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Le flux DFLU pour les systemes de lois de conservation

Résumé : Le flux numérique DFLU a été introduit pour résoudre des lois de conservation scalaires
hyperboliques dont la fonction de flux est discontinues en espace. Nous montrons comment ce flux peut
étre utilisé pour résoudre une certaine classe de systemes de lois de conservation tels que les systeémes
modélisant I’injection de polymeres en ingéniérie de réservoirs pétroliers. En outre, ces résultats s’étendent
au cas de fonctions de flux discontinus par rapport a la variable d’espace. Une telle situation apparait par
exemple quand on considere des réservoirs pétroliers qui sont hétérogenes. Des expériences numériques
sont présentées pour illustrer I’efficacité de ce nouveau schéma comparé a d’autres shémas standard tels
que les schémas Mobilités Amont, Lax-Friedrichs et Force.

Mots-clés : Volumes finis, différences finies, solveurs de Riemann, systémes de lois de conservation,
écoulements en milieu poreux, injection de polymeres.
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1 Introduction

The main difficulty in the numerical solution of systems of conservation laws is the complexity of con-
structing the Riemann solvers. One way to overcome this difficulty is to consider centered schemes as in
(23, 28, 32 [33] [6]. However, in general these schemes are more diffusive than Godunov type methods
based on exact or approximate Riemann solvers when this alternative is available. Therefore in this paper
we will consider Godunov type methods. Most often the numerical solution requires the calculation of
eigenvalues or eigenvectors of the Jacobian matrix of the system. This is even more complicated when the
system is non-strictly hyperbolic, i.e. eigenvectors are not linearly independent. In this paper we present
an approach like in [19] and [21]] which do not require, detailed information about the eigenstructure of the
full system.
Let us consider a system of conservation laws in conservative form

Ut+(F(U))1:07 U:(ula"'vu.])a F:(fla"'vf.])'
A conservative finite volume method reads

U?Jrl - Uy n F?+1/2 - F?71/2 .

At h 0

where F7!, | /2 is a numerical flux calculated using an exact or approximate Riemann solver. In a first order
scheme this numerical flux is calculated using the left and right values U* and U?, ;. If we solve the

equation field by field the j-th equation reads

j,n+1 j,m J,m _ J,m
u" — ! N Flyp —Fly, 0
At h
where the j-th numerical flux is a function of U}* and U}, ;:
R T jn Jn ,1n jn Jn .
Fi+1/2*F](ui y U Yy aui+1a"'aui+1a"'7ui+1>a ]flvaJ

This flux function can be calculated by solving the scalar Riemann problem for ¢ > t,,:

ul + (f7"(u,x))e =0, (1)

w (2, tn) = ul " if o < w400, W (2, tn) = wl if x> 2000,
where the flux function fj , discontinuous at the point x = x; /9, is defined by

fimn(ud, ) = fin(uj) = fIuy ™l T ,u;]") ifz <xip1)0,

fj’n(ujax) = fjj%’n(uj) = fj(uzljrnla e ’ugJ:ll’na uja ugjr_ll’na e auzernl) if z > Tit1/2 @
(L and R refer to left and right of the point ;1 /2).

Scalar conservation laws like equation (I) with a flux function discontinuous in space have been the
object of many studies [10} [35, [0l 221 30, 4, 26]. In particular, in [4] a Godunov type
finite volume scheme was proposed and convergence to a proper entropy condition was proved, provided
that the left and right flux functions have exactly one local maximum and the same end points (the case
where the flux functions has exactly one local minimum can be treated by symmetry). At the discontinuity
the interface flux, that we call the DFLU flux, is given by the formula

Fl jp(ur, ug) = min{ fr(min{ur, 00}), fr(max{ug, 0r})}, 3)

if f denotes the scalar flux function and 6, =argmax(f,), 0 =argmax(fr). When f;, = fp this formula
is equivalent to the Godunov flux so formula (B)) can be seen as an extension of the Godunov flux to the case
of a flux function discontinuous in space. In the case of systems formula (3) can be applied to the fluxes
f2™ and f}" provided both agrees at the end points of the domain for all j, like in the case of scalar laws
with a flux function discontinuous in space. In the case of an uncoupled triangular system, a similar scheme
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4 Adimurthi, G. D. Veerappa Gowda, Jérome Jaffré

is used in [18| and its convergence analysis is studied. Also in [21]], the idea of discontinuous flux is
used to study a coupled system arising in three-phase flows in porous media and shown its successfulness.

To illustrate the method we consider the system of conservation laws arising for polymer flooding
in reservoir simulation which is described in section 2l This system, or similar systems of equations, is
nonstrictly hyperbolic and is studied in several papers [31} [16} [T5] [13]]. For example in [16] the authors
solve Riemann problems associated to this system when gravity is neglected and therefore the fractional
flow function is an increasing function of the unknown. In this case, the eigenvalues of the corresponding
Jacobian matrix are positive and hence it is less difficult to construct Godunov type schemes which turn
out to be upwind schemes. When the above model with gravity effects is considered, then the flux function
is not necessarily monotone and hence the eigenvalues can change sign. This makes the construction
of Godunov type schemes more difficult as it involves exact solutions of Riemann problems with a non
monotonous fractional flow function. Therefore in section 3l we solve the Riemann problems in the general
case when gravity terms are taken into account so the flux function is not anymore monotone. This will
allow to compare our method with that using an exact Riemann solver. In section @ we consider Godunov
type finite volume schemes. We present the DFLU scheme for the system of polymer flooding and compare
it to the Godunov scheme whose flux is given by the exact solution of the Riemann problem. We also
present several other possible numerical fluxes, centered like Lax-Friedrichs or FORCE, or upstream like
the upstream mobility flux commonly used in reservoir engineering (7, [8, 26]]. In section [§] we compare
numerically the DFLU method with these fluxes. Finally in section [6l we considered the case where the
flux function is discontinuous in the space variable and its corresponding Riemann problem is discussed in
appendix.

2 A system of conservation laws modeling polymer flooding

A polymer flooding model for enhanced oil recovery in petroleum engineering was introduced in as
the following 2 x 2 system of conservation laws

0

St + f(Sa C)m
0 “

(sc+a(e))s + (cf(s,0)a =

wheret > 0 and z € R, (s,¢) € I x [ with I = [0,1]. s = s(z,t) denotes the saturation of the wetting
phase, so 1 — s is the saturation of the oil phase. ¢ = ¢(x,t) denotes the concentration of the polymer in
the wetting phase which we have normalized. Here the porosity was set to 1 to simplify notations. The flux
function f is the Darcy velocity of the wetting phase (; and is determined by the relative permeabilities
and the mobilities of the wetting and oil phases, and by the influence of gravity:

A1(s,c)
A1(s,¢) + Aa(s, ¢

f(s,c) =1 = )[<p + (91 = g2)X2(s, 0)]. )
The quantities Ay, ¢ = 1,2 are the mobilities of the two phases, with £ = 1 referring to the wetting phase
and ¢ = 2 referring to the oil phase:

~ Kkr(s)

Ae(s,¢) = ) =12

) )

where K is the absolute permeability, and kr, and p, are respectively the relative permeability and the
viscosity of the phase ¢. kr; is an increasing function of s such that kr;(0) = 0 while kr9 is a decreasing
function of s such that kry(1) = 0. Therefore As, ¢ = 1, 2 satisfy

A1 = M (s, ¢)is an increasing functions of s, A1(0,¢) =0 Ve € [0, 1], ©)
A2 = Aa(s, ¢) is a decreasing functions of s, A\2(1,¢) =0 Vc € [0, 1].

The idea of polymer flooding is to dissolve a polymer in the injected water in order to increase the viscosity
of the injected wetting phase. Thus the injected wetting phase will not be able to bypass oil so one obtains
a better displacement of the oil by the injected phase. Therefore 11 (c) is increasing with ¢ while po will
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The DFLU flux for systems of conservation laws 5

be taken as a constant assuming there is no chemical reaction between the polymer and the oil. Therefore
f will decrease with respect to ¢. The function a = a(c¢) models the adsorption of the polymer by the rock
and is increasing with c.

(o is the total Darcy velocity, that is the sum of the Darcy velocities of the two phases ¢ and ¢s:

A2
A+ A

p=p1+y2, p1= o+ (91 —g2)A\2], 2= [+ (92 — g1)\1].

1
A+ A

( is a constant in space since we assume that the flow is incompressible. The gravity constants g;, g2 of
the phases are proportional to their density.
To equation () we add the initial condition

(s(x,O),c(x,O)) = (SO(x)ch(x))' (7

Since the case when f is monotone was already studied in [16, T3], we concentrate on the nonmonotone
case which is more complicated and corresponds to taking into account gravity. Here we assume that o = 0
for the nonlinearities of the system (). We will assume also that phase 1 is heavier than phase 2 (g1 > ¢2)
so we can assume the following properties:

() f(s,¢)>0,f(0,¢)= f(1,¢) =0forallc € I.

(ii) The function s — f(s,¢) has exactly one global maximum in I and no other local minima in the
interior of I with § =argmax(f).

(iil) fe(s,¢) <0V se(0,1)andforallcel
(iv) The adsorption term a = a(c) satisfies

d a2
a(0) =0, h(e) = () >0, =—(c) <Oforallce L.

Typical shapes of functions f and a are shown in Fig. [1l

a

f(., ) AN

AN

0 0 1 s 0 c
Figure 1: Shapes of flux function s — f(s, ¢) (left) and adsorption function ¢ — a(c) (right).

We expand the derivatives in equations () and we plug the resulting first equation into the second one.
Then we obtain the system in nonconservative form

st + fs(s,¢)82 + fe(s,c)e. = 0,
(s+d(e)e + f(s,c)c, = 0.

Let U denote the state vector U = (s, ¢) and introduce the upper triangular matrix

fs fe
AWU) = f
0 s+a(c)

and the system (4) can be read in matrix form as

U, + A(U)U, = 0.
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6 Adimurthi, G. D. Veerappa Gowda, Jérome Jaffré

f

The eigenvalues of A are A* = f and A\ = s with corresponding eigenvectors e® = (1,0), e® =
S a

(fe; A =A%) if0 < s < lande® = (0,1)if s = 0,1. The eigenvalue A\* may change sign whereas the
eigenvalue \° is always positive. One can observe that for each ¢ € I there exists a unique s* = s*(¢) €
(0, 1) such that

A(s%,¢) = X (s%,¢)

(see Figl). For this couple (s*,c), A = A®, hence eigenvectors are not linearly independent and the
problem is nonstrictly hyperbolic.
Any weak solution of () has to satisfy the Rankine-Hugoniot jump conditions given by

f(sr,cr) — f(sp,cL) = o(sr—sL), 8)
crf(sr,cr) —crf(sp,c) = o(srer+a(er) — sper —aler)),

where (s1,cr), (Sr, cr) denote the left and right values of the couple (s, ¢) at a certain point of disconti-
nuity.

When cr = cy, the second equation reduces to the first equation and the speed of the discontinuity
o is given by the first equation only. Now we are interested in the case cg # c¢r. By combining the two
equations (8) we may write

(cr —cr)f(sp,cr) = o(cr —cp)s + o(alcr) —aler))

where
_ Jf(spyer) = () — ale) = aleg) if c#ecr,
= ————, ar(c)= c—cCL
sz +ac(cr) a(c) if c=cp.

Plugging this into first equation of (§), we obtain

o(sg +ar(cr)) = o(sp +av(cr)) + f(sr,cr) — f(sL,cL) = f(sr,cr).
Hence when ¢y, # cgr the Rankine-Hugoniot condition (8) reduces to

flsmicr) _ [flspoen) _ ©)

sp+ar(cr) s+ ar(cr)

In the absence of the adsorption term, i.e. a = a(c) = 0, equation (@) is studied in by using the
equivalence of the Euler and Lagrangian formulations and converting it into a scalar conservation law with
a discontinuous flux function. In the presence of the adsorption term, this transformation fails to convert it
into a scalar conservation law with a discontinuous flux function.

3 Riemann problem

In this section we solve the Riemann problems associated with our system, that we solve system () with
the initial condition

| osp if 2 <0, _J e if <0,
S(z’o){sR if x>0 - C(x’o){c}g if x>0 - (19)

Solution to (I0) is constructed by using elementary waves associated with the system. There are two
families of waves, refered to as the s and ¢ families. s waves consist of rarefaction and shocks (or contact
discontinuity) across which s changes continuously and discontinuously respectively, but across which ¢
remains constant. ¢ waves consist solely of contact discontinuities, across which both s and ¢ changes such
f(s,0)

s+a(c)

We will restrict to the case ¢z, > cgr. The case c¢;, < cp can be treated similarly. When c;, > cp the
flux functions for the first equation @) s — f(s,cr) and s — f(s,cr) are as represented in Fig. 2] that

that remains constant in the sense of (9).

Inria



The DFLU flux for systems of conservation laws 7

is f(s,cr) < f(s,cr) Vs € (0,1). Let 01, and 0 be the points at which f(.,cr) and f(., cg) reach their
maxima respectively.
f(S*) CL)

s*+ar (CR)
(—ar(cr),0) and (s*, f(s*, cr)) which intersects the curve f(s,cr) ata point A > s* (see Fig. 2).

Let s* € (0,1) be a point at which fs(s*,c) = . Now draw a line through the points

f(sch)

—dL(CR) s* 0 Or A

Figure 2: Two flux functions f(s,cr) and f(s,cr) with ¢z, > cg.

Our study of Riemann problems separates into two cases s;, < s* and s;, > s* which themselves
separate into several subcases.

e Case 1: s;, < s*.
Draw a line passing through the points (s, f(sr,cr)) and (—ar(cr),0). This line intersects the

curve f(s,cr) at points 5 and B (see Fig. B]). Now we divide this into two subcases.

e Case la: sp < B
(a) Connect (s, cr) to (5, cr) by c-wave with a speed

f(sp,e) — f(cr)

sp+ar(cr)  S+ap(cg)

c =

(b) Next connect (5, cg) to (sg, cr) by a s-wave, along the curve f (s, cg) (see Fig.B).
For example if sp > S and f(s,cr) and f(s,cg) are concave functions then the solution of the
Riemann problem is given by

(sp,cr) if z <o,
(s(z,t),c(z,t)) =< (S,cr) if ot <z <ost, (11)
(spycr) if x> ost,

where

f(sp,er)  f(3,cr) ” ~ f(B,cr) = f(sr,cRr)

Oe = = s = .

SL+ZLL(CR) E—I—ZLL(CR)’ S§— SR
Note that 0 < 0. < 0.
f(S7CR)

\ T = 0.t

f(& CL) _ T =04t
(S,¢cr) -
(sz,cL) 2" (sm.cR)
*aL(CR) 5 sL s* A sgpB (SL,CL) 0 (SR,CR)

Figure 3: Solution of Riemann problem (I0) with s;, < s* and sg < B.
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Case 1b: sp > B.
Draw a line passing through the points (sg, f(sr, cr)) and (—ar(cgr),0). This line intersects the
curve f(s,cp) ata point 5 (see Fig. H).
(a) Connect (s, cr) to (5, cr,) by a s-wave along the curve f(s,cr).
(b) Next connect (3, ¢r,) to (sgr, cr) by a c-wave with a speed
f(spyer)  f(3,c1)

c = — =

SR+aL(CR) g"f'dL(CR)'

For example if f(s,cy,) and f(s, cr) are concave functions then the solution is given by

(sp,cr) if z <ot
(s(z,t),c(x,t)) =< (S,cr) if ost <z <oet (12)
(spycr) if > oct

where

fGsrier) _ fGew)  _ fGier) = flspoer)
SR—l—dL(CR) g—l—dL(CR), s ’
Note that o5 < o, and (s, cr,) is connected to (3, c) by a s-shock wave and (3, ¢1,) is connected
to (sgr, cr) by a c-shock wave.

c =

V|

— sy,

\‘, (gv CL)

(sp,cr) ™ (sr,CR)

*aL(CR) sp s* A B S sp (SL,CL) 0 (SR,CR)

Figure 4: Solution of Riemann problem (IQ) with s, < s* and s > B.

Case 2: s;, > s*.

Case2a: sp < A.

(a) Connect (s, cr) to (s*, cr) by a s-wave along the curve f(s,cr).

(b) Connect (s*,cr,) to (3, cr) by a c-wave.

(c) Connect (5, cr) to (sgr, cr) by a s-wave along the curve f(s, cgr) (see Fig. B).

For example if sp < Sand f(s,cr,) and f(s, cg) are concave functions, then the solution is given by

(sr,cr) if <ot
((fs)~ 1( cr),cr) if o1t <z < oot

(s(z,t),c(x,t)) =< (S5,cr) if oot <z < ost,
((fo)"N(%,cr),cr) if o3t <a <ot
(sr.CR) if x> o4t

where
_ _ * _ f(S*;CL) . _ _
o1 —fS(SLycL); 02 —fs(s ,eL) = S*+&L(CR), _fs(SaCR)a 0'4—fs(SvaR)'

Here (s, cr) is connected to (s*, cr,) by a s-rarefaction wave, (s*, 1) is connected to (3, cr) by a
c-shock wave and (3, cr) is connected to (sg, cr) by a by a rarefaction wave(see Fig.B). If sp > 5
then (3, cr) would be connected to (sg, cr) by a s-chock wave.

Inria



The DFLU flux for systems of conservation laws 9

T = o1t T = oot
r = o3t
xr = oyt
(s2,c1) SR, CR)

*aL(CR) SR S s* 0, A sp (SL,CL) 0 (SR,CR)

Figure 5: Solution of Riemann problem (IQ) with sy, > s* and sg < A.

e Case2b: sp > A

Draw a line passing through the points (sg, f(sg, cr)) and (—ar(cg),0). This line intersects the
curve f(s,cp) at a point 5 (see Fig. [6).

\\‘ (5, CL)
(sp,cn) s, (R, CR)

—ar(cr) s*sp, A 5 SR (sL,cr) 0 (Sr,CR)

Figure 6: Solution of Riemann problem (I0) with s;, < s* and sg > A.

(a) Connect (s, cr) to (3, cr) by a s-wave along the curve f(s,cr),
(b) Next connect (3, cr,) to (sg, cr) by a c-wave with a speed

f(sRr,cR) f(,cL)

T, = = .
“ sgtar(cg) S+ar(cr)

For example if s;, < Sand f(s,cr) and f(s, cr) are concave functions, then the solution is given by

(sp,cr) if o < ogt,
(s(z,t),c(z,t)) =< (S,cr) if ost <z < ot (13)
(spycr) if x> o.t,

where
~ fGsmser)  f(G,cer) ~ f(Byen) = f(sp,cr)
Oc = — = = — Og — — .
sgp+ar(cgr) S+ ar(cr)’ §—sL

Note that o5 < o, and (sr, cr,) is connected to (3, c) by a s-shock wave and (3, ¢1,) is connected
to (sgr, cr) by a c-shock wave.

4 Conservative finite volume schemes for the system of polymer flood-
ing

Let . > 0 and define the space grid points ;1 /o = ih, i € Z and for At > 0 define the time discretization
points ¢,, = nAt for all non-negative integer n. Let A = %. A numerical scheme which is in conservative

RR n° 8442



10 Adimurthi, G. D. Veerappa Gowda, Jérome Jaffré

form for equation (@) is given by

(S?Jri : si) + A(F zfrl/2 - B /2) =0,
(C?JF S?JF +a( :’Jr ) c; S? ( )) +>\( i+1/2 G?71/2> =0

where the numerical flux F‘Z'T-li-l/Q and G?+1/2 are associated with the flux functions f(s,¢) and g(s,c) =

(14)

cf(s,c), and are functions of the left and right values of the saturation s and the concentration c at ;1 /:
F+1/2 = F(si, cf', siy1, i), G?H/z = G(s}, cf' i, ci)-

The choice of the functions F' and GG determines the numerical scheme. To recover C;H_l from the second
equation of (I4) one has to use an iterative method, like Newton-Raphson. We first present the new flux
that we call DFLU, which is constructed as presented in the introduction. We compare it with the exact
Riemann solver and show L°° estimates for the associate scheme. Then we recall three other schemes to
which to compare: the upstream mobility flux and two centered schemes, Lax-Friedrichs’s and FORCE.

4.1 The DFLU numerical flux

The DFLU flux is an extension of the Godunov scheme that we proposed and analyze in [4] for scalar
conservations laws with a flux function discontinuous in space. As the second eigenvalue A° of the system
is always non-negative we define

G?+1/2 i F+1/2 (15)
Now the choice of the numerical scheme depends on the choice of £’ /2 To do so we treat ¢(z,t) in

f(s,c) as a known function which may be discontinuous at the space discretization points. Therefore on
the border of each rectangle (:ci,l/g, Tit1/2) X (tn, tn+1), we consider the conservation law:

st+ f(s,¢)a =0 (16)

with initial condition s(x,0) = s? for Ti_1/2 < T < xiq1)2(see Figll).

t=1nt1
se+ f(s,¢M)e =0 st f(s,¢t1)e =0
s(tn) = s} s(tn) = i1
t=1p
Ti—1/2 Tit1/2 Lit3/2

Figure 7: The flux functions f(-, ¢) is discontinuous in ¢ at the discretization points.

Extending the idea of [4]],we define the DFLU flux as

F’fl

o FDPFLU(

SZ 7CZ ’ l+17 Z-‘rl) (17)
= mln{f(mln{sz N n)a f(maX{S?Jrla H?Jrl}v C?Jrl)}v

where 0" = argmax f(-, c}").

Remarks:

1) Suppose ¢} = cp, a constant for all 4,then it is easy to see that c;"~ = ¢ for all .

2) Suppose s — f(s, ¢) is an increasing function (case without grav1ty) then 07" = 1 for all 7 and from (I7)
we have F". |, = f(s, ') and the finite difference scheme (I[4) becomes

n+1

i+1/2

1 1 S?tl = S;n_)‘(f( 7’0? _f( i—1> Ci— 1) (18)
s ra(f ) = st alel) = M f(s)ef) = ey f(sTogeiy))

which is nothing but the standard upwind scheme.

Inria



The DFLU flux for systems of conservation laws 11

4.2 Comparison of the DFLU flux with the flux given by an exact Riemann solver

Now we would like to compare the exact Godunov flux Fffrl /2 with our DFLU flux Fﬁrf /LQU defined by
(D). For sake of brevity we considered only the case c}* > civ1- The opposite case can be considered
similarly. We discuss the cases considered in section[3l
Case 1a: s; < s*,5;.1 < B. See Fig. 3l In this case Ficjrl/2 = f(si,ci) = sz?rf/LQU
Case 1b: s; < s*, 5,01 > B. See Fig. [

¢ _J G if 0,<0 _ fGye) = fsire)
Then Fi+1/2 = { Flsicr) if 04> 0 where o, = T s, . On the other hand the DFLU
flux gives F71 /)7 = min{f(s, ¢;), f(max{sit1,0i11}, ci41)}. Therefore in this case the Godunov flux

may not be same as the DFLU flux.

Case 2a: s; > s*,s;,1 < A. See Figldl Then

¢ ) fOic) if si>0; - _ DFLU
Fili)= { Fsiyer) if s <0 f(min{s;, 0:},¢;) = Fi15 )5
Case 2b:s; > s, Sitr1 > A. See Flgﬂ
a | fGe) if os<0 [ e) = f(si,¢)
Then FZ.JFI/2 = { Flsie) if oy >0 where o, = E—_— .
The DFLU flux is Fi’i’rf/LQU = min{ f(min{s;, 0;},¢;), f(max{s;+1,0i+1}, ci+1)}. In this case these two

fluxes are not equal, for example when o, < 0.

One can actually observe that the Godunov flux can actually be calculated with the following compact
formula:
Case 1: s; < s].

: f(sit1,civ1) f(si i)
Siy Ci if fs(si+1,ci+1) = Oor - > — ;
Ficjrl/2 L ) fs(sirt; cirr) Sit1 +arn(civ1) — si+ar(civ)
min(f(s;, ¢), f(Si,¢;)) otherwise,

where 3; is given by J(si41,i41) = I (5, i)

Si41 +ap(civ1) S +an(ciyr)

Case 2: 5; > s7.

. . f(sit1, civ1) f(s7,¢i)
min(s;, 0;), ¢; if fo(Sig1,C >0or — > ,
Ficjrl/2 _  J{min( hei) fssivn, civt) siv1+ar(civr) — sf +an(civ)
min(f(s;,¢;), f(8i,¢;)) otherwise,

where 3; is given by f(siH; Cit1) - f(fi;ci) .
siy1 +ar(civ1) S +ar(ciyr)

4.3 L, TV bounds and convergence analysis for the DFLU scheme

f(s,¢)

We show first L™ bounds, and TVD bounds will follow immediately. Let M = sup{] fs(s, ¢)/, e
s,cC S a(c

).

Lemma 4.1 Let sg and co € L™ (R, [0, 1]) be the initial data and let {s?'} and {c'} be the corresponding
solution calculated by the finite volume scheme ([4) using the DFLU flux (L), (IZ). When A\M < 1 then

0<s? <1 foralli,n, (19)
™ lloo < (1"~ |oo where ||c™||oo = sup; [c}].
Proof: Since 0 < sy < 1 and hence for all 7, 0 < s? < 1. By induction, assume that (I9) holds for all n.

Let o
i = 8- )‘(Fﬁ-lﬂ - Fin—1/2)

n n n ' T T
H(s}_y, s} 1y 841,61, C; 7Ci+1)
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12 Adimurthi, G. D. Veerappa Gowda, Jérome Jaffré

By ([I@),it is easy to check that if A\M < 1, then H = H(sy, $2, 83, C1, C2, ¢3) is an increasing function in
$1, 82, s3 and by the hypothesis on f, H(0,0,0,¢1,¢2,c3) =0, H(1,1,1, ¢1,¢a,c3) = 1. Therefore
H(Ov Oa 07 C?—lv C?v C?—l—l)

n+1

n n n n n vea —
H(S —1555 s z+1’ 1—1 zﬂci+1)_si
n

H(l,l,l,cz 15 Cis z+1) L.

0

INIA

This proves 0 < s/'™! < 1.
To prove bounds for ¢, consider

(s ale ) — st — ale) + A(Glaja — Gioygn) = 0.

3 3

Add and subtract the term c's ”+1 to the above equation,then we have

(s + (€)= (P + a (€)Y = SP) + A(GTyy g — Gy ) = 0.

where a(c! ) —a(c?) = a/ (&) (P — ¢n) for some £/? between ¢! and ¢7'. Then substituting

for (]! — s™) from the first equation of (|E) since ¢} Fy |, = Gis1/2, we have

n n n+1/2 ns n n+1/2 n
Ci+1(si+1 +a/(€i+ / ) —ci(s; i +a/(§i+ / )+ AR 1/2( —cq)=0

. This is equivalent to

+1 Fity)s
ar = G M e, A (20)
"
which is the scheme written in the non-conservative form. Let b]' = A i1/ then
n+1 y(entl/2
(i +d'(& )
AT = (1 —bM)e? + bl < max{cl, el }if b < 1.

This proves the second inequality. |
Since c"Jr1 is a convex combination of ¢’ and ¢i* | if AM < 1, then we obtain the following total

variation d1m1n1sh1ng property for c}':

Lemma 4.2 Let {c'} be the solution calculated by the finite volume scheme (I, (1), [A). When \M <
1 then
Z et — it < Z lel — et 4| foralln.

Also we have from @0) for \M < 1,

Z |C?+1 —c| < Z el — ¢ 4| forall n. Q1)

Note that the saturation s need not be of total variation bounded because of f = f(s,¢) and ¢ = ¢(x, t)
is dicontinuous(see [[1]]). The singular mapping technique as in [4] to prove the convergence of {s?} looks
very difficult to apply. However by using the method of compensated compactness, Karlsen,Mishra and
Risebro [19] showed the convergence of an approximated solution in the case of a triangular system. Now
we use their results to prove the convergence of {s!'}. Their method of proof of compensated compactness
shows that actually they have proved the following.

Assume that the flux f(v, «) and the function k(z, t) satisfies the following hypothesis:

1. f(0,a) = f(1,a) =0forall in I.
2. fuu(v,a) #0forall win I anda.e vin T

3. There exists M > 0 and a discretization {k!"} of k(x, t) exist such that for a subsequence h

Inria



The DFLU flux for systems of conservation laws 13

(@ {k} > kin L}, ash — 0,

® > |k?+1 - k?j11| < M foralln,
(©) 3, kM —kr| <M foralln.

Next we describe the discretisation {v}'} of v corresponding to {£]'} as follows:
Let v} (z, t) be a function defined on the strip R x (nAt, (n + 1)At) such that

{ (Ug)t + f(v27 k?)m = 07 (:Ea t) € (zi—%vxi-i—%) X (nAtv (n + 1)At)a (22)

VR (z,nAt) = if x € (xi_%,xi+%),

f(vZ(x;r%,t)) :f(vZ(zzr%,t)) fort € (nAt,(n+1)At)
and

1 [%i+d
Pttt = / VR (&, (n + 1)At) d€.
Then we have the following result from [19](see section 5.2).

Lemma 4.3 Assume that v} satisfies
1. 0 <sup, |v]'| <1.

2. v} satisfies "minimal jump condition” at each interface x,; i

Then there exists subsequences of {k'} and {v]'} converges respectively to k and v a.e and these limits
are the solution of

Ut +f(vvk)m =0
{ v(x,0) = vo(x) (23)

Proof of convergence of {s}'}: Assume further that ¢y and f satisfies the following.
(i) ¢(z,0) = ¢o(x) is of bounded variation.
(ii) ¢ — f(s,c) is a non-increasing function.
(iil) fss(s,c) # O forall cand a.e s.

Let {c'} be as in Lemma[.2]and s’ be the corresponding solution obtained from DFLU flux (I7). Then
it follows from the above hypothesis (ii), s;* satisfies the "minimal jump condition" across the interface.
Hence by taking

n __in n __.n
ci =k and s; =},

it follows from (21)) and Lemmas[d.2J4.3] there exists subsequences of ¢!* and s? converges respectively to
c and s. Further s satisfies

St+f(sac)z:0

Remark: As equation (20) for ¢ is in non-conservative form, though the sequence {c'} is L°° stable and
TVD, it is difficult to prove the convergence{s'c}'} to a weak solution of (sc + a(c)): + (¢f(s,¢))e =0
unless, like in [38][39]], the concentration ¢ is Lipschitz continuous or like in [37] fluxes are in the special
form. In the presence of viscosity, the convergence of the Lax-Friedrichs scheme for the polymer flooding
model was proved in [36]].

RR n° 8442



14 Adimurthi, G. D. Veerappa Gowda, Jérome Jaffré

4.4 The upstream mobility flux

Petroleum engineers have designed, from physical considerations, another numerical flux called the up-
stream mobility flux. It is an ad-hoc flux for two-phase flow in porous media which corresponds to an

approximate solution to the Riemann problem. For this flux G, /2 is given again by (I3) and Fﬁrl is
2
given by
Al
F' o :FUM(S?vC?vS?HaC?H) = [+ (91 — 92) A3,

o+ X+
{ Ae(s?, ) ifo+(g0—g)A\f>0,i=1,2,i#¢,
AP =

)\Z(S?—‘rl’C?—i—l) 1f90+(92*91>)‘:< SO) 7’:152717&67

{=1,2.

)

4.5 The Lax-Friedrichs flux

In this case fluxes are given by

Fi+1/2 = %[f(si—l-hci-l-l) + f(sief) - %]

G

(a5 + alely) — b5t — alel)
?+1/2 = %[C?+1f(8?+176?+1)+C?f($?,6?)7 : : : b\ — : ]

4.6 The FORCE flux

This flux [32}[6]], introduced by E. F. Toro, is an average of the Lax-Friedrichs and Lax-Wendroff flux. It is
defined by

n n n n .n n+1/2 n+1/2 (87 1 S?)
Fiiig = 3l i) + F(s7.cf) +2f (57777, 71%) - =)
n n n n n n o n n+1/2 n+1/2 n+1/2
Glirjg = gl (P, eityn) +f f (7 ef) + 26 syt et
(i +alclyy) — s —alc}))
_ 3 ]
where ( )
n+1/2 S? 1t S? A n n n o n
Si /2= B _*§(f(5¢+1aci+1)*f(5iaci))
s?+1/2c?+1/2 n a(c?+1/2) _ (Si—l—lci—l-; + sict) (a(ci+1)2+ a(c}))

*%(C?ﬂf(sﬁlv 0?4-1) - C?f(S?, C?))

5 Numerical experiments

To evaluate the performance of the DFLU scheme we first compare its results to an exact solution and
evaluate convergence rates, and then compare it with other standard numerical schemes already mentioned
in the previous section, that are the Godunov, upstream mobility, Lax-Friedrichs and FORCE schemes.

5.1 Comparison with an exact solution

In this section we compare the calculated and exact solutions of two Riemann problems. We consider the
following functions

f(s,e)=s(4—3s)/(1+¢), alc)=c (24)

Note that f(0,¢) = f(4,¢) = 0 for all ¢ and the interval for s is [0, 4] instead of [0, 1]. This choice of
f, which does not correspond to any physical reality, was done in order to try to have a large difference
between the Godunov and the DFLU flux (see second experiment below).

Inria



The DFLU flux for systems of conservation laws 15

In a first experiment the initial condition is

2.5 if x<.5, [ 5 if x<.5,
S(z’o){ 1 if z>.5 C(x’m{o if > .5. 23)

These f and initial data correspond to the case 2a in sectionsBland[£.2l where the DFLU flux coincides with
the Godunov flux: FPFLU (s; s cr,cr) = F9 (s, sr,cr,cr) with s* = 1.236, A = 2.587,5 = .394.
The exact solution of the Riemann problem at a time ¢ is given by

2.5 if z<.b5+01t
s(a,t) = 14— 15(22) if S+ot<z<.5+o.t =] 5 e<Btoc,
’ 5=.394 if b4+o.t<ax<.5+o9t’ ’ 0. if =z>.5+0.t.
1. if x> o09t4+.5
(26)

f(ser) f(5:cr)

where 01 = fs(sp,cn) = —2/3, 0. = fs(s*,c) = . = -z = 1018 and o5 =
1 fs(sr,cr) / fs( L) s*+ar(cg) 5+ ar(cr) ’
f(3,¢cr) — f(sr.cR)

= 2.606.

5—=5
Figs. Bl ar?d verify that the DFLU and Godunov schemes give coinciding results. As expected both
schemes are diffusive at c-shocks as well as at s-shocks but as the mesh size goes to zero calculated
solutions are getting closer to the exact solution (see FiglQ). Table [ shows L; errors for s and ¢ and the
convergence rate «. Calculations are done with A = i(M = 4), that is the largest time step allowed by the
CFL condition.

DFLU—— DELU ——
GODUNOV------ GODUNOW--+---
25 EXACT oo i EXACTwseeees
' 08 | i
2 L
06 |
15|
04t \
l L
05 | 02
0 L L L 0 | I .
0 05 1 15 2 0 05 1 15 2

Figure 8: Comparison with exact solution of Riemann problem 24), 23): s (left) and ¢ (right) at t = .5
for h =1/100, A\ = 1/4.

DFLU —— DFLU ——
GODUNOV------ GODUNOV--+---
) | EXACT -
| 08 | |
2 L
06 |
15 |
04| \
l L
05t ol
0 . ‘ ‘ i |
0 0.5 1 15 2 0 0.5 1 15 >

Figure 9: Comparison with exact solution of Riemann problem @24), 23): s (left) and ¢ (right) at ¢t = .5
for h = 1/800, A = 1/4.
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16 Adimurthi, G. D. Veerappa Gowda, Jérome Jaffré

h Godunov,||s — sp|| 11 « DFLU,||s — sp]| 11 «
1/50 2373 2372

1/100 0.15134 0.6489 0.1506 0.655
1/200 9.6868 x 102 0.6437 9.6868 x10~2 0.6366
1/400 6.4228 x10~2 0.5928 6.4228 X102 0.5928
1/800 42198 x10~2 0.606 42197 x10~2 0.606
h Godunov,||c — ¢p |1 « DFLU,||c — cp|| 1 «
1/50 6.3796 x10~2 6.3796 x10~2

1/100 4.1630 x10~2 0.6158 4.1630 x10~2 0.6158
1/200 2.6669 x 102 0.6424 2.6669 x10~2 0.6424
1/400 1.7398 <102 0.6162 1.7398 x10~2 0.6162
1/800 1.1522 x10~2 0.5945 1.1522 x10~2 0.5945

Table 1: Riemann problem 24), @3): L'-errors between exact and calculated solutions at ¢ = .5

Now we want to have an experiment where the DFLU flux differs from the Godunov flux. Therefore
we now consider the Riemann problem with initial data

[ 23 if z<.5 [ 5 if z<.5,
5(”7’0){ 32 if x>.5, C(x’m{ 0 if x>.5. @7)

This initial data corresponds to case 2b of sections Bl and 2] with cg = 0, s* = 1.236. In this case, the
exact solution of the Riemann problem at a time ¢ is given by

s, = 2.3 if x<.b+4ost
s(z,t) =< 5=2.7536 if S+ost<ax<.b54oct, , c(z,0)= {
Sp=3.2 if z>0.t+.5

Dot T <5+ ot
0. if z>.5+ 0.,

where o, = fls.cn) — f(g’ c) = —.702,and 0, = M = 0.609.
S;, —3S sp+ar(cr)
Figs. [[0land [[1] show the comparison of the results obtained with the DFLU and Godunov fluxes with
the exact solution. The solution obtained with the DFLU and Godunov flux are very close even if they do
not coincide actually. Table [2| shows L; errors for s and ¢ and the convergence rate «.. Calculations are

done with A = (M = 4), that is the largest time step allowed by the CFL condition.

34 ‘ ‘ | l ‘
DFLU ——
GODUNOV-----
3.2+ EXACTeeee
/ 0.8 |
3 | 4
0.6
il DFLU —— |
GODUNOV------
I EXACT-weer |
2.6 B
24 |
| 02
22+ |
2 . . ‘ . | | |
0 0.5 1 15 2 0 0.5 1 15 2

Figure 10: Comparison with exact solution of Riemann problem 24), 27): s (left) and c (right) at t = .5
for h = 1/100, A = 1/4.
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The DFLU flux for systems of conservation laws 17

3.4 ‘ ‘ | l ‘
DFLU ——
32 r EXACT e
[ 0.8 |
3+t
0.6
= : DFLU—— ]
GODUNOW-----
| EXACT-eeonr |
2.6 b \
2.4+
0.2 ¢
2.2+ 7 \
2 . . ‘ i | | |
0 0.5 1 15 2 0 0.5 1 15 P

Figure 11: Comparison with exact solution of Riemann problem @24), @7): s (left) and c (right) at t = .5
for h = 1/800, A = 1/4.

h Godunov,||s — sp|| 1 « DFLU,||s — sp|| 11 a
1/50 0.10246 0.10373

1/100 5.7861 x10~2 0.8243 5.8731 x10~2 0.8206
1/200 3.2849 x1072 0.81674 3.3259 x10~2 0.8203
1/400 1.9152 x10~2 0.7785 1.9353 x10~2 0.7811
17300 11489 x10 2 0.7370 11571 x10°2 | 0.7420
h Godunov,||c — ¢p |1 « DFLU,||c — cp|| 1 «
1/50 4.8407 10~ 4.8486 x10~>

1/100 3.0161 x10~2 0.6825 3.0201 x10~2 0.6829
1/200 1.9307 x10~2 0.6435 1.9328x 1072 0.6439
1/400 1.2618 x10~2 0.6136 1.2628 x10~2 0.6140
1/800 8.4125x1073 0.5848 8.4173 x1073 0.5851

Table 2: Riemann problem @4), @7): L!-errors between exact and calculated solutions at t = .5.

5.2 Comparison of the DFLU, upstream mobility, FORCE and Lax-Friedrichs
fluxes

In the previous section, we have seen that Godunov and DFLU fluxes give schemes with very close per-
formances. In this section we compare the DFLU flux with the other fluxes that we mentioned in section ]
which are the upstream mobility, FORCE and Lax-Friedrichs fluxes. We take now

o )\1(576>
; A1(s,¢) + Aa(s, e

S
A =2 —(1-8)2 g1 =2g2=1,0=0
1(8,0) .5+C, Q(S,C) ( S) , g1 » 92 , P )
a(c) = .25¢c.

f(S,C) = ¥1 )[50+(91 792>)‘2(570>]7

(28)

In all following experiments the discretization is such that A¢ = 1/125 and h = 1/100.

Remark: Even for a total Darcy velocity ¢ # 0, the DFLU scheme works. For the DFLU scheme to work,

what one needs is f(0,¢) = ¢; forall ¢ € I and f(1,¢) = ¢ forall ¢ € I, for some constants ¢; and c.
We first consider a pure initial value problem. Initial condition (see top of Fig. [13) is given by

c(z,0) =

{ 9 if x < .5, (29

3 if z>.5
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18 Adimurthi, G. D. Veerappa Gowda, Jérome Jaffré

With this initial condition we have PV (sp . sp,cr,cr) = FC(sp,sr,cr,cr) with s = .9,sg =

.1,cr = 1. and cp = .3. Boundary data are such that

s(0,t) = .9, s(2,t) =.1, ¢(0,t)=.9, ¢(2,t)=.3 Vt>0. (30)

In FiglI2] a two dimensional plot in space and time for saturation and consentration is presented for the
DFLU flux and in Fig. [[3 comparison of the DFLU with other fluxes are given at time levels ¢ = 1 and
t = 1.5. They show that, as expected, the DFLU flux, which is the closest to a Godunov scheme, performs
better than the other schemes. The upstream mobility flux, which is an upwind scheme, performs better
than the two central difference schemes, the FORCE and Lax-Friedrichs schemes. Here, in Fig[T3and in
Fig [T@ reference(exact) solution is calculated from DFLU with finer meshes for the comparison of various

schemes
concentration

s 2 1
0.8 0.9
a7 15 0.8
0.6 0.7
05 Z 1 06
0.4 0.5
03 0s 0.4
02 0.3

g . g2

a 05 1 15 2

X

‘water saturation

Figure 12: s (left) and ¢ (right) 2D plot for data @28), 29%and (30).
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1 1
08 f ] 08 f
06 f ] 06 f
04 ] 04
02t ] 02t
O 1 1 1 O 1 1 1
0 05 1 15 2 0 05 1 15 2
1 T 1 T
DFLU—— DFLU——
LAX-FRIED -+ LAX-FRIED -+
FORCE .......... FORCE ..........
UPSTREAM— | UPSTREAM— |
EXACT--wr EXACT--wr
O 1 1 1 1
0 05 1 15 2 15 2
1 T T
DFLU—— DFLU——
LAX-FRIED -+ LAX-FRIED -+
i FORCE .......... FORCE ..........
08 § UPSTREAM— | UPSTREAM— |
EXACT--wr EXACT--wr
02t
O 1 1 1 O 1 1 1
0 05 1 15 2 0 05 1 15 2

Figure 13: s (left) and c (right) calculated at t=0., t=1. and t=1.5 for data 28)), (29) and (30).

To confirm these first observations we consider now a boundary value problem. We just changed
the boundary functions, so instead of boundary conditions (29) we consider now a problem with closed
boundaries, that is fluxes are zero at the boundary:

f=0at x=0andx =2 forall ¢t > 0. (€1))
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They show that, as expected, the DFLU scheme, which is the closest to a Godunov scheme, performs
better than the upstream mobility, the FORCE or the Lax-Friedrichs schemes.

The purpose of the last experiment whose results are shown in Fig. [16]is to show the effect of polymer
flooding. In this experiment we remove polymer flooding and take ¢ = 0 at all time. By comparing with the
solution shown in Fig. [[3]bottom left we observe that as expected the saturation front is moving faster since
there is no retardation due to the increase of viscosity of the wetting fluid caused by the polymer injection.
We also observe that the structure of the solution is less complex. In the absence of concentration FORCE
scheme is closer to Upstream Mobility in that it has less diffusion, compare figures Fig[T6 and Fig[I3 In
the presence of concentration, it is diffusive particularly more at the points where the concentration c is

discontinuous.
‘concantration
i 2 1
0.9 0.9
0.8 15 oa
07
a7

0.6 _
05 - 0.6
0.4 0.5
0.4 * ik
0.z
s .' 03

0 ' 02

0 0.5 1 1.5 2

x

me t

Figure 14: s (left) and c (right) 2D plot for data 28), (29) and (G1).
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T 1 T
DFLU—— DFLU——
LAX-FRIED -+ LAX-FRIED -+
FORCE .......... FORCE ..........
UPSTREAM— UPSTREAM— |
EXACT- EXACT-
A
O 1 1 1 1
0 05 1 15 2 15 2
1 T T
DFLU—— DFLU——
LAX-FRIED -+ LAX-FRIED -+
FORCE .......... FORCE ..........
08| UPSTREAM— UPSTREAM— |
EXACT- EXACT-
O 1 1 1 1
0 05 1 15 2 15 2
1 T o T
DFLU—— § DFLU——
LAX-FRIED -+ LAX-FRIED -+
FORCE .......... FORCE ..........
08| UPSTREAM— UPSTREAM— |
EXACT- EXACT-
06|
04 N | a4t
02| \ 1 02}
O ) 1 1 1 0 1 1 1
0 05 1 15 2 0 05 1 15 2

Figure 15: s (left) and ¢ (right) calculated at t=1., t=2. and t=3. for data (28)), (29) and (GI).
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DFLU—— DFLU—— i
" LAX-FRIED -++--- LAX-FRIED-++--- ¥
E FORCE .......... FORCE .......... 2
08 B UPSTREAM— 08| UPSTREAM—
EXACT--+- EXACT -
06 06 f
;
04 04 ; i
02 02
0 I I I 0 o I I I
0 05 1 15 2 0 05 1 15 2

Figure 16: s calculated at t=1. and t=3. for same data as in Fig. [[3]but without polymer injection.

6 Polymer flood model with flux function discontinuous in the space
variable

In this section, we extend the previous results to the case where the polymer flooding model has a flux
function discontinuous in the space variable:

st+ f(s,c,x)e = 0
(sc+a(e)t + (ef(s,c,x))s 0

where x — f(s, ¢, x) is discontinuous. For simplicity we assume that f has a single discontinuity at
xr = 0..e.,

(32)

f(svcaw) = H(w)fl(sac) + (1 - H(J:))f,.(s,c)

where H is a Heaviside function and f; and f, as in section 1, satisfies the following conditions, forp = [, r
@) fp(s,c) >0, fp(0,¢) = fp(l,¢) =0forallc € I.
(ii) The function s — f,(s, ¢) has exactly one global maximum in I with 6,, =argmax(f,).
(i) %2 (s,c) <0V se(0,1)andforallce I

Equations of type (32)) arise while dealing with polymer flooding of oil reservoirs which are heteroge-
neous [11]].

Remark: Since f is discontinuous at = = 0, then the Rankine-Hugoniot condition for system (32) gives

fl(S_,C_) = f,.(s+,c+)

cfils™,c7) = T f(sT,ch)
where (s7,¢7) and (sT, ¢T) denotes the left and right values of (s, ¢) across the line z = 0. This implies
¢ =c" (33)
so c cannot have a discontinuity across the line z = 0.
The solution to the Riemann problem corresponding to (32) is given in the Appendix. We now present

a numerical experiment to compare the DFLU, the upstream mobility, the FORCE and the Lax-Friedrichs
fluxes in the case where the flux function f is discontinuous in space:

f(svcaw) = H(w)fl(sac) + (1 - H(J:))f,.(s,c)
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23

fl(s7 CL)

fr(s7 CL)

Figure 17: Flux functions f;(s,cr), and f,.(s,cr) .

where H is the Heaviside function and f; and f, are given by

)\1(576)
(s,c) = + — g2)Aa(s, c)],
f (S C) )\1(8,0)(4' )\)2(870) [50 (gl 92) 2( )]
p(s; ¢ (34)
B = + - s, C
fi(s;e) 1.0 1 (5.0 [+ (91— g2)p2(s, 0)]
a(c) = .25¢
where )
10
Ai(s, c) = 5—; Aa(s,¢) = 20(1 — )2,
(5.0 = 20 s = 5(1— 52 g1=2.g0 =1 and 9 =0
H1(s,C _-5_’_0)#2 ) — y 91 = 4,92 = Y=
(see Fig. [I7), with the initial condition
9 if <0, 9 it x<O,
S(LO){ 1 if x>0 0 C(x’o){ 3 if >0
Following [4] the DFLU flux at the interface is given by
F(s™,,c"y,s7,cl) = min{fi(min{s™,,0",},c",), fr(max{s}, 07}, ct)}, (35)

where 0", = argmax f;(-,¢") and 07 = argmax f,.(-, c]).

Here we considered the case where the flux functions f;(s,cr) and f,(s,cr) intersect at a point «
where % < 0 and W > 0. At 01, and 0,1, fi(s,cr) and f,.(s,cr) attains their respective
maxima. Let 67 be a point such that f;(0;r,cr) = f(0];,cr). For the above fi(s,cr) and f,(s,cr),
a = 464,s, = 9,sp = 1,¢c, = 9,cg = 3,0, = .342 and 0;;, = .57 (see Fig[[7). This is an
undercompressive intersection as in [4]. As the Lax-Friedrichs and the FORCE schemes are obtained
from a linear parabolic regularisation, solutions obtained from them differ from solutions obtained from
the upstream mobility and the DFLU schemes for an undercompressive initial data(see Fig[T8). The Lax-
Friedrichs and the FORCE schemes converge to the weak solution with a (A, B) entropy condition [3] at
the interface with A = B = « and the DFLU scheme and the upstream mobility flux schemes converge to
the weak solution with a (A, B) entropy condition at the interface A = 6;7,, B = 6;;. In these numerical
experiments here, the discretization is such that A¢ = 1/600 and h = 1/50.
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DFLU——
1 0.8
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1 0.4
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1 : : : : ‘ ‘ ‘ )
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Figure 18: s (left) and c (right) at t=1 and t=2

7 Conclusion

The DFLU flux defined in [4] for scalar conservation laws was used to construct a new scheme for a class
of system of conservation laws such as systems modeling polymer flooding in oil reservoir engineering.
The resulting DFLU flux is based on Godunov type flux for single conservation laws but with discontin-
uous coefficients. It is easy to implement as it is not using detailed information of eigenstructure of the
full system. It is very close to the flux given by an exact Riemann solver and the corresponding finite
volume scheme compares favorably to other schemes using the uptream mobility, the Lax-Friedrichs and
the FORCE fluxes. The extension to the case with a change of rock type is straightforward since the DFLU
flux was built to solve this case. It will work even in cases where the upstream mobility fails [26]. Here we
assumed, flux f = f(s, ¢) is not changing the sign which is equivalent to saying that second eigen value
in (@) is not allowed to change the sign. The sign changing case and the extension to system of polymer
flooding in multidimensional case will be taken up in a forth coming paper. In a separate paper [3]] we show
how to use the DFLU flux to solve Hamilton-Jacobi equations with a discontinuous Hamiltonian.

Appendix. Riemann problem for a polymer flooding model with a discontinuous flux: In this
Appendix we briefly describe the construction of the solution to a Riemann problem associated to the
system (32) with the initial condition

s if 2 <O, e if 2 <0,
S(z’o){sR if 2>0 ° C(x’m{c}g it >0 - (A-D)

When ¢, > cg, the flux functions f; and f, satisfy f;(s,cr) < fi(s,cr) and f,.(s,cr) < f-(s,cr) for
all sin (0,1). Let 0,1, 0;r, 0,1 and 0, be the points where fi(s,cr), fi(s,cr), fr(s,cr) and f,(s,cR)
attain their maxima respectively(see Fig[T9). As there is no discontinuity in ¢ = c¢(z,t) across the line
x = 0 (see equation (33)) and as o, the speed corresponding to to the c—shock, is strictly positive, in
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Riemann problems we have
c(0,t) =c Vit >0.

Here we restrict ourselves to the case c;, > cgr. The case c;, < cg can be treated similarly. To study the
Riemann problem, we split the problem ([32)) into two problems, one for a scalar conservation law with a
discontinuous flux and another for polymer flooding.

Problem-I: (
s+ fils,er)e = 0 if >0
st fr(sier)e = 0 if 2 <0 (A-2)
The Riemann problem for this equation can be solved as in [2, 4].
Problem II: (
St +fr S,C)Z = 0
A-3
(sc+a(e) + (cfr(s,0)e = 0 (A-3)

The Riemann problem for this system can be solved as in section 3.

We assume without loss of generality that f;(6;r,c) < fr(6r1,cr). Let 8], be a point such that
fr (5*7 CL)
s*+ar, (CR)
defined as in section 3. Now draw a line through the points (—ar(cr),0) and (s*, f-(s*,cr)) which

intersects the curve f,(s,cr) at a point A > s* (see Fig. [[9).

fi(6in,cr) = fr(6f;,cr) and let s* € (0, 1) be a point where %f}(s*,q) = , with a,(c)

75[,(613)

Figure 19: Flux functions f,(s, cr.), fr(s,cr), fi(s,cr) and fi(s, cg) with ¢f, > cg.
e Casel: s;, > 0,

Draw a line through the points (—ar(cr),0) and (min(s*, 0;; ), f-(min(s*, 0]} ), cr)) which inter-
sects the curve f,.(s, cg) ata point B > s*. For example if 6], > s* then B = A.

e Case la: sp < B

Step-1: Let s1(z, t) be the solution of equation (A=2) with initial condition

_ s, if x <0,
“Lm_{eﬁifx>o

Step-2: Let (s2(x, ), ca(x, t)) be the solution of equations (A=3) with initial condition

o if 2 <0, e if 2 <0,
“Lm_{sRifx>0’ dﬂm_{cRifx>0
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Then the solution to the Riemann problem (32)), (A=I) is given by

 (s1(z,t),cr) if z <0,
(s(x,t),c(x,t)) = { (52(33,15)705(3571&)) if >0

Case 1b: sp > B
Draw a line through the points (—ar,(cg),0) and (sg, , f+(Sr, cr)) which intersects the curve f,.(s, cr,)
at a point S.

Step-1: Let sy (x, t) be the solution of equation (A=2)) with initial condition

| osp i 2 <0,
S(x’o)_{g it 2>0

Step-2: Let (s2(x, ), ca(z, t)) be the solution of equations (A=3) with initial condition

. S if x <0, . c, if <0,
S(x’o)_{sR it 2>0 C(””’O)_{CR if 2>0

Then the solution to the Riemann problem (32)), (A1) is given by

(s(x,t),c(x,t)) = { (:ﬁEx,t),cL) ?f x <0,

x,t),co(x,t)) if x>0

Case 2: s, < 0.

Let s5 be a point such that f,.(s},c) = fi(sp.cr) ) and 2 5s fr(s,cr) at s = s5 > 0. Draw a line
through the points (—ar,(cg),0) and (min(s*, s7 ), f-(min(s*, s7 ), cz,)) which intersects the curve
fr(s,cr) at a point B.

Case2a: sp < B

Step-1: Let s1(z, t) be the solution of equation (A=2) with initial condition

| sy if 2 <O,
s(z,O){sz if >0

Step-2: Let (sa(x,t), c2(x, 1)) be the solution of equations (A=3) with initial condition

sy if 2 <O, e if 2<0,
S(z’o){sR if x>0 - C(x’o){cR if x>0

Then the solution to the Riemann problem (32), (A=) is given by

(s(z, ), ez, 1)) = { (Slgw,t),q) i r <0,

x,t),co(x,t)) if >0

Case2b s > B.

Draw a line through the points (—ar,(cg),0) and (sg, f-(sg, cr)) which intersects the curve f,.(s, cr,)
at a point s.

Step-1: Let s (x, t) be the solution of equation (A-2) with initial condition

| osp i x <0,
S(x’o)_{g it x>0
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Step-2: Let (sa(x, t), c2(x, 1)) be the solution of equations (A=3) with initial condition

. S if x <0, . c, if <0,
5(5""0)_{53 if 2>0 C(x’o)_{cR if 2>0

Then the solution to the Riemann problem (32)), (A=I) is given by

(x,t),c1) it =<0,
so(z,t), co(x,t)) if x>0

(s(z,t),c(x,t)) = { E
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