PLANTS., Journal of Experimental Medicine, vol.44, issue.3, pp.307-334, 1926.
DOI : 10.1084/jem.44.3.307

M. Lwoff, Recherches sur le pouvoir de synthèse des flagellés trypanosomides, 1940.

H. Guttman, spp. from Insects*, The Journal of Protozoology, vol.4, issue.3, pp.390-392, 1966.
DOI : 10.1111/j.1550-7408.1957.tb02519.x

G. Kidder and B. Dutta, The Growth and Nutrition of Crithidia fasciculata, Journal of General Microbiology, vol.18, issue.3, pp.621-659, 1958.
DOI : 10.1099/00221287-18-3-621

B. Newton, A Synthetic Growth Medium for the Trypanosomid Flagellate Strigomonas (Herpetomonas) oncopelti, Nature, vol.207, issue.4502, pp.279-80, 1956.
DOI : 10.1084/jem.44.3.307

B. Newton, Nutritional Requirements and Biosynthetic Capabilities of the Parasitic Flagellate Strigomonas oncopelti, Journal of General Microbiology, vol.17, issue.3, pp.708-717, 1957.
DOI : 10.1099/00221287-17-3-708

J. Gill and H. Vogel, Biochemical and Morphological Aspects*, The Journal of Protozoology, vol.29, issue.Suppl., pp.148-52, 1963.
DOI : 10.2307/3273098

M. Mundim, I. Roitman, M. Hermans, and E. Kitajima, , a Reduviid Trypanosomatid with an Endosymbiont*, The Journal of Protozoology, vol.97, issue.4, pp.518-539, 1974.
DOI : 10.1016/0014-4894(66)90015-4

P. Silva, A. Solé-cava, M. Soares, M. Motta, and J. Fiorini, (Fiorini et al., 1989) N. Comb.: A Trypanosomatid with a Bacterium-like Endosymbiont in the Cytoplasm, The Journal of Protozoology, vol.31, issue.5, pp.489-94, 1991.
DOI : 10.2307/3274932

K. Chang, Freed of Intracellular Symbiotes by Chloramphenicol*, The Journal of Protozoology, vol.3, issue.2, pp.271-277, 1975.
DOI : 10.1146/annurev.mi.22.100168.000545

K. Chang and W. Trager, Nutritional Significance of Symbiotic Bacteria in Two Species of Hemoflagellates, Science, vol.183, issue.4124, pp.531-533, 1974.
DOI : 10.1126/science.183.4124.531

M. Teixeira, T. Borghesan, R. Ferreira, M. Santos, and C. Takata, Phylogenetic Validation of the Genera Angomonas and Strigomonas of Trypanosomatids Harboring Bacterial Endosymbionts with the Description of New Species of Trypanosomatids and of Proteobacterial Symbionts, Protist, vol.162, issue.3, pp.503-527, 2011.
DOI : 10.1016/j.protis.2011.01.001

M. Motta, C. Catta-preta, S. Schenkman, A. De-azevedo-martins, and K. Miranda, The Bacterium Endosymbiont of Crithidia deanei Undergoes Coordinated Division with the Host Cell Nucleus, PLoS ONE, vol.19, issue.8, p.12415, 2010.
DOI : 10.1371/journal.pone.0012415.s003

E. Freymuller and E. Camargo, Ultrastructural Differences Between Species of Trypanosomatids With and Without Endosymbionts1, The Journal of Protozoology, vol.25, issue.2, pp.175-82, 1981.
DOI : 10.1083/jcb.34.2.489

I. Roitman and E. Camargo, Endosymbionts of trypanosomatidae, Parasitology Today, vol.1, issue.5, pp.143-147, 1985.
DOI : 10.1016/0169-4758(85)90060-2

M. Motta, Endosymbiosis in Trypanosomatids as a Model to Study Cell Evolution, The Open Parasitology Journal, vol.4, issue.1, pp.139-147, 2010.
DOI : 10.2174/1874421401004010139

H. Guttman and R. Eisenman, ?Cure? of Crithidia (Strigomonas) oncopelti of its Bacterial Endosymbiote, Nature, vol.197, issue.4979, pp.113-117, 1965.
DOI : 10.1111/j.1550-7408.1963.tb01653.x

M. Mundim and I. Roitman, Extra nutritional requirements of artificially aposymbiotic Crithidia deanei, J Eukaryot Microbiol, vol.24, pp.329-331, 1977.

K. Chang, *, The Journal of Protozoology, vol.205, issue.2, pp.699-707, 1974.
DOI : 10.1083/jcb.17.1.208

M. Menezes and I. Roitman, Nutritional requirements of Blastocrithidia culicis, a trypanosomatid with an endosymbiont, Journal of Eukaryot Microbiol, vol.38, pp.122-125, 1991.

J. Alves, L. Voegtly, A. Matveyev, A. Lara, and F. Silva, Identification and Phylogenetic Analysis of Heme Synthesis Genes in Trypanosomatids and Their Bacterial Endosymbionts, PLoS ONE, vol.8, issue.21, pp.23518-23541, 2011.
DOI : 10.1371/journal.pone.0023518.s024

J. Alves, C. Klein, M. Da-silva, F. Costa-martins, A. Serrano et al., Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers, BMC Evolutionary Biology, vol.13, issue.1, 2013.
DOI : 10.1186/1471-2105-8-460

URL : https://hal.archives-ouvertes.fr/hal-00868763

J. Alves, M. Serrano, M. Da-silva, F. Voegtly, L. Matveyev et al., Genome Evolution and Phylogenomic Analysis of Candidatus Kinetoplastibacterium, the Betaproteobacterial Endosymbionts of Strigomonas and Angomonas, Genome Biology and Evolution, vol.5, issue.2, 2013.
DOI : 10.1093/gbe/evt012

S. Hutner, H. Levin, and H. Nathan, Independent requirements for 'Crithidia factor' and folic acid in a trypanosomid flagellate, Nature, vol.178, pp.741-743, 1956.

H. Nathan, H. Baker, and O. Frank, Influence of Pteridines on the Production of Vitamin B12 by Trypanosomid Flagellates, Nature, vol.154, issue.4744, pp.35-42, 1960.
DOI : 10.1111/j.0954-6820.1956.tb17052.x

H. Nathan and J. Cowperthwaite, ?Crithidia Factor?- A New Member of the Folic Acid Group of Vitamins*, The Journal of Protozoology, vol.13, issue.2, pp.37-42, 1955.
DOI : 10.1042/bj0400003

H. Guttman, Crithidia assays for unconjugated pteridines. Pteridine Chemistry, Proceedings, pp.255-66, 1962.

S. Hutner, C. Bacchi, and H. Baker, Nutrition of the Kinetoplastida, Biology of the Kinetoplastida. 1 ed, pp.645-91, 1979.

S. Hutner, C. Bacchi, A. Shapiro, and H. Baker, Protozoa as Tools for Nutrition Research, Nutrition Reviews, vol.38, issue.11, pp.361-365, 1980.
DOI : 10.1111/j.1753-4887.1980.tb05942.x

J. Fiorini, F. Silva, P. Soares, M. Brazil, and R. , Tr?s novas esp?cies de tripanosomat?deos de insetos isolados em Alfenas, Minas Gerais, Brasil, Mem?rias do Instituto Oswaldo Cruz, vol.84, issue.1, pp.69-74, 1989.
DOI : 10.1590/S0074-02761989000100013

C. Roitman, I. Roitman, and H. Azevedo, Growth of an Insect Trypanosomatid at 37 C in a Defined Medium*, The Journal of Protozoology, vol.13, issue.Suppl., pp.346-355, 1972.
DOI : 10.2307/3277829

E. Zientz, T. Dandekar, and R. Gross, Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts, Microbiology and Molecular Biology Reviews, vol.68, issue.4, pp.745-770, 2004.
DOI : 10.1128/MMBR.68.4.745-770.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC539007

A. Moya, J. Pereto, R. Gil, and A. Latorre, Learning how to live together: genomic insights into prokaryote???animal symbioses, Nature Reviews Genetics, vol.34, issue.3, pp.218-229, 2008.
DOI : 10.1126/science.1134196

N. Moran, J. Mccutcheon, and A. Nakabachi, Genomics and Evolution of Heritable Bacterial Symbionts, Annual Review of Genetics, vol.42, issue.1, pp.165-190, 2008.
DOI : 10.1146/annurev.genet.41.110306.130119

L. Akman, A. Yamashita, H. Watanabe, K. Oshima, and T. Shiba, Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia, Nature Genetics, vol.69, issue.3, pp.402-407, 2002.
DOI : 10.1099/00221287-138-6-1051

D. Wu, S. Daugherty, S. Van-aken, G. Pai, and K. Watkins, Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters, PLoS Biology, vol.33, issue.6, p.188, 2006.
DOI : 10.1371/journal.pbio.0040188.st002

M. Motta, A. Martins, S. De-souza, C. Catta-preta, and R. Silva, Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family, PLoS ONE, vol.183, issue.4, p.60209, 2013.
DOI : 10.1371/journal.pone.0060209.s029

URL : https://hal.archives-ouvertes.fr/hal-00846833

H. Ogata, S. Goto, K. Sato, W. Fujibuchi, and H. Bono, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Research, vol.27, issue.1, pp.29-34, 1999.
DOI : 10.1093/nar/27.1.29

J. Alves and G. Buck, Automated System for Gene Annotation and Metabolic Pathway Reconstruction Using General Sequence Databases, Chemistry & Biodiversity, vol.16, issue.11, pp.2593-2602, 2007.
DOI : 10.1002/cbdv.200790212

B. Suzek, H. Huang, P. Mcgarvey, R. Mazumder, and C. Wu, UniRef: comprehensive and non-redundant UniProt reference clusters, Bioinformatics, vol.23, issue.10, pp.1282-1288, 2007.
DOI : 10.1093/bioinformatics/btm098

M. Donlin, Using the generic genome browser (GBrowse), Curr Protoc Bioinformatics, 2009.
DOI : 10.1002/0471250953.bi0909s28

A. Marchler-bauer, S. Lu, J. Anderson, F. Chitsaz, and M. Derbyshire, CDD: a Conserved Domain Database for the functional annotation of proteins, Nucleic Acids Research, vol.39, issue.Database, pp.225-234, 2011.
DOI : 10.1093/nar/gkq1189

R. Caspi, T. Altman, K. Dreher, C. Fulcher, and P. Subhraveti, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Research, vol.40, issue.D1, pp.742-753, 2012.
DOI : 10.1093/nar/gkr1014

R. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-97, 2004.
DOI : 10.1093/nar/gkh340

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC390337

A. Stamatakis, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, vol.22, issue.21, pp.2688-2690, 2006.
DOI : 10.1093/bioinformatics/btl446

S. Whelan and N. Goldman, A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach, Molecular Biology and Evolution, vol.18, issue.5, pp.691-699, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003851

J. Felsenstein, PHYLIP -Phylogeny Inference Package (Version 3.2), Cladistics, vol.5, pp.164-166, 1989.

B. Stöver and K. Müller, TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses, BMC Bioinformatics, vol.11, issue.1, pp.7-15, 2010.
DOI : 10.1186/1471-2105-11-7

D. Huson, D. Richter, C. Rausch, T. Dezulian, and M. Franz, Dendroscope: An interactive viewer for large phylogenetic trees, BMC Bioinformatics, vol.8, issue.1, pp.460-465, 2007.
DOI : 10.1186/1471-2105-8-460

URL : http://doi.org/10.1186/1471-2105-8-460

. Condonw-website, Available: http://codonw.sourceforge.net/. Accessed, 2013.

A. Bacher, S. Eberhardt, W. Eisenreich, M. Fischer, and S. Herz, Biosynthesis of riboflavin, Vitam Horm, vol.61, pp.1-49, 2001.
DOI : 10.1016/S0083-6729(01)61001-X

T. Begley, C. Kinsland, and E. Strauss, The biosynthesis of coenzyme a in bacteria, Vitam Horm, vol.61, pp.157-171, 2001.
DOI : 10.1016/S0083-6729(01)61005-7

C. Drewke and E. Leistner, Biosynthesis of vitamin B6 and structurally related derivatives, Vitam Horm, vol.61, pp.121-155, 2001.
DOI : 10.1016/S0083-6729(01)61004-5

A. Eliot and J. Kirsch, Pyridoxal Phosphate Enzymes: Mechanistic, Structural, and Evolutionary Considerations, Annual Review of Biochemistry, vol.73, issue.1, pp.383-415, 2004.
DOI : 10.1146/annurev.biochem.73.011303.074021

Y. Yang, G. Zhao, T. Man, and M. Winkler, Involvement of the gapA-and epd (gapB)-encoded dehydrogenases in pyridoxal 5'-phosphate coenzyme biosynthesis in Escherichia coli K-12, J Bacteriol, vol.180, pp.4294-4299, 1998.

T. Begley, C. Kinsland, S. Taylor, M. Tandon, and R. Nicewonger, Cofactor Biosynthesis: A Mechanistic Perspective, Top Curr Chem, vol.195, pp.93-142, 1998.
DOI : 10.1007/3-540-69542-7_3

S. Klaus, A. Wegkamp, W. Sybesma, J. Hugenholtz, and J. Gregory, A Nudix Enzyme Removes Pyrophosphate from Dihydroneopterin Triphosphate in the Folate Synthesis Pathway of Bacteria and Plants, Journal of Biological Chemistry, vol.269, issue.7, pp.5274-5280, 2005.
DOI : 10.1074/jbc.M200965200

S. Gabelli, M. Bianchet, W. Xu, C. Dunn, and Z. Niu, Structure and Function of the E. coli Dihydroneopterin Triphosphate Pyrophosphatase: A Nudix Enzyme Involved in Folate Biosynthesis, Structure, vol.15, issue.8, pp.1014-1022, 2007.
DOI : 10.1016/j.str.2007.06.018

T. Begley, C. Kinsland, R. Mehl, A. Osterman, and P. Dorrestein, The biosynthesis of nicotinamide adenine dinucleotides in bacteria, Vitam Horm, vol.61, pp.103-119, 2001.
DOI : 10.1016/S0083-6729(01)61003-3

O. Kurnasov, V. Goral, K. Colabroy, S. Gerdes, and S. Anantha, NAD Biosynthesis, Chemistry & Biology, vol.10, issue.12, pp.1195-1204, 2003.
DOI : 10.1016/j.chembiol.2003.11.011

URL : http://doi.org/10.1016/j.chembiol.2003.11.011

E. Gazanion, D. Garcia, R. Silvestre, C. Gérard, and J. Guichou, The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation, Molecular Microbiology, vol.382, issue.1, pp.21-38, 2011.
DOI : 10.1042/BJ20041217

S. Lin, R. Hanson, and J. Cronan, Biotin synthesis begins by hijacking the fatty acid synthetic pathway, Nature Chemical Biology, vol.459, issue.9, pp.682-688, 2010.
DOI : 10.1128/jb.178.14.4122-4130.1996

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925990

G. Ranganathan and A. Mukkada, Ubiquinone biosynthesis in Leishmania major promastigotes, International Journal for Parasitology, vol.25, issue.3, pp.279-284, 1995.
DOI : 10.1016/0020-7519(94)00131-7

Y. Du, D. Maslov, and K. Chang, Monophyletic origin of beta-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culicis and Crithidia spp., Proceedings of the National Academy of Sciences, vol.91, issue.18, pp.8437-8441, 1994.
DOI : 10.1073/pnas.91.18.8437