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Abstract

In this paper, we study the execution of iterative applications on volatile processors such as those

found on desktop grids. We envision two models, one where all tasks are assumed to be independent,

and another where all tasks are tightly coupled and keep exchanging information throughout the iter-

ation. These two models cover the two extreme points of the parallelization spectrum. We develop

master-worker scheduling schemes that attempt to achieve good trade-offs between worker speed and

worker availability. Any iteration entails the execution of a fixed number of independent tasks or of

tightly-coupled tasks. A key feature of our approach is that we consider a communication model where

the bandwidth capacity of the master for sending application data to workers is limited. This limitation

makes the scheduling problem more difficult both in a theoretical sense and in a practical sense. Fur-

thermore, we consider that a processor can be in one of three states: available, down, or temporarily

preempted by its owner. This preempted state also complicates the scheduling problem. In practi-

cal settings, e.g., desktop grids, master bandwidth is limited and processors are temporarily reclaimed.

Consequently, addressing the aforementioned difficulties is necessary for successfully deploying master-

worker applications on volatile platforms.

Our first contribution is to determine the complexity of the scheduling problems in their offline

versions, i.e., when processor availability behaviors are known in advance. Even with this knowledge,

the problems are NP-hard. Our second contribution is an evaluation of the expectation of the time

needed by a worker to complete a set of tasks. We obtain a close formula for independent tasks and an

analytical approximation for tightly-coupled tasks. Those evaluations rely on a Markovian assumption

for the temporal availability of processors, and are at the heart of some heuristics that aim at favoring

“reliable” processors in a sensible manner. Our third contribution is a set of heuristics for both model,

which we evaluate in simulation. Our results provide guidance to selecting the best strategy as a function

of processor state availability versus average task duration.

Key words: Iterative applications, scheduling, complexity results, heuristics, volatile platforms.

1 Introduction

In this paper we study the problem of efficiently executing parallel applications onto platforms that com-

prise volatile resources. More specifically we focus on scientific iterative applications implemented using

the master-worker paradigm. The master parallelizes the execution of the iterations across available proces-

sors. Each iteration corresponds to the execution of a fixed number of tasks, and there is a synchronization

1



(or checkpoint) at the end of each iteration, before proceeding to the next one. We envision two generic

models for the tasks that constitute each iteration: in the INDEPENDENT model, all tasks are assumed to

be independent, while in the TIGHTLY-COUPLED model, we consider that all tasks are tightly coupled and

keep exchanging information throughout the iteration. These two models cover the two extreme points of the

parallelization spectrum, and are representative of a very large class of scientific applications. For example,

this scheme applies to a broad spectrum of scientific computations including, but not limited to, mesh based

solvers (e.g., elliptic PDE solvers), signal processing applications (e.g., recursive convolution), and image

processing algorithms (e.g., stencil algorithms). We study such applications when they are executed on

networked processors whose availability evolves over time, meaning that each processor alternates between

being available for executing a task and being unavailable.

Solutions for executing master-worker applications, and in particular applications implemented with the

Message Passing Interface (MPI), on failure-prone platforms have been developed (e.g., [21, 17, 35, 8]).

In these works, the focus is on tolerating failures caused by software or hardware faults. For instance,

a software fault will cause the processor to stall, but computations may be restarted from scratch or be

resumed from a saved state after rebooting. A hardware failure may keep the processor down for a long

period of time, until the failed component is repaired or replaced. In both cases, fault-tolerant mechanisms

are implemented in the aforementioned solutions to make faults transparent to the application execution.

In addition to failures, processor volatility can also be due to temporary interruptions. Such interruptions

are common in volunteer computing platforms [6] and desktop grids [15]. In these platforms processors

are contributed by resource owners who can reclaim them at any time, without notice, and for arbitrary

durations. A task running on a reclaimed processor is simply suspended. At a later date, when the processor

is released by its owner, the task can be resumed without any wasted computation. In fact, fault-tolerant MPI

solutions were proposed in the specific context of desktop grids [8], to accommodate for such interruptions.

While mechanisms for executing master-worker applications on volatile platforms are available, our focus

is on scheduling algorithms for deciding which processors should run which tasks and when.

At a given time a (volatile) processor can be in one of three states: UP (available), DOWN (crashed

due to a software or hardware fault), or RECLAIMED (temporarily preempted by owner). Accounting

for the RECLAIMED state, which arises in desktop grid platforms, complexifies scheduling decisions.

More specifically, since before going to the DOWN state a processor may alternate between the UP and

RECLAIMED states, the time needed by the processor to compute a given workload to completion is

difficult to predict. A way to make such prediction tractable is to assume that state transitions obey a Markov

process. The Markov (i.e., memoryless) assumption is popular because it enables analytical derivations. In

fact, recent work on desktop grid scheduling has made use of this assumption [10]. Unfortunately, the

memoryless assumption is known not to hold in practice. Several authors have reported that the durations of

availability intervals in production desktop grids are not sampled from exponential distributions [38, 47, 32].

There is no true consensus regarding what is a “good” model for availability intervals defined by the elapsed

time between processor failures, let alone regarding a model for the durations of recoverable interruptions.

While some authors have attempted to model processor availabilities using (non-memoryless) semi-Markov

processes [39], we use a Markov model for transitions between the UP , DOWN , and RECLAIMED

states. The goal of this work is to provide algorithmic foundations for scheduling iterative master-worker

applications on processors that can fail or be temporarily reclaimed. A 3-state Markovian model allows us to

achieve this goal, and the insight from our results should provide guidance for dealing with more complex,

and hopefully more realistic, stochastic models of processor availabilities (or ideally Markov approximation

thereof). The transition probabilities for a real-life platform can be determined using traces. For example,

for a given processor Pq, knowing that the resource is UP at time t, the probability that it remains UP will

be computed as the number of occurrences of two successive UP states, divided by the number of UP states

during all time slots described by the trace of this resource.

A unique aspect of this work is that we account for network bandwidth constraints for communica-
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tion between the master and the workers. More specifically, we bound the total outgoing communication

bandwidth of the master while ensuring that each communication uses a reasonably large fraction of this

bandwidth. The master is thus able to communicate simultaneously with only a limited number of workers,

sending them either the application program or input data for tasks. This assumption, which corresponds to

the bounded multi-port model [29], applies to concurrent data transfers implemented with multi-threading.

One alternative is to simply not consider these constraints. In this case, a scheduling strategy could enroll

a large (and vastly suboptimal) number of processors to which it would send data concurrently each at very

low bandwidth. Another alternative is to disallow concurrent data transfers from the master to the workers.

In this case, the bandwidth capacity of the master may not be fully exploited, especially for workers exe-

cuting on distant processors. We conclude that considering the above bandwidth constraints is necessary

for applications that do not have extremely low communication-to-computation ratios. It turns out that the

addition of these constraints makes the problem dramatically more difficult at the theoretical level, and thus

complicates the design of practical scheduling strategies.

The specific scheduling problem under consideration is to maximize the number of application iterations

that are successfully completed before a deadline. Informally, during each iteration, we have to identify the

“best” processors among those that are available (e.g., the fastest, the likeliest to remain available, etc.).

In addition, since processors can become available again after being unavailable for some time, it may be

beneficial to change the set of enrolled processors even if all enrolled processors are available. We thus have

to decide whether to release enrolled processors, to decide which ones should be released, and to decide

which ones should be enrolled instead. Such changes come at a price: the application program file must

be sent to newly enrolled processors, which consumes some (potentially precious) fraction of the master’s

bandwidth.

Our contributions are the following. First, we assess the complexity of the problems in their offline

versions, i.e., when processor availability behaviors are known in advance. Even with this knowledge, the

problems are NP-hard. Note that the offline scenario assesses the intrinsic complexity of the problem. Next,

relying on the Markov assumption for processor availability, we evaluate the expectation of the time needed

by a worker to complete a set of tasks. We provide a closed-form formula for the INDEPENDENT model and

an analytical approximation for the TIGHTLY-COUPLED model. Those evaluations are at the heart of several

heuristics that aim at giving priority to “reliable” resources rather than to “fast” ones. In a nutshell, when

the task size is very small in comparison to the expected duration of an interval between two consecutive

processor state changes, “classical” heuristics based upon the estimated completion time of a task perform

reasonably well. But when the task size is no longer negligible with respect to the expected duration of such

an interval, it is mandatory to account for processor reliability, and only those heuristics building upon such

knowledge are shown to achieve good performance. Altogether, we design a set of heuristics, which we

thoroughly evaluate in simulation. The results provide insights for selecting the best strategy as a function

of processor state availability versus task duration.

This paper is organized as follows. Section 2 discusses related work. Section 3 describes the application

and platform models. Complexity results for the offline study are given in Section 4; these results do not

rely on any assumption regarding stochastic distribution of resource availability. In Section 5, we describe

our 3-state Markovian model of processor availability, and we show how to compute the expected time for

a configuration to complete an iteration in both application models. Heuristics for the online problem are

described in Section 6, some of which use the result in Section 5 for more informed resource selection. An

experimental evaluation of the heuristics is presented in Section 7. Section 8 concludes with a summary of

our findings and perspectives on future work.
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2 Related work

Iterative applications that can be implemented in master-worker fashion are widely used in computational

linear algebra for sparse linear systems [14, 42, 45] or eigenvalue problems [40], image processing [48, 12,

33], signal processing [9, 16], etc. Paper [14] presents a relaxation method with chaotic iterations, extended

in [42] to non-deterministic decisions. Paper [45] studies partitioning for iterative preconditioner matrices.

Paper [40] introduces an iterative method for computing extremal eigenvalues of symmetric matrices. Iter-

ative applications are useful to a wide spectrum of research topics, including digital pattern thinning [48],

image reconstitution [12] or image denoising [33]. Similarly, iterative methods exist for signal process-

ing [9] or signal detection [16]. While iterative applications can be asynchronous [42, 13, 5], in this work

we restrict to the synchronous case. Several authors have proposed scheduling approaches for asynchronous

applications [4, 31, 27, 36]. Paper [42] presents a Java environment for asynchronous iterative applications,

and paper [13, 5] presents the asynchronous deployment of an iterative solution to a Poisson problem.

Scheduling methods for iterative applications have been studied on a wide range of architectures, in-

cluding processor arrays [31], workstations with congestion control protocol [27], and virtual rings of pro-

cessors [36]. In this work we consider volatile compute resources, such as those found in desktop grids.

Resource volatility in these platforms has been studied in in [38, 47, 32, 7], leading to several interest-

ing scheduling problems. Papers [38, 47, 32, 7] consider many possible statistical distributions to real life

traces. They all consider the Weibull distribution as one of the most accurate choices. Paper [38] considers

the hyper-exponential distribution as the best choice, paper [47] prefers the log-normal distribution, and

paper [32] elects the Gamma distribution. However, none of these papers compare any two of these latter

distributions.

Several authors have studied the “bag-of-tasks” scheduling problem, i.e., the scheduling of independent

tasks, on volatile desktop grids, either at an Internet-wide scale or within an Enterprise [34, 49, 19, 1, 10,

20, 46, 28, 30]. Most of these works propose simple greedy scheduling algorithms that rely on mechanisms

to select processors based on static criteria (e.g., processor clock-rates, benchmark results, time zone), on

statistics of past availability [34, 19, 20, 49, 30], and on predictive statistical models of availability (e.g.,

average availability interval duration, average available CPU power) [46, 28, 1, 10]. These criteria are used

to rank processors but also to exclude them from consideration [34, 19]. The impact of uncertainty in long-

distance communications (high latency and unpredictable throughput) is discussed in [3]. The work in [10]

is related to our work in that it uses a Markov model of processor availability (but without accounting for

temporary preemption). Note that, because they target independent tasks, most of these works also advocate

for task replication as a way to cope with volatile resources. Expectedly, injecting task replicas is sensible

toward the end of application execution, an approach that we use in this work as well.

Most works published in this area are of a pragmatic nature (one exception is the work in [22]). In fact,

given the wealth of proposed scheduling approaches and the lack of theoretical results, in [20], the authors

propose to automatically instantiate the parameters that together define the behavior of a generic scheduling

algorithm. By contrast, a large part of this work focuses on theoretical results. Some of the heuristics that

we evaluate in this work directly reuse the same ideas as those pioneered in the works cited in the previous

paragraph, while other heuristics rely on novel ideas that come from our theoretical results. Several of the

heuristics listed above have been designed for independent tasks, while this work also targets tightly-coupled

tasks, which imposes more stringent scheduling constrains.

Furthermore, a distinctive aspect of our work is that we seek to develop scheduling algorithms that

explicitly manage the master’s bandwidth. To the best of our knowledge, no previous work has made

such an attempt. Limited master bandwidth is a known issue for desktop grid computing [37, 44, 26] and

must therefore be addressed even though it complicates the scheduling problem. Paper [37] considers a

homogeneous 1-port communication model with dynamic storage availability, and paper [26] considers a

computational grid whose resources are scattered across several sites, with a limited bandwidth between
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Table 1: List of notations.
Notation Definition

N number of time-slots

m number of parallel tasks within each iteration

p total number or resources

wq number of times-slots for Pq to execute a task

xq number of tasks allocated to processor Pq by current configuration

u, r, d processor states: UP , RECLAIMED , and DOWN

Sq[t] ∈ {u, r, d} state of Pq at time-slot t

P
(q)
i,j probability for Pq to move from state i ∈ {u, r, d} to state j ∈ {u, r, d}

π
(q)
u , π

(q)
r , π

(q)
d steady-state fraction of time that Pq is UP , RECLAIMED and DOWN

Tprog (resp. Vprog) number of time-slots to send (resp. size of) the program

Tdata (resp. Vdata) number of time-slots to send (resp. size of) a task data file

bw (resp. BW ) bandwidth of the workers (resp. of the master)

nprog (resp. ndata) number of processors receiving the program (resp. a task data) at current time slot

ncom maximum number of processors that the master can communicate with at any time-slot

config(t) configuration (set of enrolled processors) at time-slot t

sites.

Finally, note that while in this work we focus on scheduling a single application, other authors have

studied the scheduling problem for multiple simultaneous applications [2, 11].

3 Problem Definition

In this section, we detail our application and platform models, describe the scheduling model, and provide a

precise statement of the scheduling problem. Table 1 summarizes all notations.

3.1 Application Model

We target an iterative application in which iterations entail the execution of a fixed number m of same-size

tasks. Each iteration is executed in a master-worker fashion, with a synchronization of all tasks at the end

of the iteration. A processor is assigned one or more tasks during an iteration. Each task needs some input

data, of constant size Vdata in bytes. This data depends on the task and the iteration, and is received from

the master. Such applications allow for a natural overlap of computation and communication: computing

for the current task can occur while data for the next task (of the same iteration) is being received. Before it

can start computing, a processor needs to receive the application program from the master, which is of size

Vprog in bytes. This program is the same for all tasks and iterations.

We consider two variants for the application model:

• In the INDEPENDENT model, tasks are independents.

• In the TIGHTLY-COUPLED model, the m same-size tasks steadily communicate throughout the itera-

tion. Therefore, all tasks must make progress at the same rate. If a task is terminated prematurely (due

to a worker failure), all computation performed so far for the current iteration is lost, and the entire

iteration has to be restarted. If a task is suspended (due to a worker becoming temporarily reclaimed),

then the entire execution of the iteration is also suspended.
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3.2 Platform Model

We consider a platform that consists of p processors, P1, . . . , Pp, encompassing with this term compute

nodes that contain multiple physical processor cores. Each processor is volatile, meaning that its availability

for computing application tasks varies over time. More precisely, a processor can be in one of three states:

UP (available for computation), RECLAIMED (temporarily reclaimed by its owner), or DOWN (crashed

and to be rebooted). We assume that the master, which implements the scheduling algorithm, executes on

a processor that is always UP (otherwise a simple redundancy mechanism such as primary back-up [24]

can be used to ensure reliability of the master). We also assume that the master is aware of the states of the

processors, e.g., via a simple heart-beat mechanism [41]. Processor availabilities evolve independently, and

all state transitions are allowed, with the following implications:

• When a UP or RECLAIMED processor becomes DOWN , it loses the application program, all the

data for its assigned tasks, and all partially computed results. When it later becomes UP it has to

acquire the program again before executing tasks;

• When a UP processor becomes RECLAIMED , its activities are suspended. However, when it be-

comes UP again it can simply resume task computations and data transfers.

We discretize time so that the execution occurs over a sequence of discrete time slots. We assume that

task computations and data transfers all require an integer number of time slots, and that processor state

changes occur at time-slot boundaries. We leave the time slot duration unspecified. The time slot duration

that achieves a good approximation of continuous time varies for different applications and platforms.

The temporal availability of Pq is described by a vector Sq whose component Sq[t] ∈ {u, r, d} represents

its state at time-slot t. Here u corresponds to the UP state, r to the RECLAIMED state, and d to the

DOWN state. Vector Sq is unknown before executing the application.

Processor Pq requires wq time-slots of availability (i.e., UP state) to compute a task. If all wq values are

identical, then the platform is homogeneous. We model communications between the master and the workers

using the bounded multi-port communication model [29]. In this model, the master can initiate multiple

concurrent communications, each to a different worker. Each communication is allotted a bandwidth fraction

of the master’s network card, and the sum of all fractions cannot exceed the total capacity of the card. This

model is enabled by popular multi-threaded communication libraries [23]. We consider that the master can

communicate up to bandwidth BW (we use the term “bandwidth” loosely to mean maximum data transfer

rate). Communication to each worker is performed at some fixed bandwidth bw. This bandwidth can be

enforced in software or can correspond to same-capacity communication paths from the master’s processor

to each other processor. We define ncom = BW/bw as the maximum number of workers to which the master

can send data simultaneously (i.e., the maximum number of simultaneous communications). For simplicity,

we assume ncom to be an integer. Let nprog be the number of processors receiving the application program

at time t, and ndata be the number of processors receiving the input data of a task at time t. Given that the

bandwidth of the master must not be exceeded, we have

nprog + ndata ≤ ncom = BW/bw.

Let Pq be a processor engaged in communication at time t, for receiving either the program or input data.

In both cases, it does this with bandwidth bw. Hence the time for a worker to receive the program is

Tprog = Vprog/bw, and the time to receive the data is Tdata = Vdata/bw.

3.3 Scheduling Model

Let config(t) denote the set of processors enrolled for computing the m application tasks in an iteration, or

configuration, at time t.
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• In the INDEPENDENT model, enrolled processors work independently, and execute their tasks sequen-

tially. While a processor could conceivably execute two tasks in parallel (provided there is enough

available memory), this would only delay the completion time of the first task, thereby increasing the

risk of not completing it at all due to volatile availability.

• In the TIGHTLY-COUPLED model, the computation can start at a time t only if each of the k en-

rolled workers is in the UP state, has the program, has the data of all its allocated tasks, and has

never been in the DOWN state since receiving these messages. Because tasks must proceed in

locked steps, the execution goes at the pace of the slowest worker. Hence the computation of an

iteration requires maxq(xqwq) time-slots of concurrent computations (not necessarily consecutive,

due to workers possibly being reclaimed). Consider the interval of time between time t1 and time

t2 = t1 + maxq(xqwq) + t′ − 1 for some t′. For the iteration to be successfully completed by time

t2, between t1 and t2 there must be maxq(xqwq) time-slots for which all enrolled workers are simul-

taneously UP , and there may be t′ time-slots during which one or more workers are RECLAIMED .

The scheduler assigns tasks to processors and may choose a new configuration at each time-slot t. Let

Pq be a newly enrolled processor at time t, i.e., Pq ∈ config(t + 1) \ config(t). Pq needs to receive the

program unless it already received a copy of it and has not been in the DOWN state since. In all cases, Pq

needs to receive data for a task before computing it. This holds true even if Pq had been enrolled at some

previous time-slot t′ < t but has been un-enrolled since: we assume any received data is discarded when a

processor is un-enrolled. In other words, any input data communication is resumed from scratch, even if it

had previously completed. Note that a processor that is un-enrolled keeps the application program until it

eventually goes to the DOWN state. In addition, in the TIGHTLY-COUPLED model, if some computations

was in progress during time-slot t, all progress is lost by this modification of configuration.

If a processor of the configuration becomes DOWN at time t, the scheduler may simply use the re-

maining UP processors in config(t) to complete the iteration, or enroll a new processor. In the TIGHTLY-

COUPLED model, all computation in progress is lost. Even if all processors in config(t) are in the UP state,

the scheduler may decide to change the configuration. This can be useful if a more desirable (e.g., faster,

more available) but un-enrolled processor has just returned to the UP state. Removing an UP processor

from config(t) has a cost: partial results of task computations, partial task data being received, and previ-

ously received task data are all lost. Note, however, that, in the INDEPENDENT model, results obtained for

previously completed tasks are not lost because already sent back to the master.

In the INDEPENDENT model, due to the possibility of a processor leaving the configuration (either due to

becoming DOWN or due to a decision of the scheduler), the scheduler enforces that task data is received for

at most one task beyond the one currently being computed. In other terms, the processor does not accumulate

task data beyond that for the next task. This is sensible so as to allow some overlap of computation and

communication while avoiding wasting bandwidth for data transfers that would be increasingly likely to be

redone from scratch.

Throughout the paper, we do not take the output of results by the workers into account, because these

results can be merged with the next incoming communication from the master. This amounts to increasing

the value of Tdata in the analysis.

3.4 Problem Statement

The scheduling problem that we address in this work is to maximize the number of successfully completed

application iterations before a deadline. Given the discretization of time, the objective of the scheduling

problem is then to maximize the number of successfully completed iterations within some integral number of

time slots, N . In the offline case (see Section 4), if an efficient algorithm can be found to solve this problem,
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then, using a binary search, an efficient algorithm can be designed to solve the problem of executing a given

number of iterations in the minimum amount of time.

4 Off-line complexity

In this section, we study the offline complexity of the INDEPENDENT and TIGHTLY-COUPLED problems.

This means that we assume a priori knowledge of all processor states. In other words, the value of Sq[j] is

known in advance, for 1 ≤ q ≤ p and 1 ≤ j ≤ N . The problem turns out to be difficult: even minimizing

the time to complete the first iteration with same-speed processors is NP-complete for both models. We

also identify some polynomial instances. For approximation questions, we take into account incomplete

instances: if p tasks have been executed in the current time slot, then for the current iteration we consider

that a part p
n

is completed. Without this assumption, the problem is inapproximable.

For the offline study, we can simplify the model and have only two processor states, UP (also denoted by

u) and RECLAIMED (also denoted by r). Indeed, suppose that processor Pq is DOWN for the first time

at time-slot t: Sq[t] = d. We can replace Pq by two 2-state processors Pq′ and Pq′′ such that: 1) for all j < t,
Sq′ [j] = Sq[j] and Sq′′ [j] = r, 2) Sq′ [t] = Sq′′ [t] = r, and 3) for all j > t, Sq′ [j] = r and Sq′′ [j] = Sq[j].
In this way, we remove a DOWN state and add a two-state processor. If we do this modification for each

DOWN state, we obtain an instance with only UP or RECLAIMED processors. In the worst case, the

total number of processors is multiplied by N , which does not affect the problem’s complexity (polynomial

versus NP-hard). Let OFFLINE-INDEPENDENT denote the problem of minimizing the time to complete the

first iteration, with same-speed processors:

For the sake of brevity, all results in this section are provided without proof. Full details are available

in [18].

4.1 Complexity of INDEPENDENT problems

Theorem 1 Problem OFFLINE-INDEPENDENT is NP-hard.

Proposition 1 Problem OFFLINE-INDEPENDENT cannot be approximated within 8
7 − ǫ for all ǫ > 0.

Proof. MAXIMUM 3-SATISFIABILITY cannot be approximated within 8
7 − ǫ for all ǫ > 0 [25]. The

result is immediate for problem OFFLINE-INDEPENDENT by construction of the proof of Theorem 1. ⊓⊔

Now we show that the difficulty of problem OFFLINE-INDEPENDENT is due to the bound ncom: if we

relax this bound, the problem becomes polynomial.

Proposition 2 OFFLINE-INDEPENDENT is polynomial when ncom = +∞, even with different-speed pro-

cessors.

4.2 Complexity of TIGHTLY-COUPLED problems

Fixed number of workers: Consider the problem with no communication (Tprog = Tdata = 0), and

identical workers with wq = w and µq = µ = 1. m workers must be enrolled to complete an iteration. The

problem reduces to finding w time-slots such that there exist m workers that are simultaneously UP during

all these w time-slots. We call this version of the problem OFFLINE-COUPLED (µ = 1).

Flexible number of workers: Consider the problem with no communications (Tprog = Tdata = 0), and

identical processors with wq = w and µq = µ = +∞ (in fact µ = m is sufficient). The problem is less

constrained than OFFLINE-COUPLED (µ = 1). Either one finds m processors that are simultaneously UP
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during w time-slots, or one finds ⌈m2 ⌉ workers that are simultaneously UP during 2w time-slots, or one

finds ⌈m3 ⌉ workers that are simultaneously UP during 3w time-slots, and so on. We call this version of the

problem OFFLINE-COUPLED (µ = +∞).

Theorem 2 Problems OFFLINE-COUPLED (µ = 1) and OFFLINE-COUPLED (µ = ∞) are NP-hard.

5 Computing the expectation

In this section, we first introduce a Markov model for processor availability. Then we show how to compute

in the INDEPENDENT model the expected time needed by a processor to complete a given workload. Finally,

we show how to compute in the TIGHTLY-COUPLED model the probability of success and the expected

execution time of a workload. These quantities will guide the design of some online heuristics in Section 6.

5.1 The INDEPENDENT model

The availability of processor Pq is described by a 3-state recurrent aperiodic Markov chain, defined by 9

probabilities: P
(q)
i,j , with i, j ∈ {u, r, d}, is the probability for Pq to move from state i at time-slot t to state j

at time-slot t+1, which does not depend on t. We denote by π
(q)
u , π

(q)
r and π

(q)
d the limit distribution of Pq’s

Markov chain (i.e., steady-state fractions of state occupancy for states UP , RECLAIMED , and DOWN ).

This limit distribution is easily computed from the transition probability matrix, and π
(q)
u + π

(q)
r + π

(q)
d = 1.

When designing heuristics to assign tasks to processors, it seems important to take into account the

expected execution time of a processor until it completes all tasks assigned to it. Indeed, speed is not the

only factor, as the target processor may well become RECLAIMED several times before executing all its

scheduled computations. We develop an analytical expression for such an expectation as follows.

Consider a processor Pq in the UP state at time t, which is assigned a workload that requires W time-

slots in the UP state for completing all communications and/or computations. To complete the workload,

Pq must be UP during another W −1 time-slots. It can possibly become RECLAIMED but never DOWN

in between. What is the probability of the workload being completed? And, if it is completed, what is the

expectation of the number of time-slots until completion?

Definition 1 Knowing that Pq is UP at time-slot t1, let P
(q)
+ be the conditional probability that it will be UP

at a later time-slot, without going to the DOWN state in between. Formally, knowing that Sq[t1] = u, P
(q)
+

is the conditional probability that there exists a time t2 such that Sq[t2] = u and Sq[t] 6= d for t1 < t < t2.

Definition 2 Let E(q)(W) be the conditional expectation of the number of time-slots required by Pq to

complete a workload of size W knowing that it is UP at the current time-slot t1 and will not become

DOWN before completing this workload. Formally, knowing that Sq[t1] = u, and that there exist W − 1
time-slots t2 < t3 < · · · < tW , with t1 < t2, Sq[ti] = u for i ∈ [2,W ], and Sq[t] 6= d for t ∈ [t1, tW ],
E(q)(W ) is the conditional expectation of tW − t1 + 1.

Lemma 1 P
(q)
+ = P

(q)
u,u +

P
(q)
u,rP

(q)
r,u

1−P
(q)
r,r

.

Proof. The probability that Pq will be available again before crashing is the probability that it remains

available during the next time-slot, plus the probability that it becomes RECLAIMED and later returns to

the UP state before crashing. We obtain that

P
(q)
+ = P (q)

u,u + P (q)
u,r

(

+∞
∑

t=0

(P (q)
r,r )

t

)

P (q)
r,u ,

9



hence the result. ⊓⊔

Theorem 3 E(q)(W ) = W + (W − 1)×
P

(q)
u,rP

(q)
r,u

1−P
(q)
r,r

× 1

P
(q)
u,u(1−P

(q)
r,r )+P

(q)
u,rP

(q)
r,u

.

Proof. To execute the whole workload, Pq needs W − 1 additional time-slots of availability. Consequently,

the probability that Pq successfully executes its entire workload before crashing is (P
(q)
+ )W−1.

The key idea to prove the result is to consider E(q)(up), the expected value of the number of time-slots

before the next UP time-slot of Pq, knowing that it is up at time 0 and will not become DOWN in between:

E(q)(up) =
P

(q)
u,u +

∑

t≥0(t+ 2)P
(q)
u,r (P

(q)
r,r )tP

(q)
r,u

P
(q)
+

.

To compute E(q)(up), we study the value of

A =
∑

t≥0

(t+ 2)P (q)
u,r (P

(q)
r,r )

tP (q)
r,u =

P
(q)
u,rP

(q)
r,u

P
(q)
r,r

∑

t≥0

(t+ 2)(P (q)
r,r )

t+1 =
P

(q)
u,rP

(q)
r,u

P
(q)
r,r

g′(P (q)
r,r )

with g(x) =
∑

t≥0 x
t+2 = x2

1−x
. Differentiating, we obtain g′(x) = x(2−x)

(1−x)2
and

A =
P

(q)
u,rP

(q)
r,u

P
(q)
r,r

×
P

(q)
r,r (2− P

(q)
r,r )

(1− P
(q)
r,r )2

.

Letting z =
P

(q)
u,rP

(q)
r,u

P
(q)
u,u(1−P

(q)
r,r )

, we derive

E(q)(up) =
1 + z

(2−P
(q)
r,r )

(1−P
(q)
r,r )

1 + z
= 1 +

z

(1− P
(q)
r,r )(1 + z)

We then conclude by noting that E(q)(W ) = 1 + (W − 1)× E(q)(up). ⊓⊔

5.2 The TIGHTLY-COUPLED model

Consider a set S of workers all in the UP state at time 0. This set is assigned a workload that requires

W time-slots of simultaneous computation. To complete this workload successfully, all the workers in S
must be simultaneously UP during another W − 1 time-slots. They can possibly become RECLAIMED

(thereby temporarily suspending the execution) but must never become DOWN in between. What is the

probability of the workload being completed? And, if it is successfully completed, what is the expectation

of the number of time-slots until completion?

Definition 3 Knowing that all processors in a set S are UP at time-slot t1, let P
(S)
+ be the conditional

probability that they will all be UP simultaneously at a later time-slot, without any of them going to the

DOWN state in between. Formally, knowing that ∀Pq ∈ S, Sq[t1] = u, P
(S)
+ is the conditional probability

that there exists a time t2 > t1 such that ∀Pq ∈ S, Sq[t2] = u and Sq[t] 6= d for t1 < t < t2 .

Definition 4 Let E(S)(W) be the conditional expectation of the number of time-slots required by a set of

processors S to complete a workload of size W knowing that all processors in S are UP at the current time-

slot t1 and none will become DOWN before completing this workload. Formally, knowing that Sq[t1] = u,

and that there exist W − 1 time-slots t2 < t3 < · · · < tW , with t1 < t2, Sq[ti] = u for i ∈ [2,W ], and

Sq[t] 6= d for t ∈ [t1, tW ], E(S)(W ) is the expectation of tW − t1 + 1 conditioned on success.
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Theorem 4 It is possible to approximate the values of P
(S)
+ and E(S)(W ) numerically up to an arbitrary

precision ε in fully polynomial time.

Proof. Consider a set S of processors, all available at time slot 0. Consider the probability P
(S)
+ (t) that all

these processors are simultaneously UP again for the first time at time t. This means that for all 0 < t′ < t,
there exists at least one processor RECLAIMED at time t′. Also, none of the processors in S goes DOWN

between 0 and t.
Let P

(q)

u
t
→u

be the probability that a processor Pq that was UP at time 0 is UP again at time t, without

having been DOWN in between, and let P
(S)

u
t
→u

=
∏

Pq∈S
P

(q)

u
t
→u

. For each processor Pq, the value P
(q)

u
t
→u

can be computed by considering its transition matrix raised to the power t, knowing that the initial state is

UP . We form the product to compute P
(S)

u
t
→u

. We derive that

P
(S)
+ (t) = P

(S)

u
t
→u

−
∑

0<t′<t

P
(S)
+ (t′)× P

(S)

u
t−t′
→ u

.

The probability P
(S)
+ that all the processors in S will be simultaneously UP again at some point, before

the first failure of any of them, is

P
(S)
+ =

∑

t>0 P
(S)
+ (t)

=
∑

t>0 P
(S)

u
t
→u

−
∑

0<t′<t P
(S)
+ (t′)× P

(S)

u
t−t′
→ u

=
∑

t>0 P
(S)

u
t
→u

−
∑

t>0 P
(S)
+ (t)×

∑

t′>0 P
(S)

u
t′
→u

Let Eu(S) =
∑

t>0 P
(S)

u
t
→u

. Suppose that all processors are UP at time slot 0. Let At the ran-

dom variable that is equal to 1 if all processors are UP at time slot t without that ant processor goes

DOWN in between. Then E(At) = P
(S)

u
t
→u

. By linearity of the expectation, we have E(
∑

0≤t′≤tAt′) =
∑

0≤t′≤t P
(S)

u
t′
→u

. Suppose that, in set S, at least one processor has a nonzero probability of going DOWN .

Then, limt→∞
∑

0≤t′≤t P
(S)

u
t′
→u

converges. We can conclude that E(
∑

t>0At) =
∑

t>0 P
(S)

u
t
→u

. Then, Eu(S)

is the expected number of time slots with all processors UP , before one of these processors fails. Then,

P
(S)
+ = Eu(S) − Eu(S) × P

(S)
+ , from which we derive that P

(S)
+ = Eu(S)

1+Eu(S)
if , in set S, at least one

processor has a nonzero probability of going DOWN . Otherwise, P
(S)
+ = 1.

We now consider the expected time E(S)(W ) to execute W time slots of computation, conditioned by

the fact that no processor in S will fail. The first time slot of computation is done at t = 0. Let E
(S)
c be the

expected time of the next time slot of computation. Then,

E
(S)
c =

∑

t>0 t× P
(S)
+ (t)

=
∑

t>0 t× P
(S)

u
t
→u

− t×

(

∑

0<t′<t P
(S)
+ (t′)× P

(S)

u
t−t′
→ u

)

=
∑

t>0 t× P
(S)

u
t
→u

−
(

∑

t>0 P
(S)
+ (t)

)

×

(

∑

t′>0(t+ t′)P
(S)

u
t′
→u

)

Let A(S) =
∑

t>0 t × P
(S)

u
t
→u

. Then, E
(S)
c = A(S) − E

(S)
c × Eu(S) − P

(S)
+ × A(S). Then, E

(S)
c =

A(S)
(

1−P
(S)
+

)

1+Eu(S)
and E(S)(W ) = 1+(W−1)E

(S)
c

(P
(S)
+ )W−1

.
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We now explain how we numerically approximate the values of Eu(S) and A(S). Let ε be the desired

precision. Consider for some value T the difference between Eu(S) and
∑

0<t<T P
(S)

u
t
→u

. We have P
(S)

u
t
→u

=
∏

Pq∈S
P q

u
t
→u

and P q

u
t
→u

the probability that a processor that was UP at time 0 is UP at time t without

having been DOWN . For a processor Pq ∈ S, let Mq =

[

P
(q)
u,uP

(q)
u,r

P
(q)
r,uP

(q)
r,r

]

. Then, P q

u
t
→u

= (M t
q)[0, 0]. We

obtain P q

u
t
→u

= µ(λq
1)

t + ν(λq
2)

t with µ, ν ≥ 0, µ + ν = 1 and λq
1 > λq

2 eigenvalues of Mq. Then,

P q

u
t
→u

≤ (λq
1)

t. We obtain P
(S)

u
t
→u

≤
(

∏

Pq∈S
λq
1

)t

and
∑

t≥T P
(S)

u
t
→u

≤
(

∏

Pq∈S
λq
1

)T

× 1
1−

∏

Pq∈S λ
q
1
. Let

Λ =
∏

Pq∈S
λq
1. We obtain that T > ln(ε(1−Λ))

ln(Λ) implies Eu(S)−
∑

0<t<T P
(S)

u
t
→u

≤ ε. Thus, we can compute

in polynomial time an approximation of Eu(S) at ε in polynomial time.

Similarly, we obtain A(S) −
∑

0<t<T t × P
(S)

u
t
→u

≤ ε as soon as ΛT
(

T
1−Λ + Λ

(1−Λ)2

)

≤ ε. Therefore

A(S) can be approximated with precision ε in polynomial time. ⊓⊔

We conclude this section with the following remark: when scheduling with heterogeneous processors,

the most widely used approach is HEFT [43], a list-schedule heuristic that assigns the next ready task to the

processor that will complete its execution first (given already taken decisions). Theorems 3 and 4 provide

an estimation of the time needed to complete a given workload on one processor (INDEPENDENT model)

and on a set of processors (TIGHTLY-COUPLED model), which is exactly what is needed to design HEFT-

like heuristics. Such heuristics give priority to completion times, and will be compared with others giving

priority to reliability.

6 Online heuristics

In this section, we propose heuristics to address the online version of the problem. Conceptually, we can

distinguish three main classes of heuristics:

Passive heuristics that conservatively keep current processors active as long as possible: the current con-

figuration is changed only when one of the enrolled processors becomes DOWN . However, a worker

that has not become DOWN but has already received task data, can reuse that data if the scheduler

reassigns tasks to it.

Dynamic heuristics that may change configuration on the fly even if no processor fails, while preserving

ongoing work. More precisely, if a processor is engaged in a computation, it finishes it; if it is engaged

in a communication, it finishes it together with the corresponding computation. But otherwise, tasks

can be freely reassigned among processors, whether already enrolled or not. Intuitively, the idea is to

benefit from, say, a fast and reliable resource that has just become UP , while not risking losing part

of the work already completed for the current iteration.

Proactive heuristics that may change configuration on the fly even if no processor fails and possibly abort-

ing ongoing computation (i.e., if a better configuration is found). This makes it possible for an iteration

to never complete. A criterion must thus be derived to decide whether and when such an aggressive

reconfiguration is worthwhile.

In the INDEPENDENT model, the dynamic strategy is the most sensible. A passive strategy would be

unnecessarily restrictive. Assigning all m tasks once and for all without possible reassignment does not

make sense because better processors may become available, and assigning one of more independent tasks to

these processors is a better choice. A proactive strategy could be useful to handle the well-known problems

of “straggler tasks,” i.e., last tasks in the schedule that determine iteration time but that are assigned to

processors that turn out to be slow. In this case, these tasks should be terminated and reassigned to faster
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processors, which could have significant benefit when m is small. However, a simpler and popular solution

is to use a dynamic strategy but to replicate these last tasks on one or more UP processors, canceling all

remaining replicas when one of them completes. When considering communications, a simple approach

would be to give priority to one replica by task. Task replication may seem wasteful, but it is a commonly

used technique in desktop grid environments in which resources are plentiful and often free of charge.

While never detrimental to execution time (provided communication is throttled to one replica per task), task

replication is more beneficial when m is small. We use the following replica strategy in the INDEPENDENT

model. A task is replicated whenever there are more processors in the UP state than there are remaining

tasks to execute. We limit the number of additional replicas of a task to two, which has been used in previous

work [34] and works well in our experiments (better performance than with only one additional replica, not

significantly worse performance than with more additional replicas). For simplicity, we describe all our

heuristics assuming no task replication, but it is to be understood that there are up to 3m tasks (instead of m)

distributed by the master during each iteration; the m original tasks are given priority over replicas, which

are scheduled only when room permits.

In the TIGHTLY-COUPLED model, it is the dynamic strategy that is too restrictive, since it would have to

wait until an iteration completes (i.e., all computations and communications terminate) to change to a better

configuration. Instead, proactive strategies can forcefully terminate computation/communication during an

iteration to take advantage of newly available fast/reliable processor. Our proactive heuristics are defined by

a pair (criterion, passive heuristic). When a new configuration is computed using the heuristic, it is compared

to the current configuration according to the criterion. If the new configuration is better than the current one,

then it is launched, leading to new communications and task allocations. Otherwise, the execution continues

with the current configuration for an additional time slot. Note that the heuristics in the works reviewed in

Section 2 are for the most part passive because they are designed for independent tasks. The exception is the

“time-out” heuristic in [34] in which a task that has not completed by some arbitrary deadline is considered

lost. Our proactive heuristics do not use such a time-out, as it is difficult to define its value in practice for

a given application and platform, but instead consider a task lost when a better processor is available for

running it.

All heuristics assign tasks to processors (that must be in the UP state) one-by-one, until m tasks are

assigned. More precisely, at time slot t, there are enrolled processors that are currently active, either receiv-

ing some message, or computing a task, or both. Let m′ be the number of tasks whose communication or

computation has already begun at time t. Since ongoing activities are never terminated, there remain m−m′

tasks to assign to processors. The objective of the heuristics is to decide which processors should be used

for these tasks.

The dynamic heuristics below fall into two classes, random and greedy. Most of these heuristics rely on

the assumption that processor availability follows a Markov process, as discussed in Section 5. In real-world

scenarios, these heuristics can be used provided empirical Markov approximations of the stochatic processes

that determines processor availabilities can be derived. Before describing the heuristics, we make a short

digression and start with a brief presentation of some random heuristics, which are both simple and natural,

and will be used as reference for comparisons.

6.1 Random heuristics

The heuristics described in this section use randomness to select which processor, among the ones that

are in the UP state, will execute the next task. The simplest heuristic, RANDOM, assigns the next task

to a processor picked randomly using a uniform probability distribution. Going beyond RANDOM, it is

possible to assign a weight to processor Pq, in a view to giving larger weight to more “reliable” processors.

Processors are picked with a probability equal to their normalized weights. We propose four ways of defining

these weights:
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1. Long time UP : the weight of Pq is P
(q)
u,u, the probability that Pq remains UP , hence favoring proces-

sors that stay UP for a long time.

2. Likely to work more: the weight of Pq is P
(q)
+ , the probability that Pq will be UP another time slot

before crashing (see Section 5), hence favoring processors with high probability of becoming UP

again before crashing.

3. Often UP : the weight of Pq is π
(q)
u , the steady-state fraction of time that Pq is UP , hence favoring

processors that are UP more often.

4. Rarely DOWN : the weight of Pq is (1−π
(q)
d ), hence favoring processors that are DOWN less often.

We call the corresponding heuristics RANDOM1, RANDOM2, RANDOM3, and RANDOM4. For each of

these four heuristics Pq’s weight can be divided by wq, attempting to account for processing speed as well

as reliability. We thus obtain four additional variants, designed by the suffix ’W’.

In the TIGHTLY-COUPLED model, due to the large number of heuristics to compare, only one of theses

four heuristics is evaluated.

6.2 Dynamic heuristics for the INDEPENDENT model

We propose four general greedy heuristics, each of which can be enhanced to account for network con-

tention.

6.2.1 MCT (Minimum Completion Time)

Assigning a task to the processor that can complete it the soonest is the optimal policy in the offline case

without network contention (Proposition 2). We apply MCT here as follows. For each processor Pq we

compute Delay(q), the delay before Pq finishes its current activities, and after which it could be enrolled for

one of the m−m′ remaining tasks to be scheduled. In addition to processors finishing ongoing work, other

processors could need to receive all or part of the program. Because of processors becoming RECLAIMED ,

we cannot exactly compute Delay(q). As a first approach, we estimate it assuming that Pq remains in the

UP state and that there is no network contention whatsoever. We then greedily assign each of the remaining

m −m′ tasks to processors, picking each time the processor with the smallest task completion time. More

formally, for each processor Pq, let nq be the number of tasks already assigned to it (out of the m − m′

tasks), and let CT (Pq, nq) be the estimation of its completion time:

CT (Pq, nq) = Delay(q) + Tdata +max(nq − 1, 0)max(Tdata, wq) + wq . (1)

MCT assigns the next task to processor Pq0 , where q0 = ArgMin{CT (Pq, nq + 1)} .
MCT with contention – The estimated completion time in Equation 1 does not account for network con-

tention (caused by the master’s limited network capacity). Because of the overlap between communications

and computations, it is difficult to predict network traffic. Instead, we use a simple correcting factor, and

replace Tdata by
⌈

nactive

ncom

⌉

Tdata, where nactive denotes the number of active processors, i.e., those processors

that have been assigned one or several of the m −m′ tasks. The nactive counter is initialized to zero and is

incremented when a task is assigned to a newly enrolled processor. The intuition is that this counter mea-

sures the average slowdown encountered by a worker when communicating with the master. This estimation

is simple but pessimistic since all scheduled communications do not necessarily take place simultaneously.

We derive the new estimation:

CT (Pq, nq) = Delay(q) +
⌈

nactive

ncom

⌉

Tdata +max(nq − 1, 0)max(
⌈

nactive

ncom

⌉

Tdata, wq) + wq (2)

We call MCT∗ the version of the MCT heuristic that uses the above definition of CT (Pq, nq).
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Expected MCT – Given a workload (i.e., a number of needed time-slots of computation) CT (Pq, nq),
Theorem 3 gives the value of E(q)(CT (Pq, nq)), the expected number of time-slots needed for Pq to be

UP during CT (Pq, nq) times-slots without becoming DOWN in between. Using this expectation as the

criterion for selecting processors, and depending on whether the correcting factor on Tdata is used, we obtain

one new version of MCT and one new version of MCT∗, which we call EMCT and EMCT∗, respectively.

6.2.2 LW (Likely to Work)

We build heuristics that consider the probability that a processor Pq, which is UP , will be UP again at

least once before becoming DOWN . This probability, P
(q)
+ , is given by Lemma 1. We assign the next

task to processor Pq0 with the highest probability of being UP for at least the estimated number of needed

time-slots to complete its workload, before becoming DOWN :

q0 = ArgMax
{

(P
(q)
+ )CT (Pq ,nq+1)

}

.

Therefore, we first estimate the size W of the workload and then the probability that a processor will be in

the UP state W time-slots without becoming DOWN in between. Using Equation 2 instead of Equation 1,

one obtains the LW∗ heuristic.

6.2.3 UD (Unlikely Down)

Here, we estimate the number N of time-slots needed for a processor to complete its workload, knowing

that it can become RECLAIMED . Then we compute the probability that it will not become DOWN for

N time-slots. Given that Pq starts in the UP state, the probability that it does not go to the DOWN state

during k time-slots is:

P
(q)
UD(k) =

[

1 1
]

.

[

P
(q)
u,u P

(q)
u,r

P
(q)
r,u P

(q)
r,r

]k−1

.

[

1
0

]

.

We approximate this expression by forgetting the state of Pq after the first transition:

P
(q)
UD(k) = (1− P

(q)
u,d)



1−
P

(q)
u,dπ

(q)
u + P

(q)
r,d π

(q)
r

π
(q)
u + π

(q)
r





k−2

.

We use this value with k = E(q)(CT (Pq, nq + 1)). UD assigns the next task to the processor Pq0 that

maximizes the probability of not becoming DOWN before the estimated number of time-slots needed for it

to complete its workload, counting the time-slots spent in the RECLAIMED state:

q0 = ArgMax{P
(q)
UD(E

(q)(CT (Pq, nq + 1)))} .

Using Equation 2 instead of Equation 1, one obtains the UD∗ heuristic.

6.3 Communication time evaluation

In the TIGHTLY-COUPLED model, all communications for the configuration are done in the same inter-

val of time. We then adapt the communication time evaluation. Let S be a set of enrolled workers.

For worker Pq ∈ S, let nq be the number of time-slots of communication needed to receive the ap-

plication program and all the data of its allocated tasks. Suppose first that |S| ≤ ncom. In this case,
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the expected communication time on worker Pq, Eq, can be estimated precisely reusing the result in the

previous section: Eq = E(Pq)(nq). We then estimate the expected communication time of the current

configuration as E
(S)
comm = maxPq∈S{E

(Pq)(nq)} . In the case |S| ≥ ncom, obtaining an estimate close

to the actual expected communication time seems out of reach. Instead, we use a coarser estimation:

E
(S)
comm = max

{

maxPq∈S

{

E(Pq)(nq)
}

,

∑

Pq∈S nq

ncom

}

.

Let P
(Pq)
ND (t) denote the probability that worker Pq that was UP at time t′ does not become DOWN be-

tween time t′ and time t′+t. The probability of success is then estimated as P
(S)
comm =

∏

Pq∈S
P

(Pq)
ND (E

(S)
comm) .

The expression for P
(S)
comm does not take into account the time needed after the end of all communications for

all workers to be UP simultaneously. The probability of success of an iteration is estimated by multiplying

the probability of success of the communications and the probability of success of the computations.

6.4 Passive heuristics for the TIGHTLY-COUPLED model

Passive heuristics assign tasks to workers, which must be in the UP state, one by one until m tasks are

assigned. Each task is assigned to a worker according to a criterion that defines the heuristic. As described

hereafter, we consider four different criteria: probability of success, expected completion time, estimated

yield, and estimated apparent yield.

• IP (Incremental: Probability of success) – This heuristic attempts to find configurations with high

probability of success. The next task is assigned to the worker such that the probability of success of all

currently assigned tasks (including the new one) is maximized. More precisely, consider the set S of workers

with at least one task already assigned. For each worker Pq, either in S or not, we compute the probability

P (S)(q) of success of the communication and the computation if the additional task is assigned to Pq, using

the results of Section 5: P (S)(q) = P (S∪{Pq})(Wq) × P
(S∪{Pq})
comm with Wq the maximal load in S ∪ {Pq}

with an additional task on Pq. We assign the next task to worker Pq0 , with q0 = ArgMax
{

P (S)(q)
}

. This

natural idea of the most reliable workers has been used for scheduling independent tasks in [19, 1, 46].

• IE (Incremental: Expected completion time) – This heuristic attempts to find fast configurations, with-

out considering reliability. The next task is assigned to the worker that minimizes the expected execution

time of the iteration. More precisely, consider the set S of workers with at least one task already assigned.

For each worker Pq, either in S or not, we compute the expected communication time E
(S∪{Pq})
comm and the

expected computation time E(S∪{Pq})(Wq) with an additional task on Pq. We obtain the expected dura-

tion of the iteration E(S)(q) = E
(S∪{Pq})
comm + E(S∪{Pq})(Wq). We assign the next task to worker Pq0 , with

q0 = ArgMin
{

E(S)(q)
}

. This idea of picking the fatest workers has been used for scheduling independent

tasks in [34].

• IY (Incremental: Expected yield) – This heuristic assigns the next task to the worker that maximizes

the yield of the configuration. The yield is the expected value of the inverse of the execution time of the

current iteration, which we estimate as follows. For a given configuration with probability of success P
and expected completion time E for an iteration that has already been running for t time slots, the yield is

estimated as Y = P
E+t

. Intuitively, we expect the yield to achieve a trade-off between reliability (probability

of success) and execution speed. Consider the set S of workers with at least one task already assigned.

For each processor Pq, either in S or not, we compute the expected yield with an additional task on Pq: let

P (S)(q) be the probability computed for heuristic IP, E(S)(q) be the expected completion time computed for

heuristic IE, and t be the time spent since the beginning of the current iteration. We assign the next task to

worker Pq0 , with q0 = ArgMax
{

P (S)(q)

t+E(S)(q)

}

. This general idea of trading off reliability for speed has been

used in the context of independent tasks in many previous works [34, 1, 10, 28] and has been formulated

in various ways (e.g., among the workers that have a high probability of successfully completing the extra
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task pick the one that can do it the fatest [1], compute a reasonable deadline by which the application

should complete so as to exclude workers that have a low probability of meeting that deadline and pick

the fastest worker that can meet it [34], pick the worker with the highest expected number of delivered

compute cycles [1]). The yield metric is a simple formulation of the same idea that we use in the context of

tightly-coupled application.

• IAY (Incremental: Expected apparent yield) – The yield takes into account the time already spent in the

current iteration. It could be worthwhile to consider only future work, i.e., the remaining time until iteration

completion. To this end we define the apparent yield as AY = P
E

. Using the same notations as for heuristic

IY, we assign the next task to processor Pq0 with q0 = ArgMax
{

P (S)(q)

E(S)(q)

}

.

6.5 Proactive heuristics for the TIGHTLY-COUPLED model

Our proactive heuristics are designed as follows. Consider an application executing on a platform using a

passive heuristic H and criterion C at some time t. The configuration config(t − 1) was selected by H at

time t′ ≤ t − 1 because of a configuration change due to a proactive decision, due to a worker becoming

DOWN , or due to the beginning of a new iteration. Let config1 = config(t′) = config(t − 1). At time

t′, the configuration was measured by criterion C with value c′. Suppose that by time t no worker in

this configuration has failed. Between t′ and t, some work may have been done: some communications

may be in process or completed, and computations may have started. Consequently, the measure of this

configuration given by C should be updated to account for the progress between t′ and t. Let c be the

updated value of criterion C for the current configuration. At step t, a new configuration is computed from

scratch using heuristic H , as if no task were allocated to any worker. Let config2 be this new configuration

and c2 its measure by C. If c ≥ c2, then the current configuration at time t − 1 is kept for another time-

slot: config(t) = config1. Otherwise, the current configuration is interrupted, and the new configuration is

config(t) = config2.

For certain criterion choices, a heuristic could diverge and continually change the configuration, even

with workers that are reliably UP . To avoid this divergence, proactive criteria have to respect the following

constraint: a given configuration that has been running for t + 1 time-slots must be better for the proactive

criterion than the same configuration running for t time slots. With this constraint, all possible configurations

are ordered by their value for the selected criterion at the beginning of the iteration, and a lower-ranked

configuration in this order cannot be chosen to replace the current configuration. As the number of possible

configurations is finite, no proactive heuristic can diverge. The four criteria used to define passive heuristics

in the previous section meet this constraint. However, AY (Apparent Yield) leads to many (unnecessary)

configuration changes before converging, while the other criteria should be stable. Hence, for the proactive

criterion C, we only retain P (Probability of success), E (Expected completion time) and Y (Expected yield).

Any passive heuristic H can be used as the building block for a proactive heuristic. We thus obtain 3 × 4
proactive heuristics named C-H where C ∈ {P, E, Y} and H ∈ {IP, IE, IY, IAY}, plus the RANDOM

heuristic.

7 Experiments

We have evaluated the heuristics described in the previous section using a discrete-even simulator for the

execution of application on volatile resources (The simulator is publicly available at http://graal.

ens-lyon.fr/˜fdufosse/changing_platforms.tar.gz). The simulator takes as input values

for all the parameters listed in Section 3, and it assumes that temporal processor availability follows a

Markov process.
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Table 2: Parameter values for Markov experiments.

parameter values

p 20
n 5, 10, 20, 40
ncom 5, 10, 20
wmin 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

For the simulation experiments, rather than fixing N , the number of time-slots, we instead fix the number

of iterations to 10. The quality of an application execution is then measured by the time needed to complete

10 iterations, or makespan. This equivalent problem is simpler to instantiate since it does not require choos-

ing meaningful N values, which would depend on the application and platform characteristics. We have

executed all heuristics presented above for several problem instances. For each problem instance we com-

pute the degradation from best (dfb) of each heuristic, i.e., the percentage relative difference between the

makespan achieved by the heuristic and that achieved by the best heuristic, all for that particular instance.

A value of zero means that the heuristic is best for the instance. We use this metric because makespans vary

widely between instances depending on processor availability patterns. We also count how often, over all

instances, each heuristic is the (or tied with the) best one, so that we can report on numbers of wins for each

heuristics.

All our experiments are for p = 20 processors. The Markov chain that characterizes processor Pq’s

availability is defined as follows. We uniformly pick a random value between 0.90 and 0.99 for each P
(q)
x,x

value (for x = u, r, d). We then set P
(q)
x,y to 0.5 × (1 − P

(q)
x,x), for x 6= y. An experimental scenario is

defined by the above and by three parameters: n, the number of tasks per iteration, ncom, the constraint

on the master’s communication bandwidth, and the wmin parameter, which is used as follows. For each

processor Pq, we pick wq uniformly between wmin and 10 × wmin. Tdata is set to wmin, meaning that the

fastest possible processor has a computation-communication ratio of 1. Tprog is set to 5 × wmin, meaning

that downloading the program takes 5 times as much time as downloading the data for a task. We define

experimental scenarios for each of the possible instantiations of (n, ncom, wmin) given the values shown in

Table 2. We must emphasize that our goal here is not to instantiate a representative model for a desktop grid

and application, but rather to create arbitrary but simple synthetic experimental scenarios that will highlight

inherent strengths and weaknesses of the heuristics. All heuristics are designed to achieve a given trade-off

between availability, speed and reliability. Using these heurisics directly in real-world situations requires

that empirical Markov approximations of the stochatic processes that determines processor availabilities be

derived.

7.1 INDEPENDENT model

For each possible instantiation of the parameters in Table 2, we create 247 random experimental scenarios as

described above. For each experimental scenario, we run 10 trials, varying the seed of the random number

generator used to determine Markov state transitions. We compute average dfb values for each heuristic

based over these 10 trials, for each experimental scenarios. The total number of generated problem instances

is 4× 3× 10× 247× 10 = 296, 400.

Table 3 shows average dfb and number of wins results, averaged over all experimental scenarios and

sorted by increasing dfb values, i.e., from best to worst. In spite of the averaging over all problem instances,

the trends are clear. All four MCT algorithms perform best, followed closely behind by the UD, and

then the LW algorithms. The random algorithms perform significantly worse. Regarding these algorithms,

one can note that, expectedly, biasing the probability that a processor Pq is picked by wq is a good idea
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Table 3: Results over all problem instances

Algorithm Average dfb #wins

EMCT 4.77 80320

EMCT∗ 4.81 78947

MCT 5.35 73946

MCT∗ 5.46 70952

UD∗ 7.06 42578

UD 8.09 31120

LW∗ 11.15 28802

LW 12.74 19529

RANDOM1W 28.42 259

RANDOM2W 28.43 301

RANDOM4W 28.51 278

RANDOM3W 31.49 188

RANDOM3 44.01 87

RANDOM4 47.33 88

RANDOM1 47.44 36

RANDOM2 47.53 73

RANDOM 47.87 45

(i.e., RANDOMxW always outperforms RANDOMx). The other differences in the definitions of the random

algorithms do not lead to significant performance differences. On average on all problem instances, EMCT

algorithms have makespans 10% smaller than the MCT algorithms, which shows that taking into account

the probability of state changes does lead to improved performance.

To provide more insight than the overall averages shown in Table 3, Figure 1 plots dfb results averaged

for distinct wmin values, shown on the x-axis. We present only results for the four MCT heuristics and for

those heuristics that do account for network contention (i.e., with a ∗), and leave out the random heuristics.

Note that increasing wmin amounts to scaling the unit time, meaning that availability state transitions occur

more often during the execution of a task. In other words, the right hand side of the x-axis in Figure 1 corre-

sponds to more difficult problem instances. Indeed, the larger wmin, the higher the probability that a task’s

processor experiences a state transition. Therefore, as wmin increases, it becomes increasingly important to

estimate the negative impacts of the DOWN and RECLAIMED states: the most powerful processor may

Table 4: Results for contention-prone experiments

Communication times ×5

Algorithm Average dfb

EMCT∗ 3.87

MCT∗ 4.10

UD∗ 5.23

EMCT 6.13

UD 6.42

MCT 7.70

LW∗ 8.76

LW 10.11

Communication times ×10

Algorithm Average dfb

UD∗ 2.76

UD 3.20

EMCT∗ 3.66

LW∗ 4.02

MCT∗ 4.22

LW 4.46

EMCT 8.02

MCT 15.50
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Figure 1: Averaged dfb results vs. wmin.

no longer be the best choice if it has a higher probability of going into the states RECLAIMED or DOWN .

The two EMCT algorithms take into account the probability that a processor enters the RECLAIMED

state. We see that they overtake the MCT algorithms when wmin becomes larger than 3. The UD and

LW algorithms also take into account the probability that a processor goes DOWN . UD heuristics consis-

tently outperform their LW counterparts. Also, UD (slightly) overtakes EMCT as soon as wmin = 7. We

conclude that when the probability of state transitions rises one must use heuristics that explicitly take into

account that processors can go in the states RECLAIMED and DOWN .

In our results, we do not see much difference between the original versions of the heuristics and the

versions that try to account for network contention, i.e., the heuristics that have a ‘∗’ in their names. Part

of the reason may be that, as stated in Section 6.2.1, the correcting factor used to account for contention

is a very coarse approximation. However, our experimental scenarios correspond to compute-intensive

executions, meaning that processors typically spend much more time computing than communicating. We

ran a set of experiments for n = 20, ncom = 5, and wmin = 1, but with Tdata = 5wmin and Tprog = 25wmin,

i.e., with communication times 5 times larger than those in our base set of experimental scenarios. Results

averaged over 100 such “contention-prone” experimental scenarios (each of which is ran for 10 trials) are

shown in the left-hand side of Table 4. The right-hand side shows similar results for communication that

are 10 times larger than those in our base set of scenarios. These results confirm that, as the scenario

becomes more communication intensive, those algorithms that account for network contention outperform

their counterparts.
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7.2 TIGHTLY-COUPLED model

For the TIGHTLY-COUPLED model, we define our experimental space as (m,ncom, wmin) with m ∈ {5, 10},

ncom ∈ {5, 10, 20}, and wmin ∈ {1, 2, . . . , 10}.

7.2.1 Results for m = 5

Table 5: Results with m = 5 tasks.

Heuristic #fails %diff %wins %wins30 stdv

Y-IE 2 -11.82 72.58 92.09 0.42

P-IE 2 -10.50 70.98 91.19 0.44

E-IAY 4 -10.40 64.75 85.15 0.77

E-IY 4 -3.40 59.91 81.64 0.80

IE 1 0.00 100.00 100.00 0.00

IAY 2 13.59 51.07 76.42 1.93

E-IP 4 19.35 47.73 69.69 0.98

IY 2 24.22 45.26 70.85 1.96

IP 2 52.03 34.79 58.54 2.11

E-IE 5 53.93 39.57 64.51 2.57

Y-IAY 3 99.75 53.89 70.77 5.55

Y-IY 3 113.01 49.22 66.80 5.73

P-IAY 3 125.27 50.28 67.33 6.08

Y-IP 2 145.05 38.56 55.54 5.90

P-IY 3 145.78 42.54 59.66 6.22

P-IP 2 176.92 36.92 52.00 6.61

RANDOM 0 2124.42 0.00 0.20 22.54

Heuristic #fails %diff %wins %wins30 stdv

Y-IE 2 -11.82 72.58 92.09 0.42

P-IE 2 -10.50 70.98 91.19 0.44

E-IAY 4 -10.40 64.75 85.15 0.77

E-IY 4 -3.40 59.91 81.64 0.80

IE 1 0.00 100.00 100.00 0.00

IAY 2 13.59 51.07 76.42 1.93

E-IP 4 19.35 47.73 69.69 0.98

IY 2 24.22 45.26 70.85 1.96

IP 2 52.03 34.79 58.54 2.11

E-IE 5 53.93 39.57 64.51 2.57

Y-IAY 3 99.75 53.89 70.77 5.55

Y-IY 3 113.01 49.22 66.80 5.73

P-IAY 3 125.27 50.28 67.33 6.08

Y-IP 2 145.05 38.56 55.54 5.90

P-IY 3 145.78 42.54 59.66 6.22

P-IP 2 176.92 36.92 52.00 6.61

RANDOM 0 2124.42 0.00 0.20 22.54

Table 5 shows results for m = 5 tasks, with heuristics sorted by decreasing %diff. The number of

failures for all heuristics is shown in the first column of the table and is at most 5 (recall that IS, the reference

heuristic, only fails for 1 instance). Consequently, although some heuristics fail on some scenarios, these

failures do not have a large impact on our results.

These results show the efficiency of all our heuristic, when compared with the RANDOM Heuristic.

RANDOM is on average more than 20 times worse than IE while all other heuristics have a %diff less than

200%. As seen in the table, only 4 heuristics lead to a %diff value lower than that obtained by IE, with

3 of these heuristics more than 10 points lower. These 4 heuristics are all proactive. We conclude that

the best proactive heuristics are significantly better than the best passive heuristics. Several observations

can be made on the results in the table. A first one is that using the yield as a heuristic or a criterion is

better than using the probability of success. In other terms, heuristic C-IY is better than heuristic C-IP, and

heuristic Y-H is marginally better than P-H (in this case an inspection of the simulation traces shows that

Y-H and P-H lead to mostly identical executions). Everything else being equal, considering the yield is

better than considering the probability of success because it accounts for the processor computing speeds in

addition to their reliability. A second observation is that heuristic C-IAY is better than heuristic C-IY, thus

confirming that the “apparent yield” has merit and is a direct improvement of the yield metric. Anecdotally,

while E-IY and E-IAY obtain similar results for %wins and %wins30, E-IAY is significantly better than

E-IY on average. A third observation is that although Y-IE and P-IE lead to good results, all other proactive
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heuristics with the same criteria (i.e., Y-H and P-H) rank last, with %diff values reaching 100%. Finally,

the key observation is that the best heuristics (the top 5 heuristics, including the reference IE) all account

for expected execution time either as a criterion for selecting a new configuration (E-IAY, E-IY) or as a

processor selection mechanism (Y-IE, P-IE, IE). A seemingly sensible expectation is thus that E-IE would

be very efficient. But instead, E-IE leads to poor results, with on average makespan almost more than 50%

longer than that of IE, the fourth lowest %wins value and the fifth lowest %wins30 value. The reason for

these poor aggregate results is that E-IE leads to inefficient schedules for problem instances in which the

fastest processor is unreliable.

Table 6: Results with m = 10 tasks for the best eight heuristics.

Heuristic #fails %diff %wins %wins30 stdv

Y-IE 141 -10.33 71.35 88.42 0.54

P-IE 141 -8.62 69.64 87.23 0.55

E-IAY 178 -6.10 66.62 81.93 1.58

E-IY 176 8.04 61.90 77.87 3.07

E-IP 168 29.68 55.12 71.86 3.01

IAY 152 136.65 46.98 69.31 14.76

IY 152 147.77 42.06 64.47 14.76

7.2.2 Results for m = 10

In this section we discuss results for m = 10 tasks, but only for the reference IE and those 7 heuristics

that achieve a %diff value below 50% (the largest such value being in fact below 25%): Y-IE, P-IE, E-IAY,

E-IY, IAY, E-IP and IY. Results are shown in Table 6. Only two of these heuristics do not consider expected

completion time as a criterion: IAY and IY. These two heuristics rank reasonably high in terms of %diff with

m = 5 tasks, but are over 130% with m = 10 tasks. The ranking of the heuristics is almost unchanged when

compared to the m = 5 results, even if %diff values are lower. When for m = 5, E-IY leads to a negative

%diff value, for m = 10 this value becomes positive. For m = 10 only three heuristics achieve positive

%diff values: Y-IE, P-IE and E-IAY. With m = 10, most heuristics fail for more than 5% of the problem

instances. Given that IE is the most robust heuristic, it should come to no surprise that those proactive

heuristics that use IE lead to the lowest number of failures. One conclusion from these results is that Y-IE

is only slightly less robust than IE (failing on 4.7% of instances as opposed to 2.7% for IE) but leads to

significantly better performance with a %diff value above 11%, leading to a lower makespan for more than

72% of the instances, and leading to a makespan more than 30% larger in less than 8% of the instances.

Figure 2 shows %diff values versus wmin for m = 10 tasks. wmin is a synthetic parameter defined to

instantiate problem instances. Essentially a larger wmin value means longer tasks and longer data transfers,

leading to a more “difficult” instance. The results show that Y-IE is the best or close to the best heuristic up

to wmin ≈ 8. For large values of wmin, it is outperformed by other several other heuristics, such as P-IE, but

also by the reference heuristic IE. IE is the best option for large values of wmin! An intuitive explanation is

that when the instance is difficult, meaning that the probability of success is low due to long computations

and communications, a good way to obtain a short makespan is to try to find the fastest workers and “hope

for the best.” When looking at the whole wmin range, P-IE appears like a good alternative to Y-IE. For low

wmin values, it outperforms IE significantly, and for large wmin it is outperformed by it only marginally.

Recall from Table 6 that Y-IE and P-IE experience exactly the same number of failures (141 failures out of

the 3,000 instances).
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8 Conclusion

In this paper, we have studied the problem of scheduling master-worker iterative applications on volatile

platforms in which processors can experience failures or be temporarily reclaimed by their owners. A

unique aspect of our work is that we model the fact that communication between the master and the workers

is subject to a bandwidth constraint, e.g., due to the limited capacity of the master’s network card. Another

key contribution is that we deal with both independent and tightly-coupled tasks, thereby covering a very

large class of scientific applications.

In this context, we have made a theoretical contribution by characterizing the computational complex-

ity of the offline problems (INDEPENDENT and TIGHTLY-COUPLED models), which turns out to be both

NP-hard. Interestingly, without any bandwidth constraint, the INDEPENDENT problem becomes solvable

in polynomial time. By assuming a Markov model of processor availability, we have been able to derive

a closed-form formula for the expectation of the time needed by a volatile worker to complete a set of

tasks in the INDEPENDENT model, and to provide an analytical approximation for the TIGHTLY-COUPLED

model. We have then proposed several online scheduling heuristics. For the INDEPENDENT model, heuris-

tics EMCT, EMCT*, UD, UD* use the evaluation of the expected computation time to make scheduling

decisions. In the TIGHTLY-COUPLED model, all heuristics (expect random ones) also use this evaluation.

Some heuristics also use a contention-correcting factor as a way to account for the constraint on the master’s

bandwidth (namely EMCT*, LW*, UD*). The evaluation of the heuristics in simulation has led to the

following conclusions:

• Our failure-aware heuristics deliver better performance than classical heuristics a ssoon as the proba-

bility that a task is subject to processor state transitions becomes non negligible;

• Our contention-correcting factor improves performance on contention-prone platforms, and does not

degrade performance otherwise;

• For the INDEPENDENT model, the EMCT* heuristic delivers overall good performance, leading to

a 10% reduction over makespans achieved by MCT, the optimal algorithm for the contention-free

offline case. However, EMCT* is outperformed by UD* in scenarios that exhibit very large state

transition probabilities when compared to task duration, or a network with heavy contention.

• For the TIGHTLY-COUPLED model, the passive heuristic IE is the most robust, which is why we have

used it as a reference, but it does not lead to the best makespans. Heuristic Y-IE, which attempts to

optimize expected execution time while proactively deciding to change the set of enrolled processors

based on yield, leads to the best average results. Heuristic P-IE, which changes configuration based

on probability of success, leads to more stable performance across our set of experimental problem

instances as it is never significantly outperformed by IE. The conclusion is that the best approach is

to use a proactive heuristic that selects processors to maximize expected execution time and changes

configuration based on yield or probability of success.

Altogether, computing the expectation of the time needed by a set of workers to complete a given work-

load —either expressed as an exact closed form or an approximated expression— has enabled us to design

heuristics that significantly outperform classical heuristics.
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