R. Adams, Sobolev Spaces, volume 65 of Pure and Applied Mathematics, 1975.

C. Alboin, J. Jaffré, J. Roberts, and C. Serres, Domain decomposition for flow in porous media with fractures, Proceedings of the 11th International Conference on Domain Decomposition Methods in Greenwich, 1999.

G. Allaire, Homogenization of the stokes flow in a connected porous medium, Asymptotic Analysis, vol.2, issue.3, pp.203-222, 1989.

G. Allaire, One-Phase Newtonian Flow, Homogenization and Porous Media, pp.45-69, 1997.
DOI : 10.1007/978-1-4612-1920-0_3

Y. Amirat, ??coulements en milieu poreux n'ob??issant pas ?? la loi de Darcy, ESAIM: Mathematical Modelling and Numerical Analysis, vol.25, issue.3, pp.273-306, 1991.
DOI : 10.1051/m2an/1991250302731

P. Angot, F. Boyer, and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.2, pp.239-275, 2009.
DOI : 10.1051/m2an/2008052

URL : https://hal.archives-ouvertes.fr/hal-00127023

M. Balhoff, A. Mikelic, and M. Wheeler, Polynomial Filtration Laws for Low Reynolds Number Flows Through Porous Media, Transport in Porous Media, 2009.
DOI : 10.1007/s11242-009-9388-z

URL : https://hal.archives-ouvertes.fr/hal-00937149

J. Bear, Dynamics of Fluids in Porous Media, Soil Science, vol.120, issue.2, 1972.
DOI : 10.1097/00010694-197508000-00022

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO, série Analyse Numérique R2, pp.129-151, 1974.

P. Fabrie, Regularity of the solution of Darcy-Forchheimer's equation, Nonlinear Analysis: Theory, Methods & Applications, vol.13, issue.9, pp.1025-1049, 1989.
DOI : 10.1016/0362-546X(89)90093-X

I. Faille, E. Flauraud, F. Nataf, S. Pegaz-fiornet, F. Schneider et al., A new fault model in geological basin modelling, application to finite volume scheme and domain decomposition methods, Finie Volumes for Complex Applications III, pp.543-550, 2002.

P. Forchheimer, Wasserbewegung durch Boden, Z. Ver. Deutsch. Ing, vol.45, pp.1782-1788, 1901.

N. Frih, J. Roberts, and A. Saada, Un modèle darcy-frochheimer pour un écoulement dans un milieu poreux fracturé, pp.129-143, 2006.

N. Frih, J. Roberts, and A. Saada, Modeling fractures as interfaces: a model for Forchheimer fractures, Computational Geosciences, vol.25, issue.7, pp.91-104, 2008.
DOI : 10.1007/s10596-007-9062-x

URL : https://hal.archives-ouvertes.fr/inria-00207993

P. Knabner and G. Summ, Solvability of the mixed formulation for darcy-forchheimer flow in porous media

V. Martin, J. Jaffré, and J. E. Roberts, Modeling Fractures and Barriers as Interfaces for Flow in Porous Media, SIAM Journal on Scientific Computing, vol.26, issue.5, pp.1667-1691, 2005.
DOI : 10.1137/S1064827503429363

URL : https://hal.archives-ouvertes.fr/inria-00071735

R. Showalter and F. Morales, The narrow fracture approximation by channeled flow, J. Math. Anal. Appl, vol.365, issue.1, pp.320-331, 2010.

G. Summ, Lösbarkeit un Diskretisierung der gemischten Formulierung für Darcy-Frochheimer- Fluss in porösen Medien, 2001.

L. Tartar, Convergence of the homogenization process, Nonhomogeneous Media and Vibration Theory, 1980.

E. Zeidler, Nonlinear function anaysis and its applications -Nonlinear monotone operators, 1990.