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Abstract—In this paper we address the problem of marker-
less human performance capture from multiple camera videos.
We consider in particular the recovery of both shape and para-
metric motion information as often required in applications
that produce and manipulate animated 3D contents using mul-
tiple videos. To this aim, we propose an approach that jointly
estimates skeleton joint positions and surface deformations by
fitting a reference surface model to 3D point reconstructions.
The approach is based on a probabilistic deformable surface
registration framework coupled with a bone binding energy.
The former makes soft assignments between the model and
the observations while the latter guides the skeleton fitting.
The main benefit of this strategy lies in its ability to handle
outliers and erroneous observations frequently present in multi-
view data. For the same purpose, we also introduce a learning
based method that partition the point cloud observations into
different rigid body parts that further discriminate input
data into classes in addition to reducing the complexity of
the association between the model and the observations. We
argue that such combination of a learning based matching
and of a probabilistic fitting framework efficiently handle
unreliable observations with fake geometries or missing data
and hence, it reduces the need for tedious manual interventions.
A thorough evaluation of the method is presented that includes
comparisons with related works on most publicly available
multi-view datasets.

Keywords-human motion capture; non-rigid surface defor-
mation; pose estimation

I. INTRODUCTION

Marker-less human motion capture from multiple camera

videos is a fundamental task in many applications including

sport science, movie industry, and medical diagnostics. Since

human motion is defined by both articulated motion and sur-

face deformation they should ideally be estimated simulta-

neously. However, this requires sophisticated physics-based

models that capture the real relationships between pose and

shape. Since such models are hard to build and also involve

complex parametrization, researchers often decouple them

and treat each problem separately. One line of approaches

considers only the estimation of surface deformations by

fitting a reference model to the incoming image observa-

tions, e.g. [5], [6], [8], [9]. Another line of approaches

parameterizes the model deformations with an articulated

human skeleton represented as a kinematic chain [10], [13],

[18], [21]. While the latter are less generic and strongly

depend on the skeleton parametrization, the former are more

generic and require less priors, hence allowing for larger

Figure 1. Our approach tracks both the shape and the pose of humans
simultaneously. Results with three different standard datasets are shown
above. Left: Skirt in [10]. Top right: Bouncing in [21]. Bottom right: Free
in [17].

classes of model deformations. Since the human anatomical

structure can not be perceived by traditional visual sensors

such as color cameras, approaches that model and track

shapes instead of internal and unobserved skeletons tend

to give more reliable results with visual data. Nevertheless,

in many graphical applications that involve human body

models, the pose is required as much or more than the

shape surface. To this objective, we introduce a method that

simultaneous recovers both the shape surface, in the form

of a mesh, and its pose with articulated skeleton parameters.

This method builds on two related works. First, the patch-

based deformable surface registration framework proposed

in [6] that relies on soft observation assignments and han-

dles outliers. Second, the bone binding energy presented

in [19] that forces the skeleton model to stay inside the

deformed human body shape. The combination of these two

strategies allows us to devise an approach that benefits from

a robust surface registration when recovering human body

pose and without the need for complex inverse kinematic

parametrizations. Furthermore, in order to reduce complexity

and to better handle erroneous observations, we investigate

a learning based strategy that partition the input data into

rigid body parts as learned from the reference model. This

strategy limits the search when assigning observations to the

model as well as enabling a better discrimination between

inliers and outliers in the input data.



This paper has several contributions. Different from [6] or

[10], pose and shape are recovered at the same time. Second,

a robust framework is presented that improves over [19]

by combining probabilistic assignments between the model

and the observations with a Support Vector Machine (SVM)

based classification that partitions observations so that they

can be exploited more efficiently. Third, a thorough eval-

uation with various public dataset is presented [10], [15],

[17], [21]. This evaluation validates the effectiveness of the

proposed method.

The rest of this paper is organized as follows. In Section

II we review the most relevant related work. Details of the

proposed method are described in Section III. Validation

experiments and results are provided in Section IV, and we

conclude the paper in Section V.

II. RELATED WORK

Human motion tracking/capturing has been long studied

in both computer vision and graphic communities. Based

on the way of parameterizing motion, existing works can be

categorized into three classes:

Mesh-based approaches: In this class of methods, motion

is solely parameterized on the humanoid surface which

evolves in time, without incorporation of a skeleton model.

Authors usually introduce some constraints among vertices

such that implausible deformations are avoided. Aguiar et

al. [9] propose a scene-flow-based deformation scheme.

To overcome the accumulated flow estimation error, they

utilize Laplacian deformation framework [4] as a refinement

step. In their follow-up work [8], they first deform a low-

resolution tetrahedral mesh to roughly estimate the pose, and

then transfer it to a high-resolution scanned model. Surface

details are again preserved by Laplacian constraint. Cagniart

et al. [5] advocate to divide the mesh into small cells called

patches. A rigidity constraint is imposed among neighboring

patches which smooths model deformation. In [6], they

further improve the data term and the whole deformation

framework acts like a probabilistic iterative closest point

(ICP) approach. The advantage of these purely-mesh-based

methods is that they can generalize to non-humanoid surface

tracking, and they better handle non-rigid deformation such

as loose apparel.

Skeleton-based approaches: Since human motion is highly

articulated, many authors use skeleton-based models. Motion

is then parameterized in a low-dimensional pose parameter

space. However, in the observations, whether 3D point

clouds or silhouettes, one does not observe the skeleton

directly. A mesh surface is still needed for the fitting purpose

but it is controlled by the underlying skeleton. As a result,

skeleton plays the role of prior deformation model. From

this point of view it is actually much more constrained than

purely-mesh-based methods. There are mainly two concerns

in this family of work: first, how to parameterize motions

in terms of the skeleton, and second, how this skeleton

should interact with the reference mesh. Vlasic et al. [21]

parameterize motions as transformation of local coordinate

of each joint. Vertex transformation is computed by the lin-

ear combination of different joint transformations, known as

linear blend skinning [13]. With similar parameterizations,

Gall et al. [10] adopt quaternion blend skinning [12] which

produces less artifacts. In both methods, the skeleton acts as

a kinematic chain where local transformations are transferred

from the parents to the children. Energies between mesh and

observations are defined in pose parameter space, based on

the simple assumption that surface deformation is explained

only by the skeleton. A second stage of surface refinement

is usually required.

Hybrid approaches: The first category of approaches

emphasizes more on the surface consistency, whereas the

second category of approaches focuses on the pose. Straka

et al. [19] advocate the integration of both categories into

one energy function. They introduce differential bone co-

ordinates as an implicit skinning approach, and therewith

they formulate a skeleton-binding energy term defined on the

parameters of both mesh surface and skeleton. This allows

them to jointly estimate pose and shape, and they show that

optimizing in this coupled space results in more robustness.

Moreover, skeletons are parameterized only in terms of joint

location. Although losing some rotational degree of freedom

(DoF) for each joint, this makes the energy term quadratic

in terms of both, body joint positions and mesh vertex

positions. Therefore, the optimal solution can be obtain

via standard optimization method. The difference of our

approach compared to [19] is that we compute the bone

energy per patch rather than per vertex. In addition, our

observations are 3D visual hull reconstructions instead of

2D silhouettes. With 3D information, we are able to handle

ambiguous situations that one cannot do with only image

observations. Furthermore, we partition observations into

body part regions according to learned partitioning in the

previous frames. This allows us more efficient matching of

the reference mesh and the input 3D observations, which

combined with optimization with soft assignments from [6]

makes it more robust to outliers and missing data.

III. METHOD

To facilitate human motion tracking in synchronized and

calibrated multi-view sequences, a 3D point cloud T t is

first reconstructed using silhouette observations. Our body

model deforms according to these observations on the frame-

to-frame basis. The model comprises a reference triangle

mesh surface M and an intrinsic tree-structured skeleton.

We adopt the patch-based mesh deformation model proposed

in [5]. In this framework, vertices are grouped into NP

patches and deformation of M is parameterized in terms

of Θ = {(Rk, tk)}
NP

k=1 where Rk and tk are rotation and

translation of patch Pk respectively. Our skeleton is a set of

NJ 3D joint coordinate positions J = {xj}
NJ

j=1 where NJ



Figure 2. Illustration of our pipeline. In (b), patches attached to same joint are encoded in similar colors. Incoming observations (c) are partitioned and
subsampled into (d) by the SVM classifier trained with (b). By minimizing Eq. (1) define between (b) and (d), the model deforms as in (e). In this example,
we reduce the amount of target point from 7823 (c) to only 3682 (d).

is 15. The root of the tree is set at the pelvis, as in Figure

2 (a). Parameterizing directly on their position leads to a

quadratic energy term that keeps optimization feasible [19].

The skeleton is manually rigged to the mesh. Each vertex v

is associated with a non-leaf-node joint that has the largest

skinning weight from [3]. By taking the majority vote, each

patch is also associated to a joint as in Figure 2 (b). This

association is fixed throughout the whole sequence and is

used as the rigid body part label to classify the incoming

observations.

Therefore, given a model which is properly registered in

the first frame, the remaining task is to determine how the

mesh and skeleton deform based on every T t. We approach

this by minimizing a energy function defined as:

E(Θ,J) = λrEr(Θ)+λdEdata(Θ)+λbEbone(Θ,J). (1)

Er prevents neighboring patches from having different trans-

formations; Edata serves as a data term measuring how well

the configuration of patches explains the observations, and

Ebone favors bones to follow the patches attached to them.

λr, λd and λb are corresponding weights that adjusting the

influence of each term.

In addition, we partition input visual hull observations T t

into different rigid body parts by a linear multi-class Support

Vector Machine trained on the shape of the reference model

fitted to the previous frame Mt−1. This body part informa-

tion allows us to exploit T t more efficiently when defining

Edata. The outline of our method is given in Figure 2. In the

remainder of this section, we briefly review the framework

of [5] for the sake of completeness. We explain each energy

term and describe how we partition the target point cloud in

detail.

A. Rigidity term Er

Cagniart et al. [5] proposed to decompose the reference

mesh into a number of patches. Without prior knowledge of

the motion, patches are preferred to be distributed uniformly

on the surface. A rigidity constraint is exerted among them.

The idea is that neighboring patches should agree on their

prediction of the future position of each other. Specifically,

let us consider a patch Pk, a patch Pl in its neighborhood

Nk, and let xl(v) denote the predicted position of v from

Pl. The rigidity energy enforces the predicted position xk(v)
and xl(v) to be consistent:

Er(Θ) =
∑

k=1:NP

∑

Pl∈Nk

∑

v∈Pk∪Pl

wkl‖xk(v)− xl(v)‖
2. (2)

Θ is implicitly encoded in xk(v) and xl(v). This energy is

quadratic in terms of Θ so its minimum can be found via

standard Gauss-Newton method.

B. Data term Edata and point cloud partitioning

The role of the data term is to connect the observations

and the model. Generally speaking, one first estimates which

target point the vertex or patch belongs to and defines a

distance between the correspondences. Next, by minimizing

this distance, the model deforms closer and closer to obser-

vations. Alternating between these two phases is known as

ICP approach. Correspondence estimation can be treated as

a classification problem. The output of the classifier is either

dense labels for each vertex [20] or sparse labels for some

feature points [2]. Cagniart et al. [6] adopt probabilistic

ICP in patch-based deformation framework. Instead of a

deterministic correspondence, each target point has a soft

assignment to every patch as in Figure 3 (a). The method

can be viewed as Expectation-Maximization algorithm in

Bayesian maximum likelihood estimation. In E-step, soft



Figure 3. Illustrations of the classification scheme in (a) Cagniart et

al. [6] and (b) our method. By performing SVM classification before the
classification in [6], our method rules out fake geometries and provides a
mechanism to work in the tradeoff between speed and accuracy.

assignments wk
i are computed and in M-step, the energy

is minimized in terms of model parameters Θ. Given the

observations T = {yi}
NT

i=1, they define a data term:

Edata(Θ) =

NT
∑

i=1

NP+1
∑

k=1

wk
i ‖yi − x(vki )‖

2, (3)

where
∑

k w
k
i = 1, vki is the corresponding vertex in Pk for

yi, which is chosen considering closeness of both normals

and distances.

Compared to the deterministic approach, the probabilistic

association offers more robustness. The drawback, however,

is the computational overhead. The data term as defined in

Eq.(3) requires traversing all target points, which is compu-

tationally expensive. Also it does not incorporate any body

part information due to the purely-surface-based assumption.

Therefore, we advocate a hierarchical classification scheme

in which unreliable or redundant observations are culled

out before entering the classification in [6], as shown in

Figure 3 (b). Since the vertex-joint association in M is fixed

throughout the whole sequence, one knows the distribution

of each rigid body part in Mt−1. Meanwhile, in the context

of tracking, it is pratical to assume that Mt−1 and T t

distribute similarly. One can thus predict the rigid body part

for each instance in T t based on Mt−1.

Specifically, for each vertex v ∈ Mt−1, we use its 3D

position x(v) as feature, and the associated joint jv as

class label. Let NV denote the total number of vertex in

Mt−1. With these NV training pairs (x(v), jv) we aim to

train a classifier. Any multiclass classifier with probability

output serves our purpose. We suggest linear SVM [1] as

a preferable choice because it provides a good compromise

between accuracy and training time. In the case of binary

classification (i.e., jv ∈ {−1,+1}), it aims at finding a

hyperplane with coefficients w that satisfies the following

optimization problem:

min
w

1

2
‖w‖22 + C

N
∑

i=1

ξi (4)

s.t. jv(w
⊤x(v) + b) + ξi ≥ 1, ξi ≥ 0, ∀v ∈ Mt−1.

 �ࢼ
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Figure 4. Patch-based β coordinate. γ contains information of the position
of patches along the bone, which is used to determine the wk in Ebone.

Parameters C and ξi are penalty weight and slack variables.

The decision function for classifying target points in T t is:

f(y) = sgn (w⊤yi + b), ∀yi ∈ T t. (5)

For more details of multiclass SVM formulations we refer

the interested readers to [11].

Each target point yi has a rigid body label predicted from

the SVM, and T t is then partitioned into NRG subsets

(NRG = NJ − # non-leaf-node joints). By checking the

probabilities from classifier, we further distinguish between

target points that are near the joints, on the bones, and

outliers. Let pi denote a posteriori probability that yi belongs

to its predicted label. We apply the following criteria:

yi ∈











Tb if 0.9 < pi

Tg if 0.5 < pi ≤ 0.9

To if pi ≤ 0.5,

(6)

where suffix b means right on bones, g means near around

joints, and o means outliers. T is thus represented as {T j
b ∪

T j
g ∪ T j

o }
NRG

j=1 . We keep all yi in Tg , exclude all yi in To
and subsample yi in Tb. For instance, we keep all yi near

the knees and only a portion of yi along the thighs and the

calves, as in Figure 2 (d). This is because patches on a bone

often move rigidly together. Only a small amount of target

points are required to register some of them, and the rest of

the patches can just follow. On the contrary, patches upon

knees cannot be well predicted by those on the calves or

thighs. They need more observations to be registered.

Let N ′
T denote the number of observations after sub-

sampling and outlier removal, we then apply the “soft”

classification scheme in [6], and Eq. (3) is revised as:

Edata(Θ) =

N ′

T
∑

i=1

NP+1
∑

k=1

wk
i ‖yi − x(vki )‖

2. (7)

C. Patch-based skeleton binding energy Ebone

In [19] Straka et al. introduce differential bone coordi-

nates β for every vertex, defined as:

βi = x(vi)−

NJ
∑

j=1

ρi,j(γi,jxj + (1− γi,j)xchild(j)), (8)
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Figure 5. Illustration of the functions of Ebone and Er . Left: initial
configuration. Right: distances being minimized in the optimization. Er

minimize distance d1 and Ebone minimize d2. Both of them play the
roles of regularization terms.

where x(vi) represents 3D coordinates of the mesh vertex

vi. A bone is defined by joints xj and xchild(j). γi,j is

chosen such that the vector between vi and γi,jxj + (1 −
γi,j)xchild(j) is orthogonal to the bone. We follow this

definition but compute it in a per-patch manner. Moreover,

each patch considers only the attached joints j(k) rather than

all joints. We define our β coordinate as:

βk = ∆k − ck, (9)

where ∆k = γk,j(k)xj(k) + (1 − γk,j(k))xchild(j(k)) and ck
is the center location of patch, as shown in Figure 4. The

patch-based skeleton binding energy keeps β from varying

after transformation:

Ebone(Θ,J) =

NP
∑

k=1

wk‖Tk(β
0
k)− βk‖

2. (10)

Here, we see that βk is a function of J and transformation

Tk includes rotation Rk and translation tk of the patch, so

Ebone is defined on the coupled space of mesh and skeleton.

wk are adjusted such that patches close to joints have less

weight on where the associated joints should be, whereas

patches in the middle of two joints contribute more. Such

information is encoded in γk,j(k).

We remark that Eq. (10) is better to be rewritten as:

Ebone(Θ,J) =

NP
∑

k=1

wk‖Tk(∆
0
k)−∆k‖

2, (11)

because this way it can be interpreted easily together with

Er. As shown in Figure 5, when a patch moves to a new

place, it predicts both the position of neighboring patches

and ∆k.

Combining Eq. (2), Eq. (7) and Eq. (11) into Eq. (1)

we formulate our final energy function. We experimentally

set λd = 10, λr = 1, and λb = 1 such that data term

has higher importance than two smoothness terms that have

equal influence. Our method is not overly sensitive to the

exact values. Optimization of Eq. (1) is relatively standard

since all the aforementioned energy terms are quadratic in

terms of the model parameters. We therefore adopt Gauss-

Newton algorithms to solve this unconstrained least-squares

Sequence Views Frames Patch # Avg. spf.

Handstand1 [10] 8 401 144 6.07s

Wheel [10] 8 281 144 4.70s

Skirt [10] 8 721 219 3.57s

Dance [10] 8 574 223 3.68s

Crane [21] 8 175 125 3.55s

Handstand2 [21] 8 175 160 4.70s

Bouncing [21] 8 175 149 5.73s

Free [17] 8 500 172 5.46s

S4 walking [15] 4 349 186 4.76s

Table I
SEQUENCES USED FOR EVALUATION. WE FOLLOW [5] TO PATCH EACH

REFERENCE MESH. TYPICALLY A NUMBER BETWEEN 150 AND 250 IS

SUFFICIENT TO YIELDS DECENT RESULTS.

3.03 
3.65 

2.47 3.31 

3.64 2.46 

2.48 
2.20 

1.32 0.59 

2.07 1.6 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

L thigh R thigh L lower arm R lower arm L upper arm R upper arm

cm free bouncing

Figure 6. Averaged bone length of six body parts in free and bouncing
sequences. Numbers in the bars are standard deviations.

minimization. We implement SVM classification with the

well-known library libsvm [1] which applies one-against-

one multiclass strategy and provides the posterior class

probabilities based on Platt scaling [1].

IV. EXPERIMENTS

In this section we evaluate our method, both qualitatively

and quantitatively. We test on 9 sequences from numerous

public available datasets. These sequences range from those

with rapid motions, e.g., Free [17] and Bouncing [21], to

particularly articulated motions, e.g., Crane [21]. Table I

lists the sequences and gives the average second per frame

(spf) our method takes. We evaluate the pose and the shape

separately, and demonstrate the effectiveness of the SVM-

based matching scheme in terms of outlier rejection (Section

IV-B) and target point subsampling (Section IV-C).

A. Evaluation on poses

With the S4 walking sequence from the HumanEva-II

dataset [15], we compare the estimated joint locations with

the ground truth obtained from markers. Skeletons in dif-

ferent datasets usually have different joint configurations in

torso so we focus on limbs and head joints, for a total of

14 joints. Frames 298-335 are excluded due to the reported

corruption of the ground truth in these frames. For the

remaining frames, our approach presents an average total
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Figure 7. The effectiveness of SVM classification scheme. (a) Silhouette
images in two views. (b) Reconstructed visual hull. Due to the ambiguity
from 2D to 3D, there are some fake geometries in front of the chest. (c)
Visual hull colored according to the probabilities from SVM classifier. (d)
Estimated surface without filtering observations. (e) Estimated surface with
outlier removal according to Eq. (6)

error of 70.86mm. According to [16], errors smaller than

80mm typically correspond to correct poses, which confirms

the reliability of our method.

It should be noticed here that modeling a real human joint

as a single 3D point is an over-simplified assumption. The

numerical error in that case is only a coarse measure of

how well the pose is estimated. Further optimizing on this

error does not necessarily improve the estimation. On the

other hand fixing the bone length increases robustness with

respect to the noisy and occluded observations as claimed

in [19]. In this work, in order to keep the bone length fixed,

additional constraints are introduced and constrained least-

square optimizations are performed. However, no reports on

how much varying bone lengths influence the recovery of

shape and pose is made. In our approach constant bone

lengths are not explicitly constrained and we show variation

of the averaged bone lengths of six body parts in the free

and bouncing sequences in Figure 6. In order to make un-

derstandable and fair measurements, we map different scales

of skeleton to centimeters using the anthropologic statistics

from NASA [14]. Bar plots in Figure 6 show that our method

exhibits significantly small bone length variations in spite

of fast and large motions. This demonstrates that thanks

to the stability of our method, bone lengths do not have

to be additionally constrained, yielding a simpler and more

efficient optimization.

B. Evaluation on shapes

1) Qualitative evolution: Our classification-based match-

ing partitions incoming target observations into rigid body

parts according to the reference shape model fitted to the

previous frame. SVM classifier is trained using 3D coordi-

nates of the reference mesh model in the previous frame

with associated labels indicating the body part they belong.

Here we demonstrate the effectiveness of this classification

scheme. Artifacts appear in visual hulls due to silhouette

ambiguities, as in Figure 7 (a) and (b). Using the visual

hull vertices as target points, we obtain the results such

as those in Figure 7 (d). However, the SVM classifier is

able to identify artifacts and to give low probabilities to

the corresponding points (Figure 7 (c)). Thus, outliers can

successfully be removed based on Eq. (6). With the outlier

rejection, our method estimates the surface as shown in

Figure 7 (e), which demonstrates that the influence of fake

geometries is alleviated.

2) Quantitative evolution: For quantitative evaluations,

a commonly used metric is the pixel overlap error that

measures the discrepancies between surface reprojections in

the images and the corresponding input silhouettes. In Table

II we show the ratio of erroneous pixels and the total number

of pixels in the original silhouette. Since our approach

builds on a patch-based deformation framework [6], we

also compare to this method. As shown in Table II, our

approach obtains better results than [6] in all sequences. This

suggests that our SVM classification scheme helps in ruling

out unreliable target points, a crucial feature when the input

observations are noisy visual hulls. For further comparisons,

we also implement a standard articulated ICP approach

similar to [7]. Our method also shows better performances

than this skeleton-based method as a result of a more flexible

surface deformation model not constrained by pose space

parametrization that is often insufficient in practice. These

two comparisons show that our method outperforms both

purely mesh-based approaches and simple skeleton-based

methods.

Pixel overlap errors are also shown for the methods [10],

[19], [21]. Nevertheless we would like to point out that

all these methods explicitly optimize silhouette reprojection

errors in images, thus naturally yielding small pixel overlap

errors. However, visual hulls are noisy observations and

our contribution is clearly to identify and remove erroneous

observations hence the pixel overlap error is not necessarily

a relevant criterion in this context. We observed anyway that,

on average, our approach provides results comparable with

these methods with no more than 6% errors, which is within

a reasonable margin of error for the silhouettes.

C. Benefits of subsampling target points

In Figure 8 we present another benefit where we subsam-

ple the observations on the bones. Blue and purple lines in

Figure 8 correspond to the averaged second per frame (spf)

and silhouette overlap error respectively when matching is

done using standard closest compatible point search. Target

observations are not partitioned and all of them are inspected

for the closest compatible point. Red and green curves corre-

spond to the averaged spf and silhouette overlap errors of our

method when classification with SVM is used for improved

matching between the reference model and the input target
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to left y axis; green and purple curves correspond to right y axis.

observations. When most of the target observations yi in

Tg are kept (e.g., 90%), our approach requires more time

due to the time-consuming SVM classification. In the case

where the number of observations for training is reduced,

the matching time decreases and the silhouette overlap error

goes up. In the extreme case where 30% of yi in Tg are used

for classification, nearly 1.5 seconds per frame is gained

while the increase in the error is only 0.2%. We remark here

that the tradeoff between time and error is inevitable, but that

our SVM-based approach provides a good compromise.

Lastly, some qualitative results are shown in Figure 9.

Even the challenging Free sequence can be tracked properly.

Our method is able to produce convincing results in terms

of both shape and pose.

V. CONCLUSION AND FUTURE WORK

We present an approach that captures marker-less hu-

man performances from multi-view sequences. Our method

jointly estimates poses and shapes of the human body. To

this end, we propose to use probabilistic deformable surface

registration approach based on patched representation of the

reference human body model [6] together with the bone

binding energy [19]. In addition, we introduce a novel SVM-

based classification scheme that partition target point clouds

into rigid body parts and helps better correspondence search.

We exploit posterior probabilities from classifiers to remove

the redundant and unreliable observations and report speed

up thanks to the use of the reduced set of observations for

matching.

The reliability of the proposed method is verified by

the experiments on sequences from various public datasets.

Evaluations on HumanEva-II dataset show that our ap-

proach recovers the pose correctly. Our method does not

rely on the bone-length constraint to obtain decent results.

Evaluations on other sequences demonstrate that without

explicitly optimizing on silhouettes, our approach still yield

comparable results on shape estimation. Possible future

directions include alleviating the requirement of background

subtraction, and exploiting photometry information.
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