M. Amichot, S. Tarès, A. Brun-barale, L. Arthaud, J. M. Bride et al., Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism, European Journal of Biochemistry, vol.4, issue.83, pp.1250-1257, 2004.
DOI : 10.1016/S1383-5742(99)00039-3

C. F. Aquadro, K. M. Lado, and W. A. Noon, The rosy region of Drosophila melanogaster and Drosophila simulans.1. Contrasting levels of naturally-occurring DNA restriction map variation and divergence, Genetics, vol.119, pp.875-888, 1988.

C. M. Bergman, H. Quesneville, D. Anxolabéhère, and M. Ashburner, Recurrent insertion and duplication generate networks of transposable elements in the Drosophila melanogaster genome, Genome Biology, vol.7, issue.11, p.112, 2006.
DOI : 10.1186/gb-2006-7-11-r112

M. R. Bogwitz, Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster, Proceedings of the National Academy of Sciences, vol.21, issue.7, pp.12807-12812, 2005.
DOI : 10.1093/molbev/msh116

A. Brandt, Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus, Insect Molecular Biology, vol.24, issue.4, pp.337-341, 2002.
DOI : 10.1093/toxsci/54.1.81

J. C. Bryne, JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update, Nucleic Acids Research, vol.36, issue.Database, pp.102-106, 2008.
DOI : 10.1093/nar/gkm955

F. Catania, M. O. Kauer, P. J. Daborn, J. L. Yen, R. H. Ffrench-constant et al., World-wide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster, Molecular Ecology, vol.418, issue.8, pp.2491-2504, 2004.
DOI : 10.1093/oxfordjournals.molbev.a025901

S. Chen and X. Li, Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes, BMC Evolutionary Biology, vol.7, issue.1, p.46, 2007.
DOI : 10.1186/1471-2148-7-46

M. Choudhary and R. S. Singh, A comprehensive study of genic variation in natural populations of Drosophila melanogaster. III. Variations in genetic-structure and their causes between Drosophila melanogaster and its sibling species Drosophila simulans, Genetics, vol.117, pp.697-710, 1987.

H. Chung, Cis-Regulatory Elements in the Accord Retrotransposon Result in Tissue-Specific Expression of the Drosophila melanogaster Insecticide Resistance Gene Cyp6g1, Genetics, vol.175, issue.3, pp.1071-1077, 2007.
DOI : 10.1534/genetics.106.066597

C. Conte, B. Dastugue, and C. Vaury, Coupling of Enhancer and Insulator Properties Identified in Two Retrotransposons Modulates Their Mutagenic Impact on Nearby Genes, Molecular and Cellular Biology, vol.22, issue.6, pp.1767-1777, 2002.
DOI : 10.1128/MCB.22.6.1767-1777.2002

P. J. Daborn, S. Boundy, J. L. Yen, B. Pittendrigh, and R. Ffrench-constant, DDT resistance in correlates with over-expression and confers cross-resistance to the neonicotinoid imidacloprid, Molecular Genetics and Genomics, vol.266, issue.4, pp.556-563, 2001.
DOI : 10.1007/s004380100531

P. J. Daborn, A Single P450 Allele Associated with Insecticide Resistance in Drosophila, Science, vol.297, issue.5590, pp.2253-2256, 2002.
DOI : 10.1126/science.1074170

P. J. Daborn, C. Lumba, A. Boey, W. Wong, R. H. Ffrench-constant et al., Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression, Insect Biochemistry and Molecular Biology, vol.37, issue.5, pp.512-519, 2007.
DOI : 10.1016/j.ibmb.2007.02.008

F. S. De-souza, L. F. Franchini, and M. Rubinstein, Exaptation of Transposable Elements into Novel Cis-Regulatory Elements: Is the Evidence Always Strong?, Molecular Biology and Evolution, vol.30, issue.6, pp.1239-1251, 2013.
DOI : 10.1093/molbev/mst045

A. P. Dowsett and M. W. Young, Differing levels of dispersed repetitive DNA among closely related species of Drosophila., Proceedings of the National Academy of Sciences, vol.79, issue.15, pp.4570-4574, 1982.
DOI : 10.1073/pnas.79.15.4570

C. Feschotte, Transposable elements and the evolution of regulatory networks, Nature Reviews Genetics, vol.23, issue.5, pp.397-405, 2008.
DOI : 10.1093/oxfordjournals.molbev.a004145

P. Fontanillas, D. L. Hartl, and M. Reuter, Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin, PLoS Genet, vol.3, pp.2256-2267, 2007.

G. Ontology and C. , Creating the gene ontology resource: design and implementation, Genome Res, vol.11, pp.1425-1433, 2001.

J. González, J. M. Macpherson, and D. A. Petrov, A Recent Adaptive Transposable Element Insertion Near Highly Conserved Developmental Loci in Drosophila melanogaster, Molecular Biology and Evolution, vol.26, issue.9, pp.1949-1961, 2009.
DOI : 10.1093/molbev/msp107

V. Gotea and W. Makalowski, Do transposable elements really contribute to proteomes? Trends Genet, pp.260-267, 2006.

C. Helvig, N. Tijetb, R. Feyereisen, F. A. Walker, and L. L. Restifo, Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (?-1)-hydroxylation, Biochemical and Biophysical Research Communications, vol.325, issue.4, pp.1495-1502, 2004.
DOI : 10.1016/j.bbrc.2004.10.194

R. A. Hoskins, Heterochromatic sequences in a Drosophila whole-genome shotgun assembly, Genome Biol, vol.3, issue.RESEARCH0085, 2002.

I. K. Jordan, I. B. Rogozin, G. V. Glazko, and E. V. Koonin, Origin of a substantial fraction of human regulatory sequences from transposable elements, Trends in Genetics, vol.19, issue.2, pp.68-73, 2003.
DOI : 10.1016/S0168-9525(02)00006-9

N. Jouben, D. G. Heckel, M. Haas, I. Schuphan, and B. Schmidt, Metabolism of imidacloprid and DDT by P450 CYP6G1expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance, Pest Manag. Sci, vol.64, pp.65-73, 2008.

J. Jurka, V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany et al., Repbase Update, a database of eukaryotic repetitive elements, Cytogenetic and Genome Research, vol.110, issue.1-4, pp.462-467, 2005.
DOI : 10.1159/000084979

J. S. Kaminker, The transposable elements of the Drosophila melanogaster euchromatin: a genomic perspective, Genome Biol, vol.3, 2002.

V. V. Kapitonov and J. Jurka, Molecular paleontology of transposable elements in the Drosophila melanogaster genome, Proceedings of the National Academy of Sciences, vol.11, issue.9, pp.6569-6574, 2003.
DOI : 10.1101/gr.164201

V. V. Kapitonov and J. Jurka, Helitrons on a roll: eukaryotic rolling-circle transposons, Trends in Genetics, vol.23, issue.10, pp.521-529, 2007.
DOI : 10.1016/j.tig.2007.08.004

G. Kunarso, Transposable elements have rewired the core regulatory network of human embryonic stem cells, Nature Genetics, vol.98, issue.7, pp.631-634, 2010.
DOI : 10.1101/gr.229102. Article published online before print in May 2002

L. Goff and G. , Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila, Insect Biochemistry and Molecular Biology, vol.33, issue.7, pp.701-708, 2003.
DOI : 10.1016/S0965-1748(03)00064-X

E. Lerat, N. Burlet, C. Biémont, and C. Vieira, Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes, Gene, vol.473, issue.2, pp.100-109, 2011.
DOI : 10.1016/j.gene.2010.11.009

URL : https://hal.archives-ouvertes.fr/hal-00850380

M. Lipatov, K. Lenkov, D. A. Petrov, and C. M. Bergman, Paucity of chimeric genetransposable elements transcripts in the Drosophila melanogaster genome, BMC Biology, vol.3, issue.1, p.24, 2005.
DOI : 10.1186/1741-7007-3-24

J. Locke, L. T. Howard, N. Aippersbach, L. Podemski, and R. B. Hodgetts, The characterization of DINE-1, a short, interspersed repetitive element present on chromosome and in the centric heterochromatin of Drosophila melanogaster, Chromosoma, vol.108, issue.6, pp.356-366, 1999.
DOI : 10.1007/s004120050387

S. Maitra, S. M. Dombrowski, L. C. Waters, and R. Ganguly, Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster, Gene, vol.180, issue.1-2, pp.165-171, 1996.
DOI : 10.1016/S0378-1119(96)00446-5

S. Maitra, S. M. Dombrowski, M. Basu, O. Raustol, L. C. Waters et al., Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster, Gene, vol.248, issue.1-2, pp.147-156, 2000.
DOI : 10.1016/S0378-1119(00)00129-3

R. M. Marsano, R. Caizzi, R. Moschetti, and N. Junakovic, Evidence for a functional interaction between the Bari1 transposable element and the cytochrome P450 cyp12a4 gene in Drosophila melanogaster, Gene, vol.357, issue.2, pp.122-128, 2005.
DOI : 10.1016/j.gene.2005.06.005

J. M. Martín-campos, J. M. Comerón, N. Miyashita, and M. Aguadé, Intraspecific and interspecific variation at the y-ac-sc region of Drosophila simulans and Drosophila melanogaster, Genetics, vol.130, pp.805-816, 1992.

W. J. Miller, A. Nagel, J. Bachmann, and L. Bachmann, Evolutionary Dynamics of the SGM Transposon Family in the Drosophila obscura Species Group, Molecular Biology and Evolution, vol.17, issue.11, pp.1597-1609, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026259

I. Molineris, E. Grassi, U. Ala, D. Cunto, F. Provero et al., Evolution of Promoter Affinity for Transcription Factors in the Human Lineage, Molecular Biology and Evolution, vol.28, issue.8, pp.2173-2183, 2011.
DOI : 10.1093/molbev/msr027

E. N. Moriyama and J. R. Powell, Intraspecific nuclear DNA variation in Drosophila, Molecular Biology and Evolution, vol.13, issue.1, pp.261-277, 1996.
DOI : 10.1093/oxfordjournals.molbev.a025563

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.325.9090

J. H. Pedra, L. M. Mcintyre, M. E. Scharf, and B. R. Pittendrigh, Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila, Proceedings of the National Academy of Sciences, vol.89, issue.11, pp.7034-7039, 2004.
DOI : 10.1073/pnas.89.11.4855

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC406461

R. Rebollo, M. T. Romanish, and D. L. Mager, Transposable Elements: An Abundant and Natural Source of Regulatory Sequences for Host Genes, Annual Review of Genetics, vol.46, issue.1, pp.21-42, 2012.
DOI : 10.1146/annurev-genet-110711-155621

T. A. Schlenke and D. J. Begun, Strong selective sweep associated with a transposon insertion in Drosophila simulans, Proceedings of the National Academy of Sciences, vol.58, issue.5, pp.1626-1631, 2004.
DOI : 10.1007/s001289900401

C. D. Schmid and P. Bucher, MER41 Repeat Sequences Contain Inducible STAT1 Binding Sites, PLoS ONE, vol.2, issue.7, 2010.
DOI : 10.1371/journal.pone.0011425.s002

URL : http://doi.org/10.1371/journal.pone.0011425

N. Sela, B. Mersch, N. Gal-mark, G. Lev-maor, A. Hotz-wagenblatt et al., Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome, Genome Biology, vol.8, issue.6, p.127, 2007.
DOI : 10.1186/gb-2007-8-6-r127

C. Simons, M. Pheasant, I. V. Makunin, and J. S. Mattick, Transposon-free regions in mammalian genomes, Genome Research, vol.16, issue.2, pp.164-172, 2006.
DOI : 10.1101/gr.4624306

B. G. Thornburg, V. Gotea, and W. Makalowski, Transposable elements as a significant source of transcription regulating signals, Gene, vol.365, pp.104-110, 2006.
DOI : 10.1016/j.gene.2005.09.036

N. Tijet, C. Helvig, and R. Feyereisen, The cytochrome P450 gene superfamily in Drosophila melanogaster : Annotation, intron-exon organization and phylogeny, Gene, vol.262, issue.1-2, pp.189-198, 2001.
DOI : 10.1016/S0378-1119(00)00533-3

L. M. Van-de-lagemaat, J. R. Landry, D. L. Mager, and P. Medstrand, Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions, Trends in Genetics, vol.19, issue.10, pp.530-536, 2003.
DOI : 10.1016/j.tig.2003.08.004

C. Vieira, D. Lepetit, S. Dumont, and C. Biémont, Wake up of transposable elements following Drosophila simulans worldwide colonization, Molecular Biology and Evolution, vol.16, issue.9, pp.1251-1255, 1999.
DOI : 10.1093/oxfordjournals.molbev.a026215

URL : https://hal.archives-ouvertes.fr/hal-00428465

G. P. Wagner, C. Amemiya, and F. Ruddle, Hox cluster duplications and the opportunity for evolutionary novelties, Proceedings of the National Academy of Sciences, vol.99, issue.26, pp.14603-14606, 2003.
DOI : 10.1073/pnas.222671199

T. Wang, Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53, Proceedings of the National Academy of Sciences, vol.6, issue.6, pp.18613-18618, 2007.
DOI : 10.1016/S0959-437X(96)80030-X

J. Wang, N. J. Bowen, L. Mariño-ramírez, and I. K. Jordan, A c-Myc regulatory subnetwork from human transposable element sequences, Molecular BioSystems, vol.6, issue.12, pp.1831-1839, 2009.
DOI : 10.1016/S1476-5586(04)80047-2

M. Windelspecht, R. C. Richmond, and B. J. Cochrane, Malathion Resistance Levels in Sympatric Populations of Drosophila simulans (Diptera: Drosophilidae) and D. melanogaster Differ by Two Orders of Magnitude, Journal of Economic Entomology, vol.88, issue.5, pp.1138-1143, 1995.
DOI : 10.1093/jee/88.5.1138

G. A. Wray, The Evolution of Transcriptional Regulation in Eukaryotes, Molecular Biology and Evolution, vol.20, issue.9, pp.1377-1419, 2003.
DOI : 10.1093/molbev/msg140

H. P. Yang and D. A. Barbash, Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes, Genome Biology, vol.9, issue.2, p.39, 2008.
DOI : 10.1186/gb-2008-9-2-r39

URL : http://doi.org/10.1186/gb-2008-9-2-r39