Higher-order averaging, formal series and numerical integration III: error bounds

Abstract : In earlier papers, it has been shown how formal series like those used nowadays to investigate the properties of numerical integrators may be used to construct high- order averaged systems or formal first integrals of Hamiltonian problems. With the new approach the averaged system (or the formal first integral) may be written down immediately in terms of (i) suitable basis functions and (ii) scalar coefficients that are computed via simple recursions. Here we show how the coefficients/basis functions approach may be used advantageously to derive exponentially small error bounds for averaged systems and approximate first integrals.
Type de document :
Article dans une revue
Foundations of Computational Mathematics, Springer Verlag, 2015, 15 (2), pp.591-612. 〈10.1007/s10208-013-9175-7〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00922682
Contributeur : Philippe Chartier <>
Soumis le : dimanche 29 décembre 2013 - 17:39:17
Dernière modification le : mardi 19 juin 2018 - 11:12:07
Document(s) archivé(s) le : samedi 29 mars 2014 - 22:11:03

Fichier

focm-part3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Philippe Chartier, Ander Murua, Jesus Maria Sanz-Serna. Higher-order averaging, formal series and numerical integration III: error bounds. Foundations of Computational Mathematics, Springer Verlag, 2015, 15 (2), pp.591-612. 〈10.1007/s10208-013-9175-7〉. 〈hal-00922682〉

Partager

Métriques

Consultations de la notice

564

Téléchargements de fichiers

360