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Abstract—We design, develop, and evaluate an atomic- and
lock-free GPU implementation of the push-relabel algorithm
in the context of finding maximum cardinality matchings in
bipartite graphs. The problem has applications on computer
science, scientific computing, bioinformatics, and other areas.
Although the GPU parallelization of the push-relabel technique
has been investigated in the context of flow algorithms, to the
best of our knowledge, ours is the first study which focuses on
the maximum cardinality matching. We compare the proposed
algorithms with serial, multicore, and manycore bipartite graph
matching implementations from the literature on a large set of
real-life problems. Our experiments show that the proposed push-
relabel-based GPU algorithm is faster than the existing parallel
and sequential implementations.

Index Terms—Push-relabel, GPU, maximum cardinality
matchings, bipartite graphs

I. INTRODUCTION

Bipartite graph matching is a classical problem in graph
theory and combinatorial optimization. Given a bipartite graph,
we want to find a set of vertex disjoint edges with the
maximum cardinality. The problem is of interest in a variety
of fields such as bioinformatics [?], scheduling [?, Section
3.8], and image processing [?]. Maximum cardinality bipartite
matching is also employed routinely in sparse linear solvers
to see if the associated coefficient matrix is reducible; if
so, substantial savings in computational requirements can be
achieved [?, Chapter 6].

Different approaches for computing maximum matchings
in bipartite graphs exist in the literature. Duff et al. [?]
discuss the design, analysis and sequential implementation
of a class of algorithms which are based on augmenting
paths. Push-relabel-based algorithms [?] form the second class.
Their design and careful sequential implementation have been
recently investigated. A rigorous set of experiments showed
that the push-relabel approach is very promising and performs
as good as the augmenting-path-based approach [?]. The
implementation of the third, more recent, approach based on
pseudoflow algorithms [?], have been described by Chandran
and Hochbaum [?].

Algorithms dealing with graph problems are usually mem-
ory bounded, hence it is relatively hard to obtain a good

parallel performance. Moreover, because of the computation
irregularities, it is difficult to exploit concurrency. The match-
ing problem is no exception. There have been recent studies
that aim to improve the performance of matching algorithms
on multicore and manycore architectures. For example, Vas-
concelos and Rosenhahn [?] propose a GPU implementa-
tion of an algorithm for the maximum weighted matching
problem on bipartite graphs. Fagginger Auer and Bisseling
[?] study an implementation of a greedy graph matching on
GPU. Çatalyürek et al. [?] propose different greedy graph
matching algorithms for multicore architectures. Azad et al. [?]
introduce several multicore implementations of the maximum
cardinality matching algorithms on bipartite graphs. In a recent
study [?], we investigated the performance of augmenting-
path-based approach on GPU architectures.

In this work, we investigate the GPU parallelization of the
push-relabel-based maximum cardinality bipartite matching
algorithm on GPUs. We develop an atomic- and lock-free
implementation to obtain a good performance. Our approach
employs the global and gap relabeling heuristics which are
also implemented in the GPU. We thoroughly evaluate the
performance of the algorithm with a rigorous set of experi-
ments on many bipartite graphs from different applications.
The experimental results conclude that the proposed GPU-
based implementation is faster than the existing sequential,
multicore, and manycore approaches.

The rest of this paper is organized as follows. The back-
ground material, some related work, and a summary of con-
tributions are presented in Section ??. Section ?? describes
the proposed GPU algorithm and the techniques we develop to
make it faster. The comparison of the proposed algorithm with
its existing sequential, multicore, and manycore counterparts
is given in Section ??. Section ?? concludes the paper.

II. BACKGROUND AND RELATED WORK

In a bipartite graph G = (V1 ∪ V2, E) with two disjoint
vertex sets V1 and V2, each edge in E has one endpoint in V1
and one in V2. Let m and n be the number of vertices in V1 and
V2 respectively. And let Γ(v) = {u : {u, v} ∈ E} represent
the neighborhood of a vertex v ∈ V1∪V2. To better distinguish



the vertices in V1 and V2 in the text, we will employ the matrix
notation and use VR and VC for V1 and V2, respectively, and
refer the vertices in VR as the set of rows and the vertices in
VC as the set of columns.

A subset of the edges, M, is called a matching if no two
edges in M share an endpoint. If v ∈ V is an endpoint in M
we say v is matched. Otherwise, it is unmatched. A matching
M is called maximal, if there exists no other matching M′

such that M′ ⊃ M. A maximal matching M is called
maximum if |M| ≥ |M′| for all possible matchingsM′ where
|M| is the cardinality of M. If |M| = |VR| = |VC |, M is
called perfect matching. The deficiency of a matching M is
the difference between the cardinality of a maximum matching
and |M|.

A. Maximum cardinality bipartite matching algorithms

A path in G isM-alternating if its edges alternate between
those in matching M and those not in M. An M-alternating
path P is called M-augmenting if the start and end vertices
of P are both unmatched. Augmenting path-based algorithms
are based on the following theorem.

Theorem 1 ([?]): Let G be a graph (bipartite or not) and let
M be a matching in G. Then M is of maximum cardinality
if and only if there is no M-augmenting path in G.

Given a possibly empty matching M, augmenting-path-
based algorithms searches for an M-augmenting path P . If
none exists then the matchingM is maximum by Theorem ??.
Otherwise, P is used to increase the cardinality of M by set-
tingM =M⊕E(P) where E(P) is the edge set of a path P ,
and M⊕E(P) = (M∪E(P))\(M∩E(P)) is the symmetric
difference. Since both the first and the last edge of P were
unmatched in M, we have |M⊕E(P)| = |M|+ 1. The way
in which augmenting paths are searched constitutes the main
difference between the algorithms based on augmenting paths,
both in theory and in practice. These algorithms mainly use
graph traversal techniques such as the depth-first search (DFS)
and breadth-first search (BFS). We refer the reader to [?] for
a recent survey on these algorithms.

B. The push-relabel algorithm for bipartite matching

Push-relabel algorithms search and augment simultaneously.
They do not explicitly construct augmenting paths but they
follow them with a clever heuristic. That is, they repeatedly
augment a prefix of a hypothetical augmenting path P2 =
(v, u, w) in G where w ∈ VC is matched to u ∈ VR,
and v ∈ VC is an unmatched column. Augmentations are
performed by unmatching w and matching v to u. If w has
an unmatched neighbor, the suffix of an augmenting path
has been found, allowing the augmentation of |M|. These
hypothetical augmentation operations are performed until no
further suffixes can be found. The algorithms are guided by
assigning a label to every vertex which provides a lower bound
on the distance to the nearest unmatched row.

Goldberg and Tarjan’s original push-relabel algorithm was
designed for the maximum flow problem [?]. The bipartite
matching problem is a special case of maximum flow. Hence,

the algorithm can be simplified to be adapted to the bipartite
matching problem. In fact, it is known to be one of the fastest
algorithms for bipartite matching [?]. In the following, we
portray this algorithm in a ready-to-implement pseudocode
form as shown in Algorithm ??. This algorithm will be referred
to as PR throughout the paper.

Algorithm 1 PR: Push-Relabel based Bipartite Matching
Input: A bipartite graph G = (VR ∪VC , E) and a (possibly empty)

matching M
Output: A maximum cardinality matching M?

1: Set ψ(u) = 0 for all u ∈ VR

2: Set ψ(v) = 1 for all v ∈ VC

3: Set all v ∈ VC unmatched by M to active
4: while an active column v exists do
5: Find a row u ∈ Γ(v) of minimum ψ(u)
6: if ψ(u) < m+ n then
7: if {u,w} ∈ M then
8: M←M\ {u,w}/*Single push*/
9: Set w active

10: M←M∪ {u, v} /*Double push*/
11: ψ(v)← ψ(u) + 1 /*Relabels v*/
12: ψ(u)← ψ(u) + 2 /*Relabels u*/
13: Set v inactive
14: return M? =M

Let ψ(v) denote a lower bound on the length of the shortest
alternating-path from the vertex v to an unmatched row. Hence,
ψ can be used to find the direction of the closest unmatched
row for each vertex. If v is an unmatched column, this path is
also an augmenting path. During the initialization of PR, the
algorithm sets ψ(v) = 1 for all v ∈ VC and ψ(v) = 0 for all
v ∈ VR. Throughout the algorithm, the unmatched columns
are called active.

As long as an active column v exists, the algorithm performs
the push operation. Γ(v) is searched for a row u ∈ Γ(v) with
the minimum ψ(u). Note that ψ(v) − 1 is the infimum for
the value of ψ(u). This property, ψ(u) ≥ ψ(v) − 1 for u
with the minimum ψ in the neighborhood of v, holds after
the initialization (ψ(u) = 0 and ψ(v) = 1 for all u ∈ VR
and v ∈ VC) and is maintained throughout the algorithm as
the neighborhood invariant. Hence, when an edge {v, u} with
ψ(v) = ψ(u) + 1 is found the search stops.

Let u be the row with minimum ψ in Γ(v). If u is
unmatched, it can be matched to v, and the cardinality of M
can be increased by one (single push). Note that an unmatched
row vertex u has ψ(u) = 0, and it will always have the
minimum ψ value. If u is matched to a column w, a double
push operation is performed which removes {w, u} from M,
adds {v, u} to M, and makes w active. Hence, once a row is
matched, it never becomes unmatched again.

After the push operation, PR relabels v with ψ(v)← ψ(u)+
1. By definition, ψ(u) is a lower bound on the alternating-
path distance from u to a closest unmatched row. Since the
path between v and its closest unmatched row must contain
some u′ ∈ Γ(v), and ψ(u) has the minimum ψ among all the
neighbors of v, ψ(u) + 1 is a lower bound on the length of a
path between v and its closest unmatched row.



After relabeling v, PR relabels u by ψ(u) ← ψ(u) + 2.
For a single push, ψ(u) becomes 2. For a double push, any
alternating path from u to a closest unmatched row now
contains v. Such a path always uses the edge (u, v), and hence,
ψ(u) must be at least ψ(v) + 1 which is actually ψ(u) + 2
due to relabeling of v. Clearly, this new value maintains the
neighborhood invariant ψ(u) ≥ ψ(v)− 1.

The maximum length of any augmenting path in G is at
most min(2m, 2n) − 1. Since ψ is a lower bound on the
length of a path to an unmatched row, when the minimum
ψ(u) among all u ∈ Γ(v) becomes m+n, the vertex v cannot
be on an augmenting path. In this case, no push operations are
realized and v is considered unmatchable, i.e., inactive. The
push and relabel operations are repeated until there is no active
column left, either because all vertices have been matched or
marked as inactive. Using Theorem ??, it is easy to show that
in this caseM is a maximum matching. The time complexity
of the algorithm is O((n+m)τ) [?].

A push-relabel implementation does not need to store a
ψ(u) for a row u since the value is 0 when u is unmatched
and ψ(w) + 1 when (u, v) ∈M. However, such an approach
increases the amount of jumps and arithmetic operations. Thus,
we store a full ψ array for both the rows and the columns.

C. Global relabeling

As various studies showed, PR’s performance can be im-
proved by periodically setting all labels to exact distances. This
heuristic is called global relabeling and realized via a BFS
starting from all unmatched rows as shown in Algorithm ??.
During the traversal, the label of each vertex v is set to
the minimum distance from v to any unmatched row. And
each vertex w not visited by the BFS is assigned a label
ψ(w) = m+n, hence it is removed from further consideration.

Algorithm 2 GR: Global Relabeling
Input: A bipartite graph G = (VR ∪ VC , E) and a matching M in

G
Output: An accurate distance labeling ψ w.r.t. M

1: Q← u for all unmatched u ∈ VR

2: Set ψ(v) = m+ n for all v ∈ VC

3: Set ψ(u) = m+ n for all matched u ∈ VR

4: while Q not empty do
5: u← POP u from Q
6: for all v ∈ Γ(u) do
7: if ψ(v) = m+ n then
8: ψ(v)← ψ(u) + 1
9: if {v, w} ∈ M then

10: ψ(w)← ψ(v) + 1
11: PUSH w to Q
12: return ψ

In practice, a counter is incremented every time the value
of ψ(v) is changed in Line ?? of Algorithm ?? in order to
keep track of the number of pushes. The usual approach is to
call GR when this counter reaches a predetermined threshold.
A threshold of n was suggested as the standard frequency
of global relabels [?]. The performance of the push-relabel
approach and its several sequential implementations for the

bipartite cardinality matching problem have been well studied
and various improvements have been proposed [?], [?], [?]. For
example, it has been shown that when the active columns are
visited with a FIFO order, the push-relabel approach obtains
a better performance. The most recent implementation and
a comparison with the augmenting-path-based algorithms are
given by Kaya et al. [?]. The authors showed that PR is
slightly better than the augmenting-path-based algorithms. In
our experiments, we use their implementation for comparison
purposes.

D. Parallel algorithms for bipartite cardinality matchings

Efficient multicore counterparts of a number of augmenting-
path based algorithms have been proposed in a recent
study [?]. The parallelization of the multicore algorithms is
achieved by using atomic operations at BFS and/or DFS steps
of the algorithm. Among these algorithms, P-DBFS, which
employs vertex disjoint BFSs to find the augmenting paths,
obtained the best performance in our experiments. Its relative
performance was also good in the original experiments [?].
Thus, in this paper, we compare the performance of our GPU-
based push relabel algorithm with P-DBFS.

Although using atomic operations might not harm the
performance on a multicore machine, they should be avoided
in a GPU implementation because of very large number of
concurrent thread executions. In recent work, we designed
and developed atomic-free GPU implementations, G-HK and
G-HKDW [?], corresponding to two augmenting-path-based
algorithms, HK [?] and HKDW [?]. HK has the best known
worst-case running time complexity of O(τ

√
n+m) for a

bipartite graph with τ edges. HKDW is a variant of HK and
incorporates techniques to improve the practical running time
while having the same worst-case time complexity. Both of
these algorithms use BFS to locate the shortest augmenting
paths from unmatched columns, and then use DFS-based
searches restricted to a certain part of the input graph to
augment along a maximal set of disjoint augmenting paths.
HKDW performs another set of DFS-based searches to aug-
ment using the remaining unmatched rows. In this paper, we
compare the performance of the proposed algorithm with that
of G-HKDW which performed better than G-HK [?].

GPU-based push-relabel implementations for the maximum
flow problem exist in the literature [?], [?], [?]. Vineet and
Narayanan used the push-relabel approach to find graph cuts
in GPUs [?]. Their implementation does not have the global
relabeling heuristic which is later added by Huseein et al. [?].
However, the implementation does not have a relabeling
operation except the global one. He and Hong proposed a
GPU-based implementation of the push-relabel approach with
global relabeling on hybrid CPU-GPU architectures for the
maximum flow problem [?]. To integrate both push and relabel
operations into a CUDA kernel, they used the atomic fetch-
and-add function supported by CUDA-based GPUs.

To the best of our knowledge, ours is the first GPU
implementation of the push-relabel approach for the maximum
bipartite cardinality matching problem. The algorithm does not



need locks or atomic instructions to perform push-relabel op-
erations concurrently. Instead, the algorithm allows matching
inconsistencies throughout its execution, which are resolved
at the end. Furthermore, it is implemented fully on the GPU
with CUDA including a global relabeling phase.

III. PUSH-RELABEL-BASED BIPARTITE CARDINALITY
MATCHING ON GPUS

A high-level structure of our GPU-based algorithm is given
in Algorithm ??. The main while loop at line ?? iterates until
all active columns are consumed by the GPU kernel executions
at line ?? where in a single execution of G-PR-KRNL, an
active column is processed by a single GPU thread. In our
implementation, we use an array ψ(·) to store the labels of
vertices in VR ∪ VC and another array µ(·) to store their
matching vertices. During the course of the algorithm, if two
vertices u ∈ VR and v ∈ VC are matched µ(u) = v and
µ(v) = u. If a row u ∈ VR is unmatched, µ(u) = −1.
If a column v ∈ VC is inactive, either µ(v) = −2, i.e.,
v cannot reach to an unmatched row with an augmenting
path, or µ(v) = u and µ(u) = v, i.e., v is matched with
a u ∈ VR. The algorithm maintains these as its matching
invariants throughout the execution. Note that a column vertex
v can have µ(v) > −1 even though it is unmatched.

Algorithm 3 G-PR: GPU-based Push-Relabel Matching
Input: G = (VR ∪ VC , E), µ

1: loop← 0
2: actExists← true
3: iterGR← 0
4: while actExists do
5: if loop = iterGR then
6: 〈maxLevel, ψ〉 ← G-GR(G,µ)
7: iterGR← GETITERGR(maxLevel, loop, iterGR)
8: actExists← false
9: 〈µ, ψ, actExists〉 ← G-PR-KRNL(G,µ, ψ)

10: loop← loop+ 1
11: µ← FIXMATCHING(µ)
12: return µ

A. Global relabel operation on GPUs

The proposed algorithm G-PR periodically uses a global-
relabeling function to set exact ψ values. The pseudocode
of this function is given in Algorithm ??. The function first
calls a GPU kernel INITRELABEL. For each unmatched row
u, the initialization kernel sets ψ(u) ← 0. For all other
vertices, ψ values are set to m + n. After the initialization,
a global relabeling is performed by multiple G-GR-KRNL
calls where each call processes a level of a BFS starting
from all unmatched rows. The details of the kernel is given in
Algorithm ??. The row vertices are distributed to the threads
and if a row u has ψ(u) = cLevel all of the unvisited columns
v ∈ Γ(u) are visited. For each such column v, ψ(v) is set to
cLevel+1 and its matched row’s ψ value is set to cLevel+2.
Although the same ψ(·) value can be set by multiple threads,
since all threads use the same value for the same location there
is no concurrency issues for G-GR-KRNL.

Algorithm 4 G-GR: GPU-based Global Relabeling
Input: G = (VR ∪ VC , E), µ

1: ψ ← INITRELABEL(µ)
2: uAdded← true
3: cLevel← 0
4: while uAdded do
5: uAdded← false
6: 〈ψ, uAdded〉 ← G-GR-KRNL (G,ψ, µ, cLevel)
7: cLevel← cLevel + 2
8: maxLevel← cLevel

Algorithm 5 G-GR-KRNL

Input: G = (VR ∪ VC , E), ψ, µ, cLevel
1: for all row vertex u ∈ VR in parallel do
2: if ψ(u) = cLevel then
3: for all v ∈ Γ(u) do
4: if ψ(v) = m+ n then
5: ψ(v)← cLevel + 1
6: if µ(v) > −1 and µ(µ(v)) = v then
7: ψ(µ(v))← cLevel + 2
8: uAdded← true

Following the practice, in our experiments, we used an
initial matching M obtained by a standard greedy matching
heuristic [?]. When the initial matching is empty, we start with
ψ(u) = 0 for each u ∈ VR, and ψ(v) = 1 for each v ∈ VC .
Even with a nonempty matching, the algorithm runs correctly
after this initialization. However, our preliminary experiments
show that applying a global relabeling at the beginning of
the main while loop of G-PR leads significant performance
improvements. Hence, we set iterGR to 0 (line ?? of Al-
gorithm ??) which stores the iteration number in which the
next global relabeling will be performed. Experiments in the
literature show that the performance of the algorithm changes
drastically with the strategy to set iterGR [?], [?]. In our
preliminary experiments, we also observed this sensitivity
with different implementations of GETITERGR (line ?? of
Algorithm ??). In practice, a global relabeling is performed
after every k× (n+m) pushes where the suggested k values
are between 1 and 2 [?], [?]. Unlike the sequential push-
relabel algorithms, it is very expensive to count the number
of pushes performed during kernel executions. Hence, for the
GPU-based implementation, we need a different strategy. We
initially experimented with fixed intervals and performed a
global relabeling after every k iterations of the main while
loop. We then developed an adaptive strategy where the next
global relabeling is done after k ×maxLevel loop iterations
and experimented with several k values. The design rationale
behind this strategy is based on the following theorem:

Theorem 2 ([?]): If M is a matching with a deficiency d
there exists a set of d vertex disjoint augmenting paths.

Let S be the set of paths in Theorem ??. Since the paths are
vertex disjoint, their total length can be used as a lower bound
for m+n. Since the BFS in a global relabeling uses alternating
paths and these paths stop at unmatched columns, a fraction
of the maxLevel is a reasonable estimate on the average path
length in S. Thus, following the sequential practice, using k×



maxLevel kernel executions with d active columns can be
promising. Our experiments show that the adaptive strategy is
superior to global relabeling with fixed intervals.

B. Push relabel operations on GPUs

After a global relabeling in Algorithm ??, the kernel G-PR-
KRNL processes the active columns and performs concurrent
push-relabel operations. The first implementation of this kernel
is given in Algorithm ??. As described in Section ??, there
are three cases while processing an active column v ∈ VC :
Let u ∈ VR be the row in Γ(u) with a minimum ψ value. If
ψ(u) < m+ n a single push matches v with u and consumes
it (lines ?? and ??). If µ(u) was previously matched with a
v′ ∈ VC a double push produces a new active column v′. Note
that we do not actually implement the double-push operation
and fix µ(v′) since it has never been solely used, i.e., we
always check µ(µ(v′)) while we want to know if the column
is matched or unmatched. If ψ(u) = m + n then v is set to
inactive and consumed (line ??).

Concurrent push-relabel operations in a single G-PR-KRNL
execution do not create a problem since when two active
columns v and v′ perform pushes simultaneously with a row
u, we have µ(v) = µ(v′) = u and µ(u) ∈ {v, v′}. Hence,
although one of the µ(v) and µ(v′) is wrong, the inconsistency
in the matching can be captured by the algorithm. A problem
might arise if there is an inconsistency in the neighborhood
and matching invariants of the algorithm. We claim that the
invariants are not violated neither. If both v and v′ select u
at the same time for the push operation, they will both store
the same ψ(u) as ψmin. If v completes the push operation
earlier than v′, first ψ(v) and ψ(u) will be updated for v.
Although the matching of v will be invalidated by v′, the
update of ψ(v) does not violate the neighborhood invariant as
ψmin = ψ(u) ≥ ψ(v)− 1. Therefore, although v has another
neighbor u′ with ψ(u′) = ψmin, both invariants will still be
valid. The double update of ψ(u) does not create a problem
either, as both of the threads set it to the same value. A ψ(u)
entry can be set more than once with different values within
a single execution of G-PR-KRNL. If this is the case, these
push operations can be considered as two consecutive pushes
in a sequential execution as they have different ψmin values
stored at the beginning of push operation.

The while loop of the main algorithm G-PR iterates and
continues to call the kernel G-PR-KRNL until all the active
columns are consumed. Once the maximum cardinality match-
ing is found, the algorithm terminates and the inconsisten-
cies in µ is fixed FIXMATCHING kernel which implements:
µ(v)← −1 for any v with µ(µ(v)) 6= v. These inconsis-
tencies do not prevent the algorithm obtaining a maximum
cardinality matching. When all GPU kernels are done, such
inconsistencies can only exist at the column entries of µ and
the row matching will be correct. In fact, if there exist a
perfect matching in G all the entries in µ are correct and
no fix operation is required.

Algorithm 6 G-PR-KRNL

Input: G = (VR ∪ VC , E), µ, ψ
1: actExists← false
2: for all column vertices v ∈ VC in parallel do
3: if µ(u) = −1 or µ(µ(v)) 6= v then
4: actExists← true
5: ψmin ← m+ n
6: u← −1
7: for all u′ ∈ Γ(v) do
8: if ψ(u′) < ψmin then
9: ψmin ← ψ(u′)

10: u← u′

11: if ψmin = ψ(v) −1 then
12: break
13: if ψmin < m+ n then
14: µ(u)← v
15: µ(v)← u
16: ψ(v)← ψmin + 1
17: ψ(u)← ψmin + 2
18: else
19: µ(v)← −2

C. Reducing the number of GPU threads

In the G-PR-KRNL kernel, the proposed parallel push-
relabel-based algorithm uses n GPU threads to traverse the
active column vertices. However, thanks to the initial matching
heuristic, the number of unmatched columns is much smaller
than n. Furthermore, we observed that most of the G-PR-
KRNL executions are performed only with a few number of
active columns, since it is harder to find augmenting paths
when they are longer. This is usually the case when the
deficiency gets smaller, which happens towards the end of
the execution. In order to reduce the number of threads, we
propose two main modifications on the algorithm.

1) Keeping the list of active columns: The first modification
is to keep a list of active columns and have the threads work
on those active columns (instead of all columns). Assume that
we have an array A. Let v = A(i) be an active column
and v′ ∈ VC be the column which becomes active once v
is consumed. Since there can be at most one such column, in
a sequential execution, setting A(i)← v′ is sufficient to keep
the id of the new active columns produced during the push-
relabel operations. When no new active column is produced
after a consumption, one can set the corresponding value to
−1. However, in a concurrent execution, some of the push-
relabel operations may need to be rolled back due to the
conflicts.

As explained above, we need to keep the id of each
consumed column to roll it back in case of conflicts. Hence, a
single array is not sufficient to support correct and concurrent
execution of push operations. In our implementation, we used
two arrays Ac and Ap to maintain such a list and support
concurrent operations on it at the same time. Initially, both
arrays contain the unmatched column indices. In the course
of the algorithm, the entries will contain either the ids of
the active columns or −1 which appear when an augmen-
tation (only a single push) takes place without producing new



active columns.

Algorithm 7 G-PR: GPU-based Push-Relabel Matching
Input: G = (VR ∪ VC , E), µ

1: loop← 0
2: actExists← true
3: shrink ← false
4: iterGR← 0
5: while actExists do
6: if loop = iterGR then
7: 〈maxLevel, ψ〉 ← G-GR(G,µ)
8: iterGR← GETITERGR(maxLevel, loop, iterGR)
9: shrink ← true

10: actExists← false
11: if shrink and |Ac| ≥ 512 then
12: 〈actExists,Ac, iA〉 ← G-PR-SHRKRNL(G,µ, ψ, loop,

Ac,Ap, iA)
13: shrink ← false
14: else
15: 〈actExists,Ac, iA〉 ← G-PR-INITKRNL(G,µ, ψ, loop,

Ac,Ap, iA)
16: if actExists then
17: 〈µ, ψ,Ac,Ap〉 ← G-PR-PUSHKRNL(G,µ, ψ, loop,

Ac,Ap, iA)
18: Swap Ac and Ap

19: loop← loop+ 1
20: µ← FIXMATCHING(µ)
21: return µ

In a single loop of the new G-PR, given in Algorithm ??,
push-relabel operations are performed in two steps. In the
first step, the algorithm fixes Ac by using Ap from the
previous iteration with the kernel G-PR-INITKRNL given
in Algorithm ??. The fix operation is done in two stages:
first the conflicting operations in the previous execution are
detected (line ??) and then they are rolled back (line ??). In
addition to Ac and Ap, we used an additional array iA of size
n where iA(v) = loop if and only if v is an active column.
While fixingAc, G-PR-INITKRNL also sets the corresponding
entries to loop (line ??). This array will be used to avoid
duplicate processing of an active column by two different
threads while performing push-relabel operations. Note that
the number of GPU threads for this kernel execution is |Ap|
which is expected to be much smaller than n after the greedy
matching heuristic.

Algorithm 8 G-PR-INITKRNL

Input: G = (VC ∪ VR, E), µ, ψ, loop,Ac,Ap, iA
1: actExists← false
2: for all i ∈ {1, . . . , |Ap|} in parallel do
3: v ← Ap(i)
4: if v 6= −1 then
5: if µ(v) = −1 or v 6= µ(µ(v)) then
6: Ac(i)← Ap(i)
7: else
8: v ← Ac(i)
9: if v 6= −1 then

10: iA(v)← loop
11: actExists← true

Once Ac is fixed, the push-relabel operations are performed

by G-PR-PUSHKRNL given in Algorithm ??. The kernel
works along the same lines with the previous GPU-based
concurrent push-relabel kernel G-PR-KRNL. However, it uses
less threads. The main difference is keeping the ids of the
active columns produced throughout the execution (line 18)

and the extra check iA(µ(u))
?

6= loop at line 13. This check
is necessary due to concurrency; an already active column v
which is being processed can be inserted to Ap in the same
kernel execution. Although, this does not create a problem
for the current execution, if G-PR-INITKRNL roll backs the
operation on v, in the next execution v will be processed
by two different threads. To avoid this problem, a column,
which is already active at the beginning of the iteration is
forbidden in Ap. After completing G-PR-PUSHKRNL, at the
end of each iteration, we swap the current and previous active
column arrays for the next iteration (line 18 of Algorithm ??).

Algorithm 9 G-PR-PUSHKRNL

Input: G = (VR ∪ VC , E), µ, ψ, loop,Ac,Ap, iA
1: for all i ∈ {1, . . . , |Ap|} in parallel do
2: v ← Ac(i)
3: if v 6= −1 then
4: ψmin ← m+ n
5: u← −1
6: for all u′ ∈ Γ(v) do
7: if ψ(u′) < ψmin then
8: ψmin ← ψ(u′)
9: u← u′

10: if ψmin = ψ(v)− 1 then
11: break
12: if ψmin < m+ n then
13: if µ(u) = −1 or iA(µ(u)) 6= loop then
14: µ(u)← v
15: µ(v)← u
16: ψ(v)← ψmin + 1
17: ψ(u)← ψmin + 2
18: Ap(i)← w
19: else
20: µ(v)← −2
21: Ac(i)← −1
22: Ap(i)← −1
23: else
24: Ap(i)← −1

2) Dynamic compression of active-column lists: The size
of the active column arrays used in Algorithms ?? and ?? is
equal to the number of unmatched columns at the beginning.
When the deficiency is smaller, we observed that the main
loop of the algorithm iterates more in order to increase the
matching size. Hence, the impact of a reduction on the size of
the active column arrays will be significant. Thus, as a second
improvement, we periodically shrink these arrays after each
global-relabel operation by using G-PR-SHRKRNL (line 12).
The kernel works along the same lines with G-PR-INITKRNL.
But instead of directly writing the new active columns to Ac,
an initial pass on the previous and the current active columns
is performed in order to obtain the number of local active
columns within each thread. Then the threads perform a prefix
sum operation on these counts. After the prefix sum, each
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Fig. 1. The comparison of the proposed G-PR algorithms with different global-relabeling strategies.

thread has a private write region on Ac. They traverse the
previous active column array again, and instead of counting,
this time they write the ids to their private regions. Hence,
after G-PR-SHRKRNL the size of Ac and Ap is reduced to
the exact number of active columns. We observed that although
the shrinking can yield significant improvements, after some
number of active columns the improvement does not compen-
sate its overhead. Hence, we decide to use the shrink operation
only when |Ac| ≥ 512 (line 11 of Algorithm ??).

IV. EXPERIMENTS

The running time of the proposed implementations are
compared against the sequential PR implementation (PR) [?],
the multicore parallel implementations P-DBFS [?], and a
GPU implementation of HKDW [?]. For the sequential PR
implementation, we tried a set of k values to set the frequency
of global-relabeling to k× (m+ n). For our data set k = 0.5
was slightly better. Hence, we used it in our experiments. The
CPU implementations are tested on a computer with 2.27GHz
dual quad-core Intel Xeon CPUs with 2-way hyper-threading
and 48GB main memory. The algorithms are implemented in
C++ and OpenMP. The GPU implementations are tested on
NVIDIA Tesla C2050 with usable 2.6GB of global memory.
Tesla C2050 is equipped with 14 multiprocessors each con-
taining 32 CUDA cores, totaling 448 CUDA cores. The imple-
mentations are compiled with gcc-4.4.4, cuda-4.2.9 and -O2
optimization flag. For the multicore algorithms, 8 threads are
used. A standard heuristic called the cheap matching (see [?],
[?]) is used to initialize all tested algorithms. We compare the
running time of the matching algorithms after this common
initialization.

The algorithms are run on bipartite graphs corresponding
to 28 matrices from variety of classes at UFL matrix collec-
tion [?]. The graphs are chosen from a large dataset given
in [?]. The graphs for which all of the sequential algorithms,
Pothen-Fan-Plus [?], Hopcroft-Karp [?], and the push-relabel
algorithm (PR [?]), take less than one second are filtered out.

We first compare the performance of the proposed GPU
algorithm with different parameters. Figure ?? shows the
geometric means of the runtimes on different sets. In the
figure, G-PR-First corresponds to our first implementation
explained in Algorithm ??. G-PR-Shr corresponds to the im-
plementation presented in Algorithm ??, while G-PR-NoShr is
the one that omits the shrinking mechanism (G-PR-SHRKRNL
functions omitted). Different strategies are used to specify
the frequency of the global relabeling. Here, (adaptive, k)
refers to the the adaptive global-relabeling strategy explained
in Section ??. That is, the next global relabeling is performed
after k × maxLevel push-relabel kernel calls. For the (fix,
k) strategy, the next global-relabeling operation is performed
after k push-relabel kernel executions. As the figure shows,
we obtain the best results with (adaptive, 0.3) and (adaptive,
0.7). Having a fix frequency for all graphs throughout the
execution is outperformed by the adaptive heuristic for almost
all configurations. The results verify the necessity of adjusting
the frequency of the global relabeling with respect to the graph
structure and the current matching. The figure also shows that
the proposed G-PR-active algorithm improves the performance
of each configuration by 14% to 84%, as it decreased the
divergence of the GPU threads. Shrinking the list of active
columns throughout the execution improves the performance
of the algorithms by another 2–8%. Since G-PR-shrink obtains
the best performance with (adaptive, 0.7) configuration, we
only compare the performance of this configuration with other
implementations in the literature.

Figure ?? shows the speedup profiles of G-PR, G-HKDW,
and P-DBFS on the experiment set. The speedups are cal-
culated with respect to the sequential PR algorithm. A point
(x,y) in the plots corresponds to the probability y of obtaining
at least x speedup. As the plot shows, G-PR has a better
speedup profile: with 39% probability it obtains a speedup at
least 5. This probability is 21% and 14% for G-HKDW and
P-DBFS, respectively. Furthermore, the proposed algorithm is
faster than the sequential PR algorithm for 82% of the graphs.
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Fig. 3. Performance profiles of the parallel algorithms. A point (x,y) in this
plot means that with y probability, the algorithm obtains a performance that
is at most x times worse than the best running time.

Although the performance of G-HKDW is close to that of
G-PR, both G-HKDW and P-DBFS are outperformed by
the proposed G-PR algorithm. On the average, the proposed
algorithm is 1.30 and 2.82 times faster than G-HKDW and
P-DBFS, respectively, when geometric means of the runtimes
are compared.

Figure ?? shows the performance profiles of multicore and
manycore algorithms. A point (x,y) in this plot means that with
y probability, the algorithm obtains a performance that is at
most x times worse than the best running time. The plot clearly
shows the separation among G-PR and the other algorithms,
thus marking G-PR as the fastest in most cases. For 75%

of the cases, G-PR is at most 1.5 times worse than the best
algorithm. These percentages are 46% and 14% for G-HKDW
and P-DBFS, respectively. In particular, G-PR obtains the
best performance in 61% of the selected graphs.

Figure ?? shows the indivual speedups of G-PR on the each
graph. The x axis gives the graph ids given in Table ?? and the
graphs are ordered with the increasing number of rows. The
proposed algorithm obtains a speedup on 23 (out of 28) of the
graphs. The maximum speedup achieved is on delaunay n24
as 12.60, while the minimum speedup is obtained as 0.31
on hugetrace-00000 graph. The overall average speedup is
3.05. Table ?? gives the actual running times of the best
GPU and multicore algorithms, together with the sequential
PR algorithm. As seen from this table, on 15 of the graphs,
the GPU algorithm is faster than the other algorithms.

V. CONCLUDING REMARKS

We proposed a parallel push-relabel-based maximum cardi-
nality matching algorithm for bipartite graphs on GPUs. We
presented a lock- and atomic-free implementation and propose
a set of modifications to obtain a better performance. We
investigated the effect of the global-relabeling frequency and
developed a strategy to amortize the cost of global and push
relabeling. We presented experiments on various graphs and
compared the performance of the proposed implementation
against sequential, multicore, and manycore algorithms from
the literature. The experiments showed that the proposed GPU
implementation is faster than the existing implementations. We
obtained speedups varied from 0.31 to 12.60, averaging 3.05,
on a set of 28 graphs with respect to a recent sequential push-
relabel-based implementation.

As a future work, we intend to investigate more architectural
and algorithmic advancements to improve the performance.
One idea we want to study is the concurrent execution of
global-relabeling and push-relabel kernels [?]. As far as we
know, there is no GPU implementations of these techniques.
After the Fermi architecture, NVIDIA GPUs support con-
current kernel executions with streams. Hence, it may be
promising to occupy the device with two kernels when there
is not enough parallelism with a single kernel.
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Fig. 4. Individual speedups of G-PR algorithm on each graph instance.

TABLE I
ACTUAL RUNNING TIME OF EACH ALGORITHM FOR ALL GRAPHS TOGETHER WITH THE NUMBER OF ROWS, COLUMNS, AND EDGES IN EACH GRAPH. IM

AND MM GIVES THE CARDINALITY OF THE INITIAL AND MAXIMUM MATCHING FOR EACH GRAPH, RESPECTIVELY. THE GEOMETRIC MEANS OF THE RUN
TIMES OF G-PR, G-HKDW, P-DBFS, AND PR ARE GIVEN IN THE BOTTOM ROW.

ID Graph #Row #Cols #Edges IM MM G-PR G-HKDW P-DBFS PR
1 amazon0505 410,236 410,236 3,356,824 332,972 395,397 0.09 0.18 22.70 0.52
2 coPapersDBLP 540,486 540,486 15,245,729 510,992 540,226 0.62 0.42 6.27 0.59
3 amazon-2008 735,323 735,323 5,158,388 587,877 641,379 0.12 0.11 0.18 0.93
4 flickr 820,878 820,878 9,837,214 285,241 367,147 0.13 0.22 0.35 0.99
5 eu-2005 862,664 862,664 19,235,140 642,027 652,328 0.40 1.54 0.94 0.80
6 delaunay n20 1,048,576 1,048,576 3,145,686 993,174 1,048,576 0.06 0.04 0.09 0.32
7 kron g500-logn20 1,048,576 1,048,576 44,620,272 431,854 513,334 0.38 0.60 8.19 1.24
8 roadNet-PA 1,090,920 1,090,920 1,541,898 916,444 1,059,398 0.33 0.14 0.29 0.59
9 in-2004 1,382,908 1,382,908 16,917,053 781,063 804,245 0.58 1.44 2.16 0.56
10 roadNet-TX 1,393,383 1,393,383 1,921,660 1,158,420 1,342,440 0.45 0.14 0.33 0.69
11 Hamrle3 1,447,360 1,447,360 5,514,242 1,211,049 1,447,360 0.94 1.36 2.70 0.56
12 as-Skitter 1,696,415 1,696,415 11,095,298 891,280 1,035,521 0.34 0.49 1.89 1.13
13 GL7d19 1,911,130 1,955,309 37,322,725 1,904,144 1,911,130 0.24 0.58 0.38 1.38
14 roadNet-CA 1,971,281 1,971,281 2,766,607 1,668,268 1,913,589 0.68 0.34 0.53 1.55
15 delaunay n21 2,097,152 2,097,152 6,291,408 1,987,326 2,097,152 0.18 0.13 0.21 1.06
16 kron g500-logn21 2,097,152 2,097,152 91,042,010 812,883 964,679 0.68 0.99 1.50 2.77
17 wikipedia-20070206 3,566,907 3,566,907 45,030,389 1,623,931 1,992,408 0.62 1.09 5.24 3.11
18 patents 3,774,768 3,774,768 14,970,767 1,892,820 2,011,083 0.54 0.88 0.84 3.65
19 com-livejournal 3,997,962 3,997,962 34,681,189 2,577,642 3,608,272 2.08 4.58 22.46 9.67
20 hugetrace-00000 4,588,484 4,588,484 6,879,133 4,581,148 4,588,484 2.71 1.96 0.83 0.84
21 soc-LiveJournal1 4,847,571 4,847,571 68,993,773 2,831,783 3,835,002 1.35 3.32 14.35 12.66
22 ljournal-2008 5,363,260 5,363,260 79,023,142 3,941,073 4,355,699 1.54 2.37 10.30 10.01
23 italy osm 6,686,493 6,686,493 7,013,978 6,438,492 6,644,390 5.46 5.86 1.20 6.84
24 delaunay n23 8,388,608 8,388,608 25,165,784 7,950,070 8,388,608 0.81 0.96 1.26 8.86
25 wb-edu 9,845,725 9,845,725 57,156,537 4,810,825 5,000,334 2.00 33.82 8.61 3.94
26 hugetrace-00020 16,002,413 16,002,413 23,998,813 15,535,760 16,002,413 14.19 7.90 393.13 28.69
27 delaunay n24 16,777,216 16,777,216 50,331,601 15,892,194 16,777,216 1.83 1.98 2.41 23.01
28 hugebubbles-00000 18,318,143 18,318,143 27,470,081 18,303,614 18,318,143 13.65 13.16 3.55 13.51

GEOMEAN 0.70 0.92 1.99 2.15


