
HAL Id: hal-00923953
https://hal.inria.fr/hal-00923953

Submitted on 30 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost-Optimal Execution of Boolean Query Trees with
Shared Streams

Henri Casanova, Lipyeow Lim, Yves Robert, Frédéric Vivien, Dounia Zaidouni

To cite this version:
Henri Casanova, Lipyeow Lim, Yves Robert, Frédéric Vivien, Dounia Zaidouni. Cost-Optimal Execu-
tion of Boolean Query Trees with Shared Streams. 28th IEEE International Parallel

Distributed Processing Symposium, May 2014, Phoenix, United States. IEEE, 2014. <hal-00923953>

https://hal.inria.fr/hal-00923953
https://hal.archives-ouvertes.fr

Cost-Optimal Execution of
Boolean Query Trees with Shared Streams

Henri Casanova1, Lipyeow Lim1, Yves Robert2,3, Frédéric Vivien2, and Dounia Zaidouni2
1. University of Hawai‘i at Manoa, Honolulu, USA

{henric|lipyeow}@hawaii.edu
2. École Normale Supérieure de Lyon & INRIA, France

{Yves.Robert|Frederic.Vivien|Dounia.Zaidouni}@ens-lyon.fr
3. University of Tennessee Knoxville, USA

Abstract—The processing of queries expressed as
trees of boolean operators applied to predicates on
sensor data streams has several applications in mobile
computing. Sensor data must be retrieved from the
sensors, which incurs a cost, e.g., an energy expense
that depletes the battery of a mobile query processing
device. The objective is to determine the order in
which predicates should be evaluated so as to shortcut
part of the query evaluation and minimize the ex-
pected cost. This problem has been studied assuming
that each data stream occurs at a single predicate. In
this work we remove this assumption since it does not
necessarily hold in practice. Our main results are an
optimal algorithm for single-level trees and a proof
of NP-completeness for DNF trees. For DNF trees,
however, we show that there is an optimal predicate
evaluation order that corresponds to a depth-first
traversal. This result provides inspiration for a class
of heuristics. We show that one of these heuristics
largely outperforms other sensible heuristics, includ-
ing a heuristic proposed in previous work.

I. Introduction
There has been a recent explosion in the use of per-

sonal mobile devices for “mobile sensing” applications.
For instance, smartphones are equipped with increas-
ingly sophisticated sensors (e.g., GPS, accelerometer,
gyroscope, microphone) that enable near real-time sens-
ing of an individual’s activity or environmental con-
text. A smartphone can then perform embedded query
processing on the sensor data streams, e.g., for social
networking [1], remote health monitoring [2]. The con-
tinuous processing of streams, even when data rates are
moderate (such as for GPS or accelerometer data), can
cause commercial smartphone batteries to be depleted in
a few hours [3]. It is thus crucial to reduce the amount
of sensor data acquired for query processing, so as to
reduce energy consumption and lengthen battery life.

In this work we study the problem of minimizing the
expected sensor data acquisition cost (e.g., number of
bytes, energy consumption due to byte transfers) when
evaluating a query expressed as a tree of conjunctive
and disjunctive boolean operators applied to boolean

predicates. Each predicate is computed over data items
from a particular data stream generated periodically by
a sensor, and as a certain probability of evaluating to
true. The evaluation of the query stops as soon as a
truth value has been determined, possibly shortcircuiting
part of the query tree. A “push” model by which sensors
continuously transmit data to the device maximizes
the amount of acquired data and is thus not practical.
Instead, a “pull” model has been proposed [4], by which
the query engine running on the device carefully chooses
the order and the numbers of data items to request from
each individual sensor. This choice is based on a-priori
knowledge of operator costs and probabilities, which
can be inferred based on historical traces obtained for
previous query executions. Such intelligent processing is
possible thanks to the programming and data filtering
capabilities that are emerging on many wearable sensor
platforms (e.g., the SHIMMER platform [5]) so that data
storage and transmission algorithms can be programmed
“over the air.”

Two example query trees are shown in Figure 1, as-
suming streams named A, B, and C, which are assumed
to produce integer data items. Each leaf corresponds to a
boolean predicate. A predicate may involve no operator,
e.g., “C < 3” is true if the last item from stream C is
strictly lower than 3, or based on an arbitrary operator
(in this example MAX or AVG) which is applied to a
time-window for a stream, e.g., “AVG(A, 5) < 70” is true
if the average of the last 5 items from A is strictly lower
than 70).

The problem of computing the truth value of a boolean
query tree while incurring the minimum cost is known as
Probabilistic AND-OR Tree Resolution (PAOTR) and
has been studied extensively in the literature. In par-
ticular, [6] provides both a survey of known theoretical
results and several new results, all assuming that each
data stream occurs in at most one leaf of the query tree.
This assumption is termed read-once therein. In this
case, for AND-trees (i.e., single-level trees with an AND
operator at the root node) a simple O(n logn) greedy

OR

AND

l3 : C < 3

l1 : AVG(A, 5) < 70

l2 : MAX(B, 4) > 100

(a)

AND AND

OR

AVG(A, 5) < 70 MAX(A, 10) > 80C < 3MAX(B, 4) > 100

(b)

Figure 1. Two query tree examples: (a) a read-once query; (b) a shared query.

algorithm produces an optimal leaf evaluation order (n
is the number of leaves in the query tree) [7]. For DNF
trees (i.e., collections of AND-trees whose roots are the
children of a single OR node), a O(n logn) depth-first
traversal of the trees that reuses the algorithm in [7]
to order leaves within each AND produces an optimal
evaluation order [6]. For general AND-OR-trees the
complexity of the problem is open. The example query
tree in Figure 1(a) is a read-once query since no stream
occurs in two leaves.

By contrast, in this work we study the more general
case, which we term shared, in which a stream can
occur in multiple leaves. The example in Figure 1(b)
corresponds to a shared case since stream A occurs in
two leaves. Such queries are fairly common in, among
others, telehealth scenarios. For example, an alert may
be generated either if the heart rate is high (e.g., > 100)
and the accelerometer is stationary or if the heart rate
is low and SPO2 (blood oxygen saturation) is low. It is
thus not difficult to imagine sensor streams appearing
in multiple leaf predicates. The device that processes
the query acquires data items from streams and holds
each data item in memory until that data item is no
longer relevant. A data item from a stream is no longer
relevant when it is older than the maximum time-window
used for that stream in the query. Each time a leaf of
the query must be evaluated, one can then compute the
number of data items that must be retrieved from the
relevant stream given the time-windows of the operator
applied to that stream and the data items from that
stream that are already in the device’s memory. For
example, considering the query in Figure 1(b), assume
the predicate “AVG(A, 5) < 70” is evaluated first, thus
pulling 5 items from stream A. If later the predicate
“MAX(A, 10) > 80” needs to be evaluated then only 5
additional items must be pulled.

The shared scenario is important in practice, and has
been introduced and investigated in [4]. In that work
the authors do not give theoretical results, but instead
develop heuristics to determine an order of operator
evaluation that hopefully leads to low data acquisition
costs. To the best of our knowledge, the complexity
of the PAOTR problem in the shared case has never
been addressed in the literature, likely because re-using

stream data across leaves dramatically complicates the
problem. When picking a leaf evaluation order, inter-
dependences between the leaves must be taken into
account. In fact, even when given a leaf evaluation order,
computing the expected query cost is intricate while this
same computation is trivial in the read-once case.

In this work we study the PAOTR problem in the
shared case and make the following contributions:
• For AND-trees we give an optimal algorithm (which

is much more involved than the optimal algorithm
in the read-once case);

• For DNF trees we show that the problem is NP-
complete; but we are able to prove that there exists
an optimal leaf evaluation order that is depth-first;

• For DNF trees we develop heuristics that we eval-
uate in simulation and compare to the optimal
solution (computed via an exhaustive search) and
to the heuristic proposed in [4].

In Section II we discuss models, the problem state-
ment, and related work. We study AND-trees and DNF
trees in Section III and Section IV, respectively. Sec-
tion V concludes the paper with a brief summary of
our findings and perspectives on future work. Detailed
proofs of some of our theoretical results are provided in
a technical report [8].

II. Problem Statement and Examples
To define our problem we reuse the formalism and

terminology in [6]. A query is an AND-OR tree, i.e., a
rooted tree whose non-leaf nodes are AND or OR opera-
tors, and whose leaf nodes are labeled with probabilistic
boolean predicates. Each predicate is evaluated over
data items generated by a data stream. The evaluation
of each predicate has a known success probability (the
probability that the predicate evaluates to TRUE) and
a cost. In practice, the success probability can be esti-
mated based on historical traces obtained from previous
query evaluations. As in [6], we assume independent
predicates, meaning that two predicates at two leaf
nodes in a query are statistically independent. The cost
is determined by the number of data items required to
perform the evaluation and the evaluation cost per data
item for the stream. For instance, the cost of a data
item could correspond to the energy cost, in joules, of

acquiring one data item based on the communication
medium used for the stream and the data item size.

More formally, we consider a set of s streams, S =
{S1, . . . , Ss}. Stream Sk has a cost per data item of
c(Sk). A query on these streams, T , is a rooted AND-
OR tree with m leaves, l1, . . . , lm. Leaf lj has success,
resp. failure, probability pj , resp. qj = 1 − pj , and
requires the last dj items from stream S(j) ∈ S. The
objective is to compute the truth value of the root
of the query tree by evaluating the leaves of the tree.
Because each non-leaf node in a query tree is either an
OR or an AND operator, it may not be necessary to
evaluate all the leaves due to shortcircuiting. In other
words, as soon as any child node of an OR, resp. AND,
operator evaluates to TRUE, resp. FALSE, the truth
value of the operator is known and can be propagated
toward the root. For a given query, we define a schedule
as an evaluation order of the leaves of the query tree,
represented as a sorted sequence of the leaves.

We define the cost of a schedule as the expected
value of the sum of the costs incurred for all leaves that
are evaluated before the root’s truth value is determined.
For instance, consider the query in Figure 1(a), in which
leaves are labeled l1, l2, l3, and consider the schedule
l2, l3, l1. The query processing begins with the acquisi-
tion of the data items necessary for evaluating l2, which
has cost 4 · c(B). With probability p2, l2 evaluates to
TRUE, thus shortcircuiting the evaluation of l3. There-
fore, the expected evaluation cost of the OR operator
is: 4 · c(B) + q2 · c(C). If the OR operator evaluates
to FALSE, which happens with probability q2q3, then
the evaluation of l1 is shortcircuited. Otherwise, l1 must
be evaluated. The overall cost of the schedule is thus:
4 · c(B) + q2 · c(C) + (1− q2q3) · 5 · c(A). Recall that this
query tree is for a read-once scenario.

The PAOTR problem consists in determining a sched-
ule with minimum cost. The complexity of this problem
is unknown in the read-once case for general AND-
OR trees, while optimal polynomial-time algorithms are
known for AND-trees [7] and DNF trees [6]. In this
work, we focus on these two types of trees in the shared
case, seeking to develop optimal algorithms or to show
NP-completeness. We refer the reader to [6] for a detailed
review of the PAOTR literature. To the best of our
knowledge, the only work that has studied the shared
case is [4], in which a heuristic is proposed for DNF
trees. We evaluate this heuristic in Section IV-D. In the
next two sections we give examples of cost computations
for an AND-tree and a DNF tree both in the shared
case.

A. AND-tree example
Consider the AND-tree query depicted in Figure 2

with three leaves labeled l1, l2, and l3, for two streams A

and B. For each leaf (li), we indicate the stream (S(i)),
the number of data items needed from that stream to
evaluate the leaf (di), and the success probability (pi).
For instance, leaf l2 requires d2 = 2 items from stream
S(2) = A and evaluates to TRUE with probability
p2 = 0.1. We assume that retrieving a data item from
a stream has unitary cost, regardless of the stream.
There are 6 possible schedules for this tree, each schedule
corresponding to one of the 3! orderings of the leaves.
The optimal algorithm for read-once AND-trees sorts
the leaves by non-decreasing djc(S(j))/qj [7]. Because
1×c(A)
q1

= 1
1−0.75 = 4, 2×c(A)

q2
= 2

1−0.1 ≈ 2.22, and
1×c(B)
q3

= 1
1−0.5 = 2, this algorithm schedules leaf l3 first.

There are two possible schedules with l3 as the first leaf:
• l3, l1, l2 whose cost is: c(B)+p3×(c(A)+p1×c(A)) =

1 + 0.5× (1 + 0.75× 1) = 1.875; and
• l3, l2, l1 whose cost is: c(B) + p3 × (2× c(A) + p2 ×

0× c(A)) = 1 + 0.5× (2 + 0.1× 0) = 2.
However, another schedule, l1, l2, l3, has a lower cost:
c(A)+p1×(c(A)+p2×c(B)) = 1+0.75×(1+0.1×1) =
1.825. Therefore, the optimal algorithm for the PAOTR
problem for read-once AND-trees is no longer optimal
in the shared case.

B. DNF tree example
Figure 3 shows a DNF tree with three AND nodes,

for four streams A, B, C, and D. Each leaf requires only
one data item from a stream. Leaves are labeled l1 to l7,
in the order in which they appear in a given schedule.
This example is meant to illustrate the difficulty of the
PAOTR problem in the case of DNF trees in the shared
scenario. In particular, computing the cost of a schedule
is much more complicated than in the read-once scenario
due to inter-leaf dependencies. Let Cj be the cost of
evaluating leaf lj , and C the overall cost of the schedule.
We consider the 7 leaves one by one, in order:
Leaf l1 – The first leaf is evaluated: C1 = c(A).
Leaf l2 – This is the first leaf in its AND, no AND
has been fully evaluated so far, and l2 is the first
encountered leaf that requires stream B. Therefore, l2
is always evaluated, requiring a data item from stream
B: C2 = c(B).
Leaf l3 – This is the second leaf from its AND, no
AND has been fully evaluated so far, and l3 is the first

and

A[1]
0.75
l1

A[2]
0.1
l2

B[1]
0.5
l3

Figure 2. Example shared AND-tree.

or

and1 and2 and3

A[1]
l1

C[1]
l3

D[1]
l4

B[1]
l2

C[1]
l5

B[1]
l6

D[1]
l7

Figure 3. Example DNF tree.

encountered leaf that requires stream C. Therefore, a
data item from C is acquired if and only if l1 evaluates
to TRUE: C3 = p1c(C).
Leaf l4 – This is the third leaf from its AND, no
AND has been fully evaluated so far, and l4 is the first
encountered leaf that requires stream D. Therefore, one
data item is acquired from D if and only if l1 and l3 both
evaluate to TRUE: C4 = p1p3c(D).
Leaf l5 – This is the second leaf from its AND, and
AND1 has been fully evaluated so far. However, one of
the leaves of that AND, l3, requires a data item that
is also needed by l5, from stream C. If l3 has been
evaluated, then the evaluation cost of l5 is 0 because the
necessary data item from C has already been acquired
and is available “for free” when evaluating l5. If l3
has not been evaluated (with probability 1 − p1), it
means that AND1 has evaluated to FALSE. Then,
if l2 has evaluated to TRUE, l5 must be evaluated
thus requiring the data item from stream C. We obtain
C5 = (1− p1)p2c(C).
Leaf l6 – Since l2 is always evaluated the data item
from stream B required by l6 is always available for free:
C6 = 0.
Leaf l7 – This is the second leaf from its AND, and
AND1 and AND2 have been fully evaluated so far.
However, one of the leaves of AND1, l4, but none of
those of AND2, require the data item that is needed
by l7 from stream D. Therefore, l7 must be evaluated
and its evaluation is not free if and only if l4 has not
been evaluated, AND2 has evaluated to FALSE, and
the evaluation of AND3 went as far as l7. Therefore,
C7 = (1− p1p3)(1− p2p5)p6c(D).

Overall, we obtain the cost of the schedule:

T C = c(A) + c(B) + (p1 + (1− p1)p2)c(C)
+ (p1p3 + (1− p1p3)(1− p2p5)p6)c(D)

Given the complexity of the above cost computation, one
might expect the PAOTR problem to be NP-complete in
the shared case (recall that it is polynomial in the read-
once case). We confirm this expectation in Section IV.

III. AND trees
In this section, we focus on AND-trees. We have

seen in Section II-A that the simple greedy algorithm
proposed in [7] in the read-once case is not optimal in
the shared case. We propose an algorithm and we prove
that it is optimal. This algorithm is still greedy but
compares the ratios of cost to failure probability of all
sequences of leaves that use the same stream, instead of
only considering pair-wise leaf comparisons. We begin in
Section III-A with a preliminary result on the optimal
ordering of leaves that use the same stream.

A. Ordering same-stream leaves
In the example given in Section II-A, we considered

two schedules that begin with leaf l3. In the first schedule
leaf l1 precedes l2, while the converse is true in the second
schedule. Leaf l1 requires one data item from stream
A, while leaf l2 requires two data items from the same
stream. Therefore the first schedule is always preferable
to the second schedule: if we evaluate l1 before l2 and if
l1 evaluates to FALSE, then there is no need to retrieve
the second data item and the cost is lowered. A general
result can be obtained:

Proposition 1. Consider an AND-tree and a leaf li that
requires di data items from a stream S. In an optimal
schedule li is scheduled before any leaf lj that requires
dj > di data items from stream S.

Proof: This proposition is proven via a simple
exchange argument [8].

B. Optimal schedule
Consider an AND-tree with m leaves, l1, . . . , lm, for

s streams, S1, . . . , Ss. We define Lk = {lj |S(lj) = Sk},
i.e., the set of leaves that require data items from stream
Sk. Algorithm 1 shows a greedy algorithm (implemented
recursively for clarity of presentation) that takes as
input the Lk sets, an initially empty schedule ξ, and
an array of s integers, NItems, whose elements are all
initially set to zero. This array is used to keep track, for
each stream, of how many data items from that stream
have been retrieved in the schedule so far. Each call
to the algorithm appends to the schedule a sequence of
leaves that require data items from the same stream, in
increasing order of number of data items required. The
algorithm stops when all leaves have been scheduled. The
algorithm first loops through all the streams (the k loop).
For each stream, the algorithm then loops over all the
leaves that use that stream, taken in increasing order
of the number of items required. For each such leaf the
algorithm computes the ratio (variable Ratio) of cost
to probability of failure of the sequence of leaves up to
that leaf. The leaf with minimum such ratio is selected
(leaf lj0 in the algorithm, which requires dj0 data items

from stream S(lj0)). In the last loop of the algorithm,
all unscheduled leaves that require dj0 or fewer data
items from stream S(lj0) are appended to the schedule
in increasing order of the number of required data items.

Algorithm 1: GREEDY({L1, ...,Ls}, ξ,NItems)
if ∪si=1Li = ∅ then return ξ

MinRatio← +∞
for k = 1 to s do loop on streams

Cost← 0
Proba← 1
Num← NItems[k]
for lj in Lk by increasing dj do

Cost← Cost+ Proba× (dj −Num)× c(k)
Proba← Proba× pj
Num← dj
Ratio← Cost

(1−Proba)
if Ratio < MinRatio then

MinRatio← Ratio
j0 ← j

for lj in LS(j0) by increasing dj do
if dj ≤ dj0 then

ξ.append(lj)
LS(j0) ← LS(j0) \ {lj}

NItems[S(j0)]← dj0

return GREEDY ({L1, ...,Ls}, ξ,NItems)

Theorem 1. Algorithm 1 is optimal for the shared
PAOTR problem for AND-trees.

Proof Sketch: We prove the theorem by contra-
diction. We assume that there exists an instance for
which the schedule produced by Algorithm 1, ξgreedy,
is not optimal. Among the optimal schedules, we pick a
schedule, ξopt , which has the longest prefix P in common
with ξgreedy. We consider the first decision taken by
Algorithm 1 that schedules a leaf that does not belong
to P. Let us denote by lσ(1), ..., lσ(k) the sequence of
leaves scheduled by this decision. The first leaves in this
sequence may belong to P. Let P′ be P minus the leaves
lσ(1), ..., lσ(k). Then, ξgreedy can be written as:

ξgreedy = P′, lσ(1), ..., lσ(k),S.

In turn, ξopt can be written ξopt = P′,Q,R where lσ(k)
is the last leaf of Q. In other words, Q can be written
L1, lσ(1), ..., Lk, lσ(k), where each sequence of leaves Li,
1 ≤ i ≤ k, may be empty. We can write:

ξopt = P′, L1, lσ(1), ..., Lk, lσ(k),R.

From ξgreedy and ξopt , we build a new schedule, ξnew,
defined as

ξnew = P′, lσ(1), ..., lσ(k), L1, ..., Lk,R.

P′, lσ(1), ..., lσ(k) is a prefix to both ξgreedy and ξnew. This
prefix is strictly larger than P since P does not contain
lσ(k). We compute the cost of ξnew and show that it is
no larger than that of ξopt , thus showing that ξnew is
optimal and has a longer prefix in common with ξgreedy
than ξnew, which is a contradiction. This computation is
very lengthy and technical and the full proof is provided
in [8].

The complexity of Algorithm 1 is O(m2). Indeed, the
sets L1, ..., Ls are built and sorted in O(m log(m))
and there are at most m recursive calls to Algorithm 1,
each having a cost proportional to the number of leaves
remaining in the AND tree.

One may wonder how the optimal algorithm in the
read-once case [7], which simply sorts the leaves by
increasing djc(S(j))/qj , fares in the shared case. In other
terms, is Algorithm 1 really needed in practice? Figure 4
shows results for a set of randomly generated AND-
trees. We define the sharing ratio, ρ, of a tree as the
expected number of leaves that use the same stream,
i.e., the total number of leaves divided by the number of
streams. For a given number of leaves m = 2, . . . , 20 and
a given sharing ratio ρ = 1, 5/4, 4/3, 3/2, 2, 3, 4, 5, 10,
we generate 1,000 random trees for a total of 157,000
random trees (note that ρ cannot be larger than the
number of leaves). Leaf success probabilities, numbers
of data items needed at each leaf, and per data item
costs are sampled from uniform distributions over the
intervals [0, 1], [1, 5], and [1, 10], respectively. For each
tree we compute the cost achieved by the algorithm in [7]
and that achieved by our optimal algorithm. Figure 4
plots these costs for all instances, sorted by increasing
optimal cost. Due to this sorting, the large number of
samples, and the limited resolution, the set of points
for the optimal algorithm appears as a curve while the
set of points for the algorithm in [7] appears as a cloud
of points. The algorithm in [7] can lead to costs up to
1.86 times larger than the optimal. It leads to costs
more than 10% larger for 19.54% of the instances, and
more than 1% larger for 60.20% of the instances. The
two algorithms lead to the same cost for 11.29% of
the instances. We conclude that, in the shared case,
Algorithm 1 provides substantial improvements over the
optimal algorithm for the read-once case.

IV. DNF Trees
In this section we consider DNF trees. First, in

Section IV-A we provide a method for computing the
expected cost of a given schedule for a DNF tree.
In Section IV-B we show that depth-first schedules

40000

C
os

t

60

40

20

0

Shared instances sorted by increasing optimal cost
120000800000

Algorithm in [7]
Optimal algorithm

Figure 4. Cost achieved by the algorithm in [7] and that achieved
by the optimal algorithm, shown for each of the 157,000 AND-tree
instances sorted by increasing optimal cost.

are dominant, which means that there always exists a
depth-first schedule that is optimal. In Section IV-C,
we then prove that the problem is NP-complete. This
is in sharp contrast with the read-once case, in which a
simple greedy algorithm is optimal [6]. In Section IV-D
we propose several heuristics to schedule a DNF tree
and evaluate their performance on randomly generated
problem instances.

A. Evaluation of a schedule
We have seen in Section II-B in an example that

computing the cost of a schedule is non-trivial for DNF
trees. In this section we formalize this computation.
Consider a DNF tree with N AND nodes, indexed
i = 1, . . . , N . AND node i has mi leaves, denoted by
li,j , j = 1, . . . ,mi. The probability of success of leaf li,j
is denoted by pi,j , and the stream that leaf li,j requires is
denoted by S(i, j). We use L to denote the set of all the
leaves. We consider a schedule ξ, which is an ordering
of the leaves, and use ls,t ≺ lu,v to indicate that leaf ls,t
occurs before leaf lu,v in ξ. We consider that the query
is over s streams, Sk, k = 1, . . . , s. The cost per data
item of Sk is denoted by c(Sk). We define the “t-th data
item” of a stream as the data item produced t time-steps
ago, so that the first data item is the one produced most
recently, the second is the one produced before the first,
etc. In this manner, when we say that a leaf li,j requires
di,j data items it means that it requires all t-th data
items of the stream for t = 1, 2, . . . , di,j .

Given the above, we define Lk,t as the set of the leaves
that require the t-th data item from stream Sk, and that
are the first of their respective AND nodes to require
that data item. Formally, we have:

Lk,t =

li,j ∈ L
∣∣∣∣∣∣
S(i, j) = Sk, di,j ≥ t, and
∀r 6= j, S(i, r) 6= Sk or di,r < t

or li,j ≺ li,r

We also define Ai,j , the index set of all AND nodes that
have been fully evaluated before a leaf li,j is evaluated,
as:

Ai,j = {k | mk = |{lk,r|lk,r ≺ li,j}|}.

If we use Ci,j,t to denote the expected cost of retrieving
the t-th data item of the relevant stream when evaluating
leaf li,j , then the total cost C of the schedule ξ is:

C =
N∑
i=1

mi∑
j=1

di,j∑
t=1
Ci,j,t.

The following proposition gives Ci,j,t.

Proposition 2. Given a leaf li,j that requires the t-th
data item from stream Sk, if there exists r such that li,r ≺
li,j and li,r ∈ Lk,t, then Ci,j,t = 0. Otherwise:

Ci,j,t =
∏

lr,s∈Lk,t

lr,s≺li,j

1−
∏

lr,u≺lr,s

pr,u

×

∏
a∈Ai,j

6∃r, la,r∈Lk,t

(
1−

ma∏
r=1

pa,r

)

×

 ∏
li,u≺li,j

pi,u

× c(S(i, j)).

Proof: Consider a schedule ξ, and a leaf in that
schedule, li,j , which requires the t-th data item from
stream Sk (i.e., S(i, j) = Sk). Let us prove the first
part of the proposition. If a leaf li,r (i.e., a leaf under
the same AND node as li,j) occurs before li,j in ξ and
requires the t-th item from stream Sk (i.e., li,r ∈ Lk,t),
then there are two possibilities. Either li,r has been
evaluated, in which case the evaluation of li,j uses a data
item that has already been acquired previously, hence a
cost of 0. Or li,k has not been evaluated, meaning that
its evaluation was shortcircuited. In this case the AND
node has evaluated to FALSE and the evaluation of li,j
is also shortcircuited, hence a cost of 0.

The second part of the proposition shows the expected
cost as a product of three factors, each of which is a
probability, and a fourth factor, c(S(i, j)), which is the
cost of acquiring the data item from the stream. The
interpretation of the expression for Ci,j,t is as follows: a
leaf must acquire the item if and only if (i) the item has
not been previously acquired; and (ii) no AND node has
already evaluated to TRUE; and (iii) no leaf in the same
AND node has already evaluated to FALSE. We explain
the computation of these three probabilities hereafter.

The first factor is the probability that none of the
leaves that precede li,j in ξ and that require the t-th
item from stream Sk have been evaluated. Such a leaf
lr,s is evaluated if all the leaves in the same AND node

that precede it in the schedule have evaluated to TRUE,
which happens with probability

∏
lr,u≺lr,s

pr,u. Hence,
the expression for the first factor.

The second factor is the probability that none of the
AND nodes that have been fully evaluated so far has
evaluated to TRUE, since if this were the case the
evaluation of li,j would not be needed, leading to a
cost of 0. Given an AND node in Ai,j , say the k-th
AND node, the probability that it has been evaluated
to TRUE is

∏mk

r=1 pk,r. This is true except if one of the
leaves of that AND node belongs to Lk,t. The first factor
assumes that that leaf was not evaluated and, therefore,
that that entire AND node was not evaluated. Hence,
the expression for the second factor.

The third factor is the probability that all the leaves in
the same AND as li,j have evaluated to TRUE. Because
we are in the second case of the proposition, none of
these leaves requires the t-th item of stream Sk. All these
leaves must evaluate to TRUE, otherwise the evaluation
of li,j would be shortcircuited, for a cost of 0. Hence, the
expression for the third factor.

Cost of the evaluation of a schedule: To compute this
cost, we need to introduce two new notations. Let |L| be
the total number of leaves in the considered DNF, and
let D be the maximum number of data items required
by a stream. Then, we have |L| =

∑N
i=1 mi and D =

max1≤iN,1≤j≤mi
di,j .

To compute all the sets Lk,t we need to scan the leaves
of each AND node according to the schedule ξ while
recording the maximum number of elements required
from each stream. The overall cost of this scheme is
O(|L|). Each set Lk,t contains at most N leaves.

Computing all the sets Ai,j is also done through
a traversal of the set of leaves, for an overall cost
of O(|L| + N2) (because the sets Ai,j take at most
N − 1 distinct values and each contains at most N − 1
elements). Computing all the product of probabilities
used in the computation of all the Ci,j,t can also be done
in a single traversal of the set of leaves.

Once all these precomputations are done, the first
term in the expression of Ci,j,t can be computed in O(N)
and the second in O(N2), and the third one in O(1).
Overall the cost of a schedule can be evaluated with
complexity

O(|L|DN2).

B. Dominance of depth-first schedules
Theorem 2. Given a DNF tree, there exists an optimal
schedule that is depth-first, i.e., that processes AND
nodes one by one.

Proof: Consider a DNF tree T and a schedule ξ.
Without loss of generality we assume that the AND
nodes, A1, . . . , An, are numbered in the order of their

completion. Thus, according to ξ, A1 is the first AND
node with all its leaves evaluated. We denote by M the
number (possibly zero) of AND nodes that ξ processes
one by one and entirely at the start of its execution.
Therefore, if ξ evaluates a leaf li,j , with i 6= 1, in the
m1 first steps, then M = 0. Finally, we assume that the
leaves of an AND node are numbered according to their
evaluation order in ξ.

We prove the theorem by contradiction. Let us assume
that there does not exist a schedule that satisfies the
desired property. Let ξ be an optimal schedule that max-
imizes M . By definition of M and by the hypothesis on
the numbering of the AND nodes, schedule ξ evaluates
some leaves of the AND nodes AM+2, ..., An before it
evaluates the last leaf of AM+1. Let L denote the set
of these leaves. We now define a new ξ′ which starts by
executing at least M + 1 AND nodes one by one:
• ξ′ starts by evaluating the first M AND nodes one

by one, evaluating their leaves in the same order
and at the same steps as in ξ;

• ξ′ then evaluates all the leaves of AM+1 in the same
order as in ξ (but not at the same steps);

• ξ′ then evaluates the leaves in L in the same order
as in ξ (but not at the same steps);

• ξ′ finally evaluates the remaining leaves in the same
order and at the same steps as in ξ.

The cost of a schedule is the sum, over all potentially
acquired data items, of the cost of acquiring each data
item times the probability of acquiring it. Let d be a
data item potentially needed by a leaf in T . We show
that the probability of acquiring d is not greater with ξ′
than with ξ. We have three cases to consider.
Case 1) d is not needed by a leaf of AM+1 and not
needed by a leaf in L. Then d’s probability to be acquired
is the same with ξ and ξ′.
Case 2) d is needed by at least one leaf of AM+1.
The only way in which a leaf that is evaluated in ξ
would not be evaluated in ξ′ is if AM+1 evaluates to
TRUE. By assumption, however, at least one leaf of
AM+1 uses d. Therefore, for AM+1 to evaluate to TRUE,
d must be acquired. Consequently, the probability that
d is acquired is the same with ξ and with ξ′.
Case 3) d is needed by at least one leaf in L but not
needed by any leaf of AM+1. ξ and ξ′ define the same
ordering on the leaves in L. For each AND node Ai, with
M + 2 ≤ i ≤ N , there is at most one leaf in Ai ∩L that
can be the leaf responsible for the acquisition of d with
ξ, and it is the same leaf with ξ′. Let F be the set of all
these leaves. Then, with ξ, the leaves in F are responsible
for the acquisition of d if and only if:
• A1, ..., AM all evaluate to FALSE;
• None of the evaluated leaves of A1, ..., AM needs d;

and
• At least one of the leaves in F is evaluated.

Let us denote by P the probability that all the AND
nodes A1, ..., AM evaluate to FALSE and that none
of the evaluated leaves of these AND nodes needs the
data item d. Let us denote by D the probability that d
is acquired because of the evaluation of one of the leaves
of the AND nodes A1, ..., AM . Finally, let R be the
probability that one of the leaves evaluated with ξ after
lM+1,mM+1 acquires d, knowing that no leaves of A1, ...,
AM or in L acquires it. Then, with ξ, the probability p
that d is acquired is:

p = D + P

1−
∏
li,j∈F

(
1−

j−1∏
k=1

pi,k

)+R (1)

because leaf li,j is evaluated with probability
∏j−1
k=1 pi,k,

that is, if all the leaves from the same AND node that are
evaluated prior to it all evaluate to TRUE. The second
term of Equation (1) is the probability that the leaves
in F are responsible for acquiring d.

With schedule ξ′, the leaves of F are responsible for
the acquisition of d if and only if:
• The AND nodes A1, ..., AM , and AM+1 all evaluate

to FALSE;
• None of the evaluated leaves of the AND nodes A1,

..., AM need d; and
• At least one of the leaves in F is evaluated.

Thus, with ξ′, the probability p′ that d is acquired is:

p′ = D + P
(

1−
mM+1∏
k=1

pM+1,k

)

×

1−
∏
li,j∈F

(
1−

j−1∏
k=1

pi,k

)+R

Comparing this equation with Equation 1, we see that
p′ is not greater than p.

The probability that a data item is acquired with ξ′ is
thus not greater than with ξ. Therefore, in each of the
three cases the cost of ξ′ is not greater than the cost
of ξ, meaning that ξ′ is also an optimal schedule. Since
ξ′ starts by executing at least M + 1 AND nodes one
by one, we obtain a contradiction with the maximality
assumption on M , which concludes the proof.

C. NP-completeness
In the read-once case, an optimal algorithm for DNF

trees is built on top of the optimal algorithm for AND-
trees [6]. The same approach cannot be used in the
shared case, as seen in a simple counter-example [8]. In
other words, for some DNF trees, the ordering of the
leaves of a given AND node in an optimal schedule does
not correspond to the ordering produced by Algorithm 1
for that AND node. And, in fact, in this section we show

the NP-completeness of finding an optimal schedule to
evaluate a DNF tree.

Definition 1 (DNF-Decision). Given a DNF tree and
a cost bound K, is there a schedule whose expected cost
does not exceed K?

Theorem 3. DNF-Decision is NP-complete.

Proof: The NP-completeness is obtained via a non-
trivial reduction from 2-PARTITION [9]. See [8] for the
proof.

D. Heuristics

Given the NP-completeness result in the previous sec-
tion, we now propose several polynomial-time heuristics
for computing a schedule. These heuristics fall into three
categories, which we term leaf-ordered, AND-ordered,
and stream-ordered.
Leaf-ordered heuristics simply sort the leaves accord-
ing to leaf costs (C), failure probabilities (q = 1− p), or
the ratio of the two, which leads to three heuristics plus
a baseline random one:
• Leaf-ordered, decreasing q (prioritizes leaves with

high chances of shortcutting the evaluation of an
AND node);

• Leaf-ordered, increasing C (prioritizes leaves with
low costs);

• Leaf-ordered, increasing C/q (prioritizes leaves with
low costs and also with high chances of shortcutting
the evaluation of an AND node);

• Leaf-ordered, random (baseline).
The above first three heuristics have intuitive rationales.
Other options are possible (e.g., sort leaves by decreasing
C) but are easily shown to produce poor results.
AND-ordered heuristics, unlike leaf-ordered heuris-
tics, account for the structure of the DNF tree by build-
ing depth-first schedules, with the rationale that there
is a depth-first schedule that is optimal (Theorem 2).
Furthermore, Algorithm 1 provides a way to compute an
optimal schedule for the leaves within the same AND
node. For this optimal schedule one can compute the
(expected) cost and the probability of success of the
AND node using the method in Section IV-A. Therefore,
AND-ordered heuristics simply order the AND nodes
based on their computed costs (C), computed probability
of success (p), or ratio of the two, and using Algorithm 1
for scheduling the leaves of each AND node, leading to
three heuristics:
• AND-ordered, decreasing p (prioritizes AND’s with

high chances of shortcircuiting the evaluation of the
OR node);

• AND-ordered, increasing C (prioritizes AND’s with
low costs);

• AND-ordered, increasing C/p (prioritizes AND’s
with low costs and also with high chances of short-
circuiting the evaluation of the OR node);

There are two approaches to compute the cost of an
AND node: (i) consider the AND node in isolation
assuming that the OR node has a single AND node
child; or (ii) account for previously scheduled AND
nodes whose evaluation has caused some data items to
be acquired with some probabilities. We terms the first
approach “static” and the second approach “dynamic,”
giving us two versions of the last two heuristics above.
Stream-ordered heuristics proceed by ordering the
streams from which data items are acquired, acquiring
all items from a stream before proceeding to the next
stream, until the truth value of the OR node has been
determined. This idea was proposed in [4], and to the
best of our knowledge it is the only previously proposed
heuristic for solving the PAOTR problem in the shared
scenario for DNF trees. For each stream S the heuristic
computes a metric, R(S), defined as follows:

R(S) =
∑
i,j|S(i,j)=S qi,jni,j

maxi,j|S(i,j)=S di,jc(S) ,

where ni,j is the number of leaf nodes whose evaluation
would be shortcircuited if leaf li,j was to evaluate to
FALSE. The numerator can thus be interpreted as the
shortcutting power of stream S. The denominator is
the maximum data element acquisition cost over all
the leaves that use stream S. The heuristic orders the
streams by increasing R values. The rationale is that
one should prioritize streams that can shortcut many
leaf evaluations and that have low maximum data item
acquisition costs. The heuristic as it is described in [4]
acquires the maximum number of needed data items
from each stream so as to compute truth values of all the
leaves that require data items from that stream. In other
words, the leaves that require data items from the same
stream are scheduled in decreasing di,j order. However,
Proposition 1 holds for DNF trees, showing that it is
always better to schedule these leaves in increasing di,j
order. We use this leaf order to implement this heuristic
in this work. We have verified in our experiments that
this version outperforms the version in [4] in the vast
majority of the cases, with all remaining cases being ties.

In total, we consider 4 leaf-ordered, 5 AND-ordered,
and 1 stream-ordered heuristics. We first evaluate these
heuristics on a set of “small” instances for which we can
compute optimal schedules using an exponential-time
algorithm that performs an exhaustive search. Such
an algorithm is feasible because, due to Theorem 2,
it only needs to search over all possible depth-first
schedules. Small instances are generated using the
same method as that described in Section III-B for
generating AND-tree instances. We generate DNF

R
at

io
to

O
pt

im
al

0 10 20 30 40 50 60 70 80 90 100
Percentage of instances

1

2

3

4
5
6
7
8
9

10

Stream-ord.
Leaf-ord., random
Leaf-ord., dec. q
Leaf-ord., inc. C
Leaf-ord., inc. C/q
AND-ord., dec. p, stat
AND-ord., inc. C, stat
AND-ord., inc. C/p, stat
AND-ord., inc. C, dyn
AND-ord., inc. C/p, dyn

Figure 5. Ratio to optimal vs. fraction of the instances for which
a smaller ratio is achieved, computed over the 21,600 “small” DNF
tree instances.

trees with N = 2, . . . , 9 AND nodes and up to at most
20 leaves and 8 leaves per AND, generating 100 random
instances for each configuration, for a total of 21,600
instances (The source code is available at www.ens-
lyon.fr/LIP/ROMA/Data/DataForRR-8373.tgz). For
each instance we compute the ratio between the cost
achieved by each heuristic and the optimal cost. Figure 5
shows for each heuristic the ratio vs. the fraction of the
instances for which the heuristic achieves a lower ratio.
For instance, a point at (80, 2) means that the heuristic
leads to schedules that are within a factor 2 of optimal
for 80% of the instances, and more than a factor 2 away
from optimal for 20% of the instances. The better the
heuristic the closer its curve is to the horizontal axis.

The trends in Figure 5 are clear. Overall the poorest
results are achieved by the leaf-ordered heuristics, with
the random such heuristic expectedly being the worst
and the increasing C the best. The AND-ordered heuris-
tics, save for the decreasing p version, lead to the best re-
sults overall. More precisely, the best results are achieved
by sorting AND’s by increasing C/p, with sorting by
increasing C leading to the second-best results. For the
two AND-ordered heuristics that have both a static
and a dynamic version, the dynamic version leads to
marginally better results than the static version. Finally,
the stream-ordered heuristic leads to poorer results than
the best leaf-ordered heuristics, and thus significantly
worse than the best AND-ordered heuristics.

We also evaluate the heuristics on a set of “large”
instances with N = 2, . . . , 10 AND nodes and m =
5, 10, 15, 20 leaves per AND node, with 100 random
instances per configuration, for a total of 32,400 in-
stances. For most of these instances we cannot tractably
compute the optimal cost. Consequently, we compute
ratios to the cost achieved by the AND-ordered by
increasing C/p dynamic heuristic, which leads to the best

R
at

io
to

A
N

D
-o

rd
.,

in
c.

C
/p

,d
yn

0 10 20 30 40 50 60 70 80 90 100
Percentage of instances

1

2

3

4
5
6
7
8
9

10

Stream-ord.
Leaf-ord., random
Leaf-ord., dec. q
Leaf-ord., inc. C
Leaf-ord., inc. C/q
AND-ord., dec. p, stat
AND-ord., inc. C, stat
AND-ord., inc. C/p, stat
AND-ord., inc. C, dyn

Figure 6. Ratio to AND-ordered increasing C/p dynamic vs.
fraction of the instances for which a smaller ratio is achieved,
computed over the 32,400 “large” DNF tree instances.

results for small instances. Results are shown in Figure 6.
Essentially, all the observations made on the results for
small instances still hold. We conclude that the best
approach is to build a depth-first schedule, to sort the
AND nodes by the ratio of their costs to probability
of success, and to compute these costs dynamically,
accounting for previously scheduled AND nodes. This
heuristic is the best one in 94.5%, resp. 83.8%, of the
cases reported in Figure 6, resp. Figure 5. It runs in less
than 5 seconds on a 1.86 GHz core when processing a
tree with 10 AND nodes with each 20 leaves.

V. Conclusion
Motivated by a query processing scenario for sensor

data streams, we have studied a version of the Proba-
bilistic And-Or Tree Resolution (PAOTR) problem [6]
in which a data stream can be referenced by multiple
leaves. We have given an optimal algorithm in the case
of AND-trees and have shown NP-completeness in the
case of DNF trees. For DNF we have shown that there
is an optimal solution that corresponds to a depth-
first traversal of the tree. This observation provides
inspiration for a heuristic that largely outperforms the
heuristic previously proposed in [4].

A possible future direction is to consider so-called non-
linear strategies [6]. Although in this work we have con-
sidered a schedule as a leaf ordering (called a linear strat-
egy in [6]), a more general notion is that of a decision tree
in which the next leaf to be evaluated is chosen based on
the truth value of the previous evaluated leaf. A practical
drawback of a non-linear strategy is that the size of the
strategy’s description is exponential in the number of
tree leaves. In [6], it is shown that in the read-once case
linear strategies are dominant for DNF trees, meaning
that there is always one optimal strategy that is linear.
Via a simple counter example it can be shown that this is

no longer true in the shared case [8], thus motivating the
investigation of non-linear strategies. Another possible
future direction is to consider a less restricted version of
the problem in which a single predicate at a leaf can
access multiple streams rather than just a single one
(e.g., “AV G(X, 10) < 10 ≥ MIN(Y, 20)”). There is no
reason for real-world queries to be limited to a single
stream per predicate. An interesting question, then, is
whether the PAOTR problem remains polynomial for
AND-trees or whether it becomes NP-complete.

Acknowledgments. Yves Robert is with Institut Univer-
sitaire de France. This work is supported by the INRIA
associate team Aloha, and by the ANR project Rescue.

References
[1] E. Miluzzo, “Sensing Meets Mobile Social Networks: The

Design, Implementation and Evaluation of the CenceMe
Application,” in Proc. of ACM Conf. on Embedded Net-
worked Sensor Systems, 2008.

[2] I. Mohomed, A. Misra, M. Ebling, and W. Jerome,
“Context-Aware and Personalized Event Filtering for
Low-Overhead Continuous Remote Health Monitoring,”
in Proc. of the IEEE Intl. Symp. on a World of Wireless
Mobile and Multimedia Networks, 2008.

[3] S. Gaonkar, J. Li, R. Roy Choudhury, L. Cox, and
A. Schmidt, “Micro-Blog: Sharing and Querying Con-
tent through Mobile Phones and Social Participation,”
in Proc. of the ACM Intl. Conf. on Mobile Systems,
Applications, and Services, 2008.

[4] L. Lim, A. Misra, and T. Mo, “Adaptive Data Acqui-
sition Strategies for Energy-Efficient Smartphone-based
Continuous Processing of Sensor Streams,” Distributed
Parallel Databases, vol. 31, no. 2, pp. 321–351, 2013.

[5] “The SHIMMER sensor platform,” http:
//shimmer-research.com, 2013.

[6] R. Greiner, R. Hayward, M. Jankowska, and M. Mol-
loy, “Finding Optimal Satisficing Strategies for And-Or
Trees,” Artificial Intelligence, vol. 170, no. 1, pp. 19–58,
2006.

[7] D. E. Smith, “Controlling backward inference,” Artificial
Intelligence, vol. 39, no. 2, pp. 145––208, 1989.

[8] H. Casanova, L. Lim, Y. Robert, F. Vivien, and
D. Zaidouni, “Cost-Optimal Execution of Trees of
Boolean Operators with Shared Streams,” Inria, Research
Report RR-8373, 2013, http://hal.inria.fr/hal-00869340.

[9] M. R. Garey and D. S. Johnson, Computers and In-
tractability, a Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, 1979.

