Continuous Discrete Observer with Updated Sampling Period

Vincent Andrieu 1 Madiha Nadri 2 Ulysse Serres 1 Jean-Claude Vivalda 3, 4
2 SNLEP
LAGEP - Laboratoire d'automatique et de génie des procédés
3 EDP - Equations aux dérivées partielles
IECL - Institut Élie Cartan de Lorraine
4 CORIDA - Robust control of infinite dimensional systems and applications
IECN - Institut Élie Cartan de Nancy, LMAM - Laboratoire de Mathématiques et Applications de Metz, Inria Nancy - Grand Est
Abstract : This paper deals with the design of high gain observers for a class of continuous dynamical systems with discrete-time measurements. Indeed, different approaches based on high gain techniques have been followed in the literature to tackle this problem. Contrary to these works, the measurement sampling time is considered to be variable. Moreover, the new idea of the proposed work is to synthesize an observer requiring the less knowledge as possible from the output measurements. This is done by using an updated sampling time observer. Under the global Lipschitz assumption, the asymptotic convergence of the observation error is established. As an application of this approach, an estimation problem of state of an academic bioprocess is studied, and its simulation results are discussed.
Type de document :
Communication dans un congrès
Tarbouriech, Sophie and Krstic, Miroslav. NOLCOS 2013, Sep 2013, Toulouse, France. International Federation of Automatic Control, 9, pp.439-444, 2013, 〈10.3182/20130904-3-FR-2041.00084〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00923820
Contributeur : Jean-Claude Vivalda <>
Soumis le : dimanche 5 janvier 2014 - 10:19:28
Dernière modification le : jeudi 8 février 2018 - 11:10:19

Identifiants

Citation

Vincent Andrieu, Madiha Nadri, Ulysse Serres, Jean-Claude Vivalda. Continuous Discrete Observer with Updated Sampling Period. Tarbouriech, Sophie and Krstic, Miroslav. NOLCOS 2013, Sep 2013, Toulouse, France. International Federation of Automatic Control, 9, pp.439-444, 2013, 〈10.3182/20130904-3-FR-2041.00084〉. 〈hal-00923820〉

Partager

Métriques

Consultations de la notice

216