E. N. Lorenz, Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, vol.20, issue.2, pp.130-141
DOI : 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

R. J. Fox, Construction of the Jordan basis for the Baker map, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.7, issue.2, 1997.
DOI : 10.1063/1.166226

S. Smale, Differentiable dynamical systems, Bulletin of the American Mathematical Society, vol.73, issue.6, pp.747-817, 1967.
DOI : 10.1090/S0002-9904-1967-11798-1

URL : http://projecteuclid.org/download/pdf_1/euclid.bams/1183529092

C. Letellier and .. L. Aguirre, Interplay between synchronization, observability, and dynamics, Physical Review E, vol.82, issue.1, 2010.
DOI : 10.1103/PhysRevE.82.016204

C. Letellier, J. Maquet, L. L. Scellery, G. Gouesbety, and L. A. Aguirre, On the non-equivalence of observables in phase-space reconstructions from recorded time series, Printed in the UK PII, pp.305-447093312, 1998.
DOI : 10.1088/0305-4470/31/39/008

T. Stojanovski, L. Kocarev, and U. Parliz, Driving and synchronizing by chaotic impulses, Physical Review E, vol.54, issue.2, pp.68-73, 1996.
DOI : 10.1103/PhysRevE.54.2128

A. Wolf, J. B. Swift, L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, vol.16, issue.3, pp.285-317, 1985.
DOI : 10.1016/0167-2789(85)90011-9

O. De-feo, G. M. Maggio, and M. P. Kennedy, THE COLPITTS OSCILLATOR: FAMILIES OF PERIODIC SOLUTIONS AND THEIR BIFURCATIONS, International Journal of Bifurcation and Chaos, vol.10, issue.05, 2000.
DOI : 10.1142/S0218127400000670