
HAL Id: hal-00924048
https://hal.inria.fr/hal-00924048

Submitted on 6 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A General Trace-Based Framework of Logical Causality
Gregor Gössler, Daniel Le Métayer

To cite this version:
Gregor Gössler, Daniel Le Métayer. A General Trace-Based Framework of Logical Causality. FACS
- 10th International Symposium on Formal Aspects of Component Software - 2013, 2013, Nanchang,
China. 2013. <hal-00924048>

https://hal.inria.fr/hal-00924048
https://hal.archives-ouvertes.fr

A General Trace-Based Framework of Logical

Causality⋆

Gregor Gössler and Daniel Le Métayer

INRIA Grenoble – Rhône-Alpes, France

Abstract. In component-based safety-critical embedded systems it is
crucial to determine the cause(s) of the violation of a safety property,
be it to issue a precise alert, to steer the system into a safe state, or to
determine liability of component providers. In this paper we present an
approach to blame components based on a single execution trace violat-
ing a safety property P . The diagnosis relies on counterfactual reasoning
(“what would have been the outcome if component C had behaved cor-
rectly?”) to distinguish component failures that actually contributed to
the outcome from failures that had little or no impact on the violation
of P .

1 Introduction

In a concurrent, possibly embedded and distributed system, it is often crucial
to determine which component(s) caused an observed failure. Understanding
causality relationships between component failures and the violation of system-
level properties can be especially useful to understand the occurrence of errors
in execution traces, to allocate responsibilities, or to try to prevent errors (by
limiting error propagation or the potential damages caused by an error).

The notion of causality inherently relies on a form of counterfactual reason-
ing: basically the goal is to try to answer questions such as “would event e2 have
occurred if e1 had not occurred?” to decide if e1 can be seen as a cause of e2

(assuming that e1 and e2 have both occurred, or could both occur in a given
context). But this question is not as simple as it may look:

1. First, we have to define what could have happened if e1 had not occurred,
in other words what are the alternative worlds.

2. In general, the set of alternative worlds is not a singleton and it is possible
that in some of these worlds e2 would occur while in others e2 would not
occur.

3. We also have to make clear what we call an event and when two events
in two different traces can be considered as similar. For example, if e1 had
not occurred, even if an event potentially corresponding to e2 might have
occurred, it would probably not have occurred at the same time as e2 in
the original sequence of events; it could also possibly have occurred in a

⋆ to appear in Formal Aspects of Component Software (FACS) 2013.

slightly different way (for example with different parameters, because of the
potential effect of the occurrence of e1 on the value of some variables).

Causality has been studied in many disciplines (philosophy, mathematical
logic, physics, law, etc.) and from different points of view. In this paper, we are
interested in causality for the analysis of execution traces in order to establish
the origin of a system-level failure. The main trend in the use of causality in
computer science consists in mapping the abstract notion of event in the general
definition of causality proposed by Halpern and Pearl in their seminal contribu-
tion [12] to properties of execution traces. Halpern and Pearl’s model of causality
relies on a counterfactual condition mitigated by subtle contingency properties
to improve the accurateness of the definition and alleviate the limitations of the
counterfactual reasoning in the occurrence of multiple causes. While Halpern
and Pearl’s model is a very precious contribution to the analysis of the notion of
causality, we believe that a fundamentally different approach considering traces
as first-class citizens is required in the computer science context considered here:
The model proposed by Halpern and Pearl is based on an abstract notion of event
defined in terms of propositional variables and causal models expressed as sets
of equations between these variables. The equations define the basic causality
dependencies between variables (such as F = L1 or L2 if F is a variable denoting
the occurrence of a fire and L1 and L2 two lightning events that can cause the
fire). In order to apply this model to execution traces, it is necessary to map
the abstract notion of event onto properties of execution traces. But these prop-
erties and their causality dependencies are not given a priori, they should be
derived from the system under study. In addition, a key feature of trace prop-
erties is the temporal ordering of events which is also intimately related to the
idea of causality but is not an explicit notion in Halpern and Pearl’s framework
(even if notions of time can be encoded within events). Even though this appli-
cation is not impossible, as shown by [4], we believe that definitions in terms
of execution traces are preferable because (a) in order to determine the respon-
sibility of components for an observed outcome, component traces provide the
relevant granularity, and (b) they can lead to more direct and clearer definitions
of causality.

As suggested above, many variants of causality have been proposed in the
literature and used in different disciplines. It is questionable that one single
definition of causality could fit all purposes. For example, when using causality
relationships to establish liabilities, it may be useful to ask different questions,
such as: “could event e2 have occurred in some cases if e1 had not occurred?” or
“would event e2 have occurred if e1 had occurred but not e′1?”. These questions
correspond to different variants of causality which can be perfectly legitimate and
useful in different situations. To address this need, we propose two definition of
causality relationships that can express these kinds of variants, called necessary
and sufficient causality.

The framework introduced here distinguishes a set of black-box components,
each equipped with a specification. On a given execution trace, the causality
of the components is analyzed with respect to the violation of a system-level

property. In order to keep the definitions as simple as possible without losing
generality — that is, applicability to various models of computation and com-
munication —, we provide a language-based formalization of the framework.
We believe that our general, trace-based definitions are unique features of our
framework.

Traces can be obtained from an execution of the actual system, but also
as counter-examples from model-checking. For instance, we can model-check
whether a behavioral model satisfies a property; causality on the counter-example
can then be established against the component specifications.

2 Modeling Framework

In order to focus on the fundamental issues in defining causality on execution
traces we introduce a simple, language-based modeling framework.

Definition 1 (Component signature). A component signature Ci is a tuple
(Σi,Si) where Σi is an alphabet and Si ⊆ Σ∗

i is a prefix-closed specification (set
of allowed behaviors) over Σi.

A component signature is the abstraction of an actual component that is
needed to apply the causality analysis introduced here. Similarly, a system signa-
ture is the abstraction of a system composed of a set of interacting components.

Definition 2 (System signature). A system signature is a tuple (C, Σ, B, ρ)
where

– C = {C1, ..., Cn} is a finite set of component signatures Ci = (Σi,Si) with
pairwise disjoint alphabets;

– Σ ⊆ Σ′
1 × ... × Σ′

n is a system alphabet with Σ′
i = Σi ∪ {ǫ} is a distinct

element denoting that Ci does not participate in an interaction α ∈ Σ;
– B ⊆ Σ∗ ∪ Σω is a prefix-closed behavioral model;
– ρ ⊆

(
⋃

i Σi

)

×
(
⋃

i Σi

)

is a relation modeling information flow among com-
ponents.

The behavioral model B is used to express assumptions and constraints on
the possible (correct and incorrect) behaviors. The relation ρ models possible
information flow among components. Intuitively, (a, b) ∈ ρ means that any oc-
currence of a may influence the next occurrence of b (possibly in the same inter-
action), e.g., by triggering or constraining the occurrence of b, or by transmitting
information.

Notations. Given a trace tr = α1 · α2 · · · ∈ Σ ∗ and an index i ∈ N let tr[1..i] =
α1 · · ·αi, let tr[i] = αi, and tr[i...] = αiαi+1 · · · . Let |tr| denote the length of tr.
For α = (a1, ..., an) ∈ Σ let α[k] = ak denote the action of component k in α
(ak = ǫ if k does not participate in α); for w = α1 · · ·αk ∈ Σ∗ and i ∈ {1, ..., n}
let πi(w) = α1[i] · · ·αk[i] (where ǫ letters are removed from the resulting word).

For the sake of compactness of notations we define composition ‖ : Σ∗
1 × ...×

Σ∗
n → Σ∗ such that w1‖...‖wn = {w ∈ Σ∗ | ∀i = 1, ..., n : πi(w) = wi}, and

extend ‖ to languages.

2.1 Logs

A (possibly faulty) execution of a system may not be fully observable; therefore
we base our analysis on logs. A log of a system S = (C, Σ, B, ρ) with components
C = {C1, ..., Cn} of alphabets Σi is a vector tr = (tr1, ..., trn) ∈ Σ∗

1 × ... × Σ∗
n

of component traces such that there exists a trace tr ∈ Σ∗ with ∀i = 1, ..., n :
tri = πi(tr). A log tr ∈ L is thus the projection of an actual system-level trace
tr ∈ B. This relation between the actual execution and the log on which causality
analysis will be performed allows us to model the fact that only a partial order
between the events in tr may be observable rather than their exact precedence.1

Let L(S) denote the set of logs of S. Given a log tr = (tr1, ..., trn) ∈ L(S)
let tr

↑ = {tr ∈ B | ∀i = 1, ..., n : πi(tr) = tri} be the set of behaviors resulting
in tr.

Definition 3 (Consistent specification). A consistently specified system is a
tuple (S,P) where S = (C, Σ, B, ρ) is a system signature with C = {C1, ..., Cn}
and Ci = (Σi,Si), and P ⊆ B is a prefix-closed property such that for all traces
tr ∈ B,

(∀i = 1, ..., n : πi(tr) ∈ Si) =⇒ tr ∈ P

Under a consistent specification, property P may be violated only if at least
one of the components violates its specification. Throughout this paper we focus
on consistent specifications.

3 Motivating Example

Consider a database system consisting of three components communicating by
message passing over point-to-point FIFO buffers. Component C1 is a client,
C2 the database server, and C3 is a journaling system. The specifications of the
three components are as follows:

S1: sends a lock request lock to C2, followed by a request m to modify the locked
data.

S2: receives a write request m, possibly preceded by a lock request lock. Ac-
cess control is optimistic in the sense that the server accepts write requests
without checking whether a lock request has been received before; however,
in case of a missing lock request, a conflict may be detected later on and
signaled by an event x. After the write, a message journ is sent to C3.

S3: keeps receiving journ events from C2 for journaling.

The system is modeled by the system signature (C, Σ, B, ρ) where C =
{C1, C2, C3} with component signatures Ci = (Σi,Si), and

1 It is straight-forward to allow for additional information in traces tr ∈ B that is not
observable in the log, by adding to the cartesian product of Σ another alphabet that
does not appear in the projections. For instance, events may be recorded with some
timing uncertainty rather than precise time stamps [23].

– Σ1 = {a,m!, lock!}, Σ2 = {m?, journ!, x, lock?}, and Σ3 = {b, journ?}, where
m! and m? stand for the emission and reception of a message m, respectively,
and a, b, and x are internal events;

– S1 = {lock!.m!}2, S2 = {lock?.m?.journ!, m?.journ!.x}, and S3 = {journ?i |
i ∈ N};

– Σ = (Σ1×{ǫ}×{ǫ})∪({ǫ}×Σ2×{ǫ})∪({ǫ}×{ǫ}×Σ3): component actions
interleave;

– B =
{

w ∈ Σ∗ ∪ Σω | ∀u, v : w = u.v =⇒ (|u|m? ≤ |u|m! ∧ |u|journ? ≤

|u|journ!∧|u|lock? ≤ |u|lock!∧w respects lossless FIFO semantics)
}

(where |u|a
stands for the number of occurrences of a in w): communication buffers are
point-to-point FIFO queues;

– ρ = {(m!,m?), (journ!, journ?), (lock!, lock?)}: any component may influence
another component’s state only by sending a message that is received by the
latter.

We are interested in the global safety property P = Σ∗
ok ∪ Σω

ok with Σok =
Σ \ {(ǫ, x, ǫ)} modeling the absence of a conflict event x. It can be seen that if
all three components satisfy their specifications, x will not occur.

Figure 1 shows the log tr = (tr1, tr2, tr3). In the log, tr1 violates S1 at event
a and tr3 violates S3 at b. The dashed lines between m! and m?, and between
journ! and journ? stand for communications.

a

b

m!

m?

xjourn!

journ?

tr1

tr2

tr3

Fig. 1: A scenario with three component logs.

In order to analyze which component(s) caused the violation of P we can use
an approach based on counterfactual reasoning. Informally speaking,

– Ci is a necessary cause for the violation of P if in all executions where Ci

behaves correctly and all other components behave as observed, P is satisfied.

– Conversely, Ci is a sufficient cause for the violation of P if in all executions
where all incorrect traces of components other than Ci are replaced with
correct traces, and the remaining traces (i.e., correct traces and the trace of
Ci) are as observed, P is still violated.

2 For the sake of readability we omit the prefix closure of the specifications in the
examples.

Applying these criteria to our example we obtain the following results:
If C1 had worked correctly, it would have produced the trace tr′1 = lock! . m!.

This gives us the counterfactual scenario consisting of the traces tr
′ = (tr′1, tr2,

tr3). However, this scenario is not consistent as C1 now emits lock, which is not
received by C2 in tr2. According to B, the FIFO buffers are not lossy, such that
lock would have been received before m if it had been sent before m. By vacuity
(as no execution yielding the traces tr

′ exists), C1 is a necessary cause and C3

is a sufficient cause according to our definitions above. While the first result
matches our intuition, the second result is not what we would expect. As far as
C2 is concerned, it is not a cause since its trace satisfies S2.

Why do the above definitions fail to capture causality? It turns out that our
definition of counterfactual scenarios is too narrow, as we substitute the behavior
of one component (e.g., tr1 to analyze sufficient causality of C3) without taking
into account the impact of the new trace on the remainder of the system. When
analyzing causality “by hand”, one would try to evaluate the effect of the altered
behavior of the first component on the other components. This is what we will
formalize in the next section.

4 Causality Analysis

In this section we improve our definition of causality of component traces for
the violation of a system-level property. We suppose the following inputs to be
available:

– A system signature (C, Σ) with components Ci = (Ci, Σi).
– A log tr = (tr1, ..., trn). In the case where the behavior of two or more

components is logged into a common trace, the trace of each component can
be obtained by projection.

– A set I ⊆ {1, ..., n} of component indices, indicating the set of components to
be jointly analyzed for causality. Being able to reason about group causality
is useful, for instance, to determine liability of software vendors that have
provided several components.

4.1 Temporal Causality

As stated in the introduction, the temporal order of the events has an obvious
impact on causality relations. We use Lamport’s temporal causality [17] to over-
approximate the parts of a log that are impacted by component failures. This
technique will allow us, in the next section, to give counterfactual definitions of
causality addressing the question of “what would have been the outcome if the
failure of component C had not occurred?”.

Given a trace tr ∈ B let tri = πi(tr). The trace tr is analyzed as follows, for
a fixed set I of components to be checked.

Definition 4 (Cone of influence, C(tr, I)). Given a consistently specified
system (S,P) with S = (C, Σ, B, ρ), C = {C1, ..., Cn}, and Ci = (Σi,Si), a log

tr ∈ L(S), and a set of component indices I ⊆ {1, ..., n}, let gi : N → {⊥,⊤}
be a function associating with the length of each prefix of tri a value in {⊥,⊤}
(with ⊥ < ⊤). Let (g∗1 , ..., g∗n) be the least fixpoint of

gi(ℓ) =

⊤ if
(

ℓ = min{k | tri[1..k] /∈ Si} ∧ i ∈ I
)

∨
(

∃k < ℓ : gi(k) = ⊤
)

∨
(

∃tr′ ∈ tr
↑ ∃j, k,m, n : m ≤ n ∧ k = |πj(tr

′[1..m])| ∧
ℓ = |πi(tr

′[1..n])| ∧ gj(k) = ⊤ ∧ (tr′[m][j], tr′[n][i]) ∈ ρ ∧
tri[1..ℓ − 1] ∈ Si

)

⊥ otherwise

for i ∈ {1, ..., n} and 1 ≤ ℓ ≤ |tri|. Let C(tr, I) = (c1, ..., cn) such that

∀i = 1, ..., n : ci = min
(

{|tri| + 1} ∪ {ℓ | g∗i (ℓ) = ⊤}
)

The cone of influence spanned by the components I is the vector of suffixes
tri[ci...] of the component traces.

That is, as soon as a component i ∈ I violates Si on a prefix tri[1..ℓ], gi is
set to ⊤ (first line). Once gi(k) = ⊤, it remains ⊤ for all larger indices (second
line). Each time a component i participates in an interaction β = tr′[n] for some
possible trace tr′ on which another component j has previously participated in
an interaction α = tr′[m] after a prefix of length k such that gj(k) = ⊤ and
(α[j], β[i]) ∈ ρ, then gi is set to ⊤, provided that the prefix of tri satisfied Si

before (third line). The last condition tri[1..ℓ − 1] ∈ Si means that a possibly
incorrect behavior of Ci following an endogenous violation of Si is blamed on Ci

rather than on the components in I.
The cone of influence spanned by the components I is the vector of suffixes

of the component traces starting with the first component action that may have
been impacted by the behavior of the components I starting in one of their
failures. For the sake of simplicity we will refer to C(tr, I) as the cone.

Example 1. Figure 2 shows the cones C(tr, {1}) = (1, 1, 3) and C(tr, {2, 3}) =
(3, 4, 1) for the example of Section 3 and Figure 1.

a

b

m!

m?

xjourn!

journ?

tr1

tr2

tr3

C(tr, {1})

C(tr, {2, 3})

Fig. 2: The scenario with the cones C(tr, {1}) and C(tr, {2, 3}), respectively.

4.2 Logical Causality

Using the cone of influence defined above we are able to define, for a given log
tr and set of component indices I, the set of counterfactual traces modeling
alternative worlds in which the failures FI of components in I do not happen,
and the behavior of the remaining components is as observed in tr up to the
part lying inside the cone spanned by FI .

Definition 5 (Counterfactuals). Let tr = (tr1, ..., trn) ∈ L, C = (c1, ..., cn)
be a cone of influence, and S = (S1, ...,Sn).

σ
(

tr,C,S
)

=
{

tr′ ∈ B | ∀i : pri is a prefix of πi(tr
′) ∧ (1)

(pri ∈ Si =⇒ πi(tr
′) ∈ Si) ∧ (2)

(pri /∈ Si =⇒ πi(tr
′) = pri) ∧ (3)

(ci = |tri| + 1 =⇒ πi(tr
′) = pri)

}

(4)

where pri = tri[1..ci − 1].

Intuitively, σ returns the set of alternative behaviors tr′ ∈ B where for each
component i, the prefix pri before entering ci matches its logged behavior in
tri (line 1), and if the prefix is correct and a strict prefix of tri then the suffix
is substituted such that the whole behavior of i in trace tr′ is correct (line 2);
otherwise pri is not extended in the alternative behavior (lines 3 and 4). The
rationale behind Definition 5 is to compute the set of alternative worlds where
the failures spanning C do not occur. To this end we have to prune out their
possible impact on the logged behavior, and substitute with correct behaviors.
Prefixes violating their specifications (line 3) and component traces that never
enter the cone (line 4) are not extended since we want to determine causes for
system-level failures observed in the log, rather than exhibiting causality chains
that are not complete yet and whose consequence would have shown only in the
future.

Definition 6 (Necessary cause). Given

– a consistently specified system (S,P) with S = (C, Σ, B, ρ), C = {C1, ..., Cn},
and Ci = (Σi,Si),

– a log tr ∈ L such that tr
↑ ∩ P = ∅, and

– an index set I,

let C = C(tr, I). The set of traces indexed by I is a necessary cause for the
violation of P by tr if σ(tr,C,S) ⊆ P.

That is, the set of logs indexed by I is a necessary cause for the violation of
P if in the observed behavior where the cone spanned by the incorrect behaviors
of I is replaced by a correct behavior, P is satisfied. In other words, if the com-
ponents in I had satisfied their specifications, and all components had behaved
as in the logs before entering the cone, then P would have been satisfied.

According to the construction of the cone of influence, this definition of nec-
essary causality makes the assumption that the violation of a component speci-
fication Sj within the cone of other components I, j /∈ I, cannot be blamed for
certain on component j.

Example 2. Coming back to Example 1, let C = C
(

tr, {1}
)

. We have σ(tr,C,S) =
S1‖S2‖{tr3}, as shown in Figure 3(a). According to Definition 6, tr1 is a nec-
essary cause for the violation of P since P is satisfied in σ(tr,C,S). It can be
shown that tr3 is not a necessary cause.

b

m!

m?

lock!

lock?

journ!

journ?

∈ S2

∈ S1tr′

tr′
2

tr3

(a) σ(tr, C, S) with C = C
`

tr, {1}
´

a m!

m?

xjourn!

journ?
∈ S3

tr1

tr2

tr′
3

(b) σ(tr, C, S) with C = C
`

tr, {2, 3}
´

Fig. 3: The scenario where the cone (a) C(tr, {1}) and (b) C(tr, {2, 3}) is substituted
with suffixes satisfying the component specifications.

The definition of sufficient causality is dual to necessary causality, where in
the alternative worlds we remove the failures of components not in I and verify
whether P is still violated.

For a set of traces S, let supS = {s ∈ S | ∀t ∈ S : s is not a strict prefix of t}.

Definition 7 (Sufficient cause). Given

– a consistently specified system (S,P) with S = (C, Σ, B, ρ), C = {C1, ..., Cn},
and Ci = (Σi,Si),

– a log tr ∈ L with tr
↑ ∩ P = ∅, and

– an index set I,

let I = {1, ..., n} \ I and C = C(tr, I). The set of traces indexed by I is a
sufficient cause for the violation of P by tr if

(

supσ(tr,C,S)
)

∩ P = ∅

That is, the set of logs indexed by I is a sufficient cause for the violation
of P if in the observed behavior where the cone spanned by the violations of
specifications by the complement of I is replaced by a correct behavior, the
violation of P is inevitable (even though P may still be satisfied for non-maximal
counterfactual traces). In other words, even if the components in the complement
I of I had satisfied their specifications and no component had failed in the cone

spanned by the failures of I, then P would still have been violated. The inclusion
of infinite traces in the behavioral model B (Definition 2) ensures the least upper
bound of the set of counterfactual traces to be included in B.

In Definitions 6 and 7 the use of temporal causality helps in constructing
alternative scenarios in B where the components indexed by I (resp. I) behave
correctly while keeping the behaviors of all other components close to their
observed behaviors.

Example 3. In Example 2 let C = C
(

tr, {2, 3}
)

. We obtain σ
(

tr,C,S
)

=
{tr1}‖{tr2}‖S3, as shown in Figure 3(b). By Definition 7, tr1 is a sufficient
cause for the violation of P since P is still violated in σ

(

tr,C,S
)

. It can be
shown that tr3 is not a sufficient cause.

Properties. The following results show that our analysis does not blame any
set of innocent components, and that it finds a necessary and a sufficient cause
for every system-level failure.

Theorem 1 (Soundness). Each cause contains an incorrect trace.

Proof (sketch). Consider a set I ⊆ {i | tri ∈ Si}. We show that the set of traces
indexed by I is not a necessary, nor sufficient cause for the violation of P by
tr = (tr1, ..., trn).

For necessary causality, counterfactuals are computed by substituting the
cone C = C(tr, I) spanned by the failures of components in I. If all of them
satisfy their specifications, then the cone is empty, so σ(tr,C,S) = tr

↑, and I
is not a necessary cause according to Definition 6.

For sufficient causality, counterfactuals are computed by substituting the
cone C = C(tr, I) = (c1, ..., cn) spanned by the failures of components in I. If all
components in I satisfy their specifications, then σ(tr,C,S) ⊆ P since ρ — and
thus, C(tr, I) — captures the possible impact of failures by components in I,
and (S,P) is a consistently specified system. Moreover, C is constructed as a cut
of the global execution, such that there exists a system-level trace tr ∈ B with
∀i : πi(tr) = tri[1..ci − 1]. Therefore, σ(tr,C,S) 6= ∅. Thus, I is not a sufficient
cause according to Definition 7. ⊓⊔

Theorem 2 (Completeness). Each violation of P has a necessary and a suf-
ficient cause.

Proof (sketch). Consider a log tr = (tr1, ..., trn) and let I = {i | tri /∈ Si}. Due
to the duality of necessary and sufficient causality, the proof of completeness
for necessary (resp. sufficient) causality is similar to the proof of soundness for
sufficient (resp. necessary) causality:

For necessary causality, let C = C(tr, I). We have σ(tr,C,S) ⊆ P, thus I is
a necessary cause for the violation of P by tr.

For sufficient causality, let C = C(tr, I). By the choice of I this cone is empty.
We thus have σ(tr,C,S) = tr

↑, thus σ(tr,C,S) ∩ P = ∅. It follows that I is a
sufficient cause for the violation of P in tr. ⊓⊔

5 Application to Synchronous Data Flow

In this section we use the general framework to model a synchronous data flow
example, and illustrate a set of well-known phenomena studied in the literature.

Consider a simple filter that propagates, at each clock tick, the input when
it is stable in the sense that it has not changed since the last tick, and holds the
output when the input is unstable. Using Lustre [11]-like syntax the filter can
be written as follows:

change = false → in 6= pre(in)

h = pre(out)

out =

{

in if ¬change
h otherwise

That is, component change is initially false, and subsequently true if and only
if the input in has changed between the last and the current tick. h latches the
previous value of out; its value is ⊥ (“undefined”) at the first instant. out is
equal to the input if change is false, and equal to h otherwise. Thus, each signal
consists of an infinite sequence of values, e.g., change = 〈change1, change2, ...〉.
A log of a valid execution is for instance

in 0 0 3 2 2
change false false true true false

h ⊥ 0 0 0 0
out 0 0 0 0 2

We formalize the system as follows.

– Σch = R×B×N×{ch} where the first two components stand for the value
of the input to and output from change, the third component is the index
of the clock tick, and ch is a tag we will use to distinguish the alphabets
of different components. Similarly, let Σh = R × (R ∪ {⊥}) × N × {h} and
Σout = R × R × B × R × N × {out}.

– Sch = {(r1, r2, ...) ∈ Σ∗
ch | ri = (ini, changei, i, ch) ∧ change1 = false ∧ (i ≥

2 =⇒ changei = ini−1 6= ini)} is the specification of change. Similarly,
Sh = {(r1, r2, ...) ∈ Σ∗

h | ri = (outi, hi, i, h) ∧ (i ≥ 2 =⇒ hi = outi−1)} and

Sout =
{

(r1, r2, ...) ∈ Σ∗
out | ri = (ini, hi, changei, outi, i, out) ∧

outi =

{

ini if ¬changei

hi otherwise

}

– Σ = {(rch, rh, rout) ∈ Σch × Σh × Σout | rch = (inch, change, i1, ch) ∧ rh =
(outh, h, i2, h) ∧ rout = (inout, hout, chout, out, i3, out) | i1 = i2 = i3} is the
system alphabet (where all components react synchronously).

– B = {(r1, r2, ...) ∈ Σ∗∪Σω | ∀i : ri =
(

(inch
i , changei, i1, ch), (outhi , hi, i2, h),

(inout
i , hout

i , chout
i , outi, i3, out)

)

∧ inch
i = inout

i ∧ changei = chout
i ∧ outhi =

outi ∧ hi = hout
i } is the set of possible behaviors, meaning that connected

flows are equal.

– ρ =
{(

(·, ·, i, in), (·, ·, i, ch)
)

,
(

(·, ·, i, in), (·, ·, i, out)
)

,
(

(·, ·, i, ch), (·, ·, i, out)
)

,
(

(·, ·, i, h), (·, ·, i, out)
)

,
(

(·, ·, i, out), (·, ·, i + 1, h)
)

| i ≥ 1
}

models the data
dependencies.

– P = {(r1, r2, ...) ∈ B | ∀i : ri =
(

..., (..., outi, ...)
)

∧ outi = outi+1 ∨ outi+1 =
outi+2} is the stability property, meaning that there are no two consecutive
changes in output.

Figure 4 shows four logs of faulty executions (where connected signals only
appear once, and the tick number and identity tags are omitted).

in 0 0 1 2

change false false false false

h ⊥ 0 -1 -3

out 0 0 1 2

(a) tr
1: early preemption.

in 0 0 0 0

change false false true true

h ⊥ 0 -1 1

out 0 0 -1 1

(b) tr
2: joint causation.

Fig. 4: Two logs of faulty executions.

Consider Figure 4a. Two components violate their specifications (incorrect
values are underlined): change and h, both at the third instant. The stability
property P is violated at the fourth output. Let us apply our definitions to
analyze causality of each of the two faulty components.

1. In order to check whether change is a necessary cause, we first compute the
cone spanned by the violation by change as C(tr1, {change}) = (3, 5, 3).
Thus, the prefixes of the component traces before entering the cone are as
shown in Figure 5a. Next we compute the set of counterfactuals, according
to Definition 5, as (tr′)↑, where tr

′ is shown in Figure 5b. P is still violated
by the (unique) counterfactual trace, hence change is not a necessary cause.

in 0 0 1 2

change false false

h ⊥ 0 -1 -3

out 0 0

(a) tr
1 after removing

C(tr1, {change}).

in 0 0 1 2

change false false true true

h ⊥ 0 -1 -3

out 0 0 -1 -3

(b) tr
′ such that (tr′)↑ =

σ(tr1, C, S)

Fig. 5: Computing necessary causality of change for the violation of P in tr
1.

We can show, using the same construction, that h is a sufficient cause for
the violation of P.

2. In order to check whether change is a sufficient cause, we first compute
the cone spanned by the violation by h as C(tr1, {h}) = (5, 3, 3). That

is, the cone encompasses the last two values of h and out. Due to change
being (incorrectly) false, the only possible counterfactual trace according
to Definition 5 is σ(tr1,C,S) = (trchange, tr

′
h, trout)

↑ where trchange is as
observed in tr

2, tr′h = (⊥, 0, 0, 1), and tr′out = (0, 0, 1, 2). P is still violated
by the unique counterfactual trace, hence change is a sufficient cause.
We can show, using the same construction, that h is not a necessary cause
for the violation of P.

The example of log tr
1 shows two phenomena called over-determination

(there are two sufficient causes, one of which would have sufficed to violate P)
and early preemption: the causal chain from the violation of Sh to the violation of
P is interrupted by the causal chain from the violation of Schange to the violation
of P, since due to change being false, the incorrect value of h is discarded in the
computation of out in log tr

1.
Figure 4b shows a case of joint causation: both change and h are necessary

causes for the violation of P in tr
2, but none of them alone is a sufficient cause.

6 Related Work

Causality has been studied for a long time in different disciplines (philosophy,
mathematical logic, physics, law, etc.) before receiving an increasing attention in
computer science during the last decade. Hume discusses definitions of causality
in [13]:

Suitably to this experience, therefore, we may define a cause to be an
object, followed by another, and where all the objects similar to the first
are followed by objects similar to the second. Or in other words where,
if the first object had not been, the second never had existed.

In computer science, various approaches to causality analysis have been de-
veloped recently. They differ in their assumptions on what pieces of information
are available for causality analysis: a model of causal dependencies, a program
as a black-box that can be used to replay different scenarios, the observed actual
behavior (e.g. execution traces, or inputs and outputs), and/or the expected be-
havior (that is, component specifications). Existing frameworks consider different
subsets of these entities. We cite the most significant settings and approaches
for these settings.

A specification and an observation. In the preliminary work of [8], causality of
components for the violation of a system-level property under the BIP interaction
model [9, 2] has been defined using a rudimentary definition of counterfactuals
where only faulty traces are substituted but not the parts of other component
traces impacted by the former. This definition suffered from the conditions for
causality being true by vacuity when no consistent counterfactuals exist. A sim-
ilar approach is used in [22] for causality analysis in real-time systems.

With a similar aim of independence from a specific model of computation as
in our work, [21] formalizes a theory of diagnosis in first-order logic. A diagnosis

for an observed incorrect behavior is essentially defined as a minimal set of
components forming a sufficient cause.

A causal model. [12] proposes what has become the most influential definition of
causality for computer science so far, based on a model over a set of propositional
variables partitioned into exogenous variables U and endogenous variables V.
A function FX associated with each variable X ∈ V uniquely determines the
value of X depending on the value of all variables in (U ∪ V) \ {X}. These
functions define a set of structural equations relating the values of the variables.
The equations are required to be recursive, that is, the dependencies form an
acyclic graph whose nodes are the variables. The observed values of a set X of
variables is an actual cause for an observed property ϕ if with different values
of X, ϕ would not hold, and there exists a context (a contingency) in which
the observed values of X entail ϕ. With the objective of better representing
causality in processes evolving over time, CP-logic defines actual causation based
on probability trees [3].

In [14], fault localization and repair in a circuit with respect to an LTL
property are formulated as a game between the environment choosing inputs
and the system choosing a fix for a faulty component.

A model and a trace. In several applications of Halpern and Pearl’s SEM, the
model is used to encode and analyze one or more execution traces, rather than
a behavioral model.

The definition of actual cause from [12] is used in [4] to determine potential
causes for the first violation of an LTL formula by a trace. As [12] only considers
a propositional setting without any temporal connectors, the trace is modeled
as a matrix of propositional variables. In order to make the approach feasible in
practice, an over-approximation is proposed. In this approach, the structure of
the LTL formula is used as a model to determine which events may have caused
the violation of the property.

Given a counter-example in model-checking, [10] uses a distance metric to
determine a cause of the property violation as the difference between the error
trace and a closest correct trace.

An approach to fault localization in a sequential circuit with respect to a
safety specification in LTL is presented in [6]: given a counter-example trace, a
propositional formula is generated that holds if a different behavior of a subset
of gates entails the satisfaction of the specification.

A set of traces. [15] extends the definition of actual causality of [12] to totally
ordered sequences of events, and uses this definition to construct from a set of
traces a fault tree. Using a probabilistic model, the fault tree is annotated with
probabilities. The accuracy of the diagnostic depends on the number of signals
used to construct the model. An approach for on-the-fly causality checking is
presented in [19].

An input and a black box. Delta debugging [24] is an efficient technique for
automatically isolating a cause of some error. Starting from a failing input and a
passing input, delta debugging finds a pair of a failing and a passing input with
minimal distance. The approach is syntactical and has been applied to program
code, configuration files, and context switching in schedules. By applying delta
debugging to program states represented as memory graphs, analysis has been
further refined to program semantics. Delta debugging isolates failure-inducing
causes in the input of a program, and thus requires the program to be available.

7 Conclusion

We have presented a general approach for causality analysis of system failures
based on component specifications and observed component traces. Applications
include identification of faulty components in black-box testing, recovery of criti-
cal systems at runtime, and determination of the liability of component providers
in the aftermath of a system failure.

This article opens a number of directions for future work. First of all, we will
instantiate and implement the framework for specific models of computation
and communication, such as Timed Automata [1] and functional programs. The
tagged signal model [18] provides a formal basis for representing such models in
our framework. In order to make the definitions of causality effectively verifiable,
we will reformulate them as operations on symbolic models, and use efficient data
structures such as the event structures used in [5] for distributed diagnosis.

At design time, the code of the components can be instrumented so as to log
relevant information for analyzing causality with respect to a set of properties
to be monitored. For instance, precise information on the actual (partial) order
of execution can be preserved by tagging the logged events with vector clocks [7,
20]. Generally speaking, appropriate instrumentation of the code enables more
precise causality analysis. We intend to further investigate this aspect of ensuring
accountability [16] by design in future fork.

In this paper we assume only the logs to be available. However, in some
situations such as post-mortem analysis the (black-box) components may be
available, in which case counterfactual scenarios could be replayed on the sys-
tem to evaluate their outcome more precisely. In the same vein, an alternative
behavior of the control part of a closed-loop systems is likely to impact the physi-
cal process, as in our cruise control example: a counterfactual trace with different
brake or throttle control will impact the speed of the car. This change should be
propagated through a model of the physical process to make the counterfactual
scenario as realistic as possible.

References

1. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, and
J. Sifakis. Rigorous component-based system design using the BIP framework.
IEEE Software, 28(3):41–48, 2011.

3. Sander Beckers and Joost Vennekens. Counterfactual dependency and actual cau-
sation in cp-logic and structural models: a comparison. In Kristian Kersting and
Marc Toussaint, editors, STAIRS, volume 241 of Frontiers in Artificial Intelligence

and Applications, pages 35–46. IOS Press, 2012.
4. I. Beer, S. Ben-David, H. Chockler, A. Orni, and R.J. Trefler. Explaining coun-

terexamples using causality. Formal Methods in System Design, 40(1):20–40, 2012.
5. Eric Fabre, Albert Benveniste, Stefan Haar, and Claude Jard. Distributed moni-

toring of concurrent and asynchronous systems. Discrete Event Dynamic Systems,
15(1):33–84, 2005.

6. G. Fey, S. Staber, R. Bloem, and R. Drechsler. Automatic fault localization for
property checking. IEEE Trans. on CAD of Integrated Circuits and Systems,
27(6):1138–1149, 2008.

7. C.J. Fidge. Timestamps in message-passing systems that preserve the partial or-
dering. In K. Raymond, editor, Proc. ACSC’88, page 56 66, 1988.

8. G. Gössler, D. Le Métayer, and J.-B. Raclet. Causality analysis in contract viola-
tion. In H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G.J. Pace,
G. Rosu, O. Sokolsky, and N. Tillmann, editors, RV, volume 6418 of LNCS, pages
270–284. Springer-Verlag, 2010.

9. G. Gössler and J. Sifakis. Composition for component-based modeling. Science of

Computer Programming, 55(1-3):161–183, 3 2005.
10. A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error explanation with dis-

tance metrics. STTT, 8(3):229–247, 2006.
11. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow

programming language lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

12. J.Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach.
part I: Causes. British Journal for the Philosophy of Science, 56(4):843–887, 2005.

13. D. Hume. An Enquiry Concerning Human Understanding. 1748.
14. B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem. Finding and fixing faults.

J. Comput. Syst. Sci., 78(2):441–460, 2012.
15. M. Kuntz, F. Leitner-Fischer, and S. Leue. From probabilistic counterexamples

via causality to fault trees. In F. Flammini, S. Bologna, and V. Vittorini, editors,
SAFECOMP, volume 6894 of Lecture Notes in Computer Science, pages 71–84.
Springer, 2011.

16. R. Küsters, T. Truderung, and A. Vogt. Accountability: definition and relationship
to verifiability. In ACM Conference on Computer and Communications Security,
pages 526–535, 2010.

17. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
CACM, 21(7):558–565, 1978.

18. E.A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 17(12):1217–1229, 1998.
19. Florian Leitner-Fischer and Stefan Leue. Causality checking for complex system

models. In Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors,
VMCAI, volume 7737 of LNCS, pages 248–267. Springer, 2013.

20. F. Mattern. Virtual time and global states of distributed systems. In M. Cosnard,
editor, Proc. Workshop on Parallel and Distributed Algorithms, page 215 226. El-
sevier, 1988.

21. Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–
95, 1987.

22. S. Wang, A. Ayoub, B. Kim, G. Gössler, O. Sokolsky, and I. Lee. A causal-
ity analysis framework for component-based real-time systems. In A. Legay and
S. Bensalem, editors, Proc. Runtime Verification 2013, volume 8174 of LNCS, pages
285–303. Springer, 2013.

23. Shaohui Wang, Anaheed Ayoub, Oleg Sokolsky, and Insup Lee. Runtime verifica-
tion of traces under recording uncertainty. In Sarfraz Khurshid and Koushik Sen,
editors, RV, volume 7186 of LNCS, pages 442–456. Springer, 2011.

24. A. Zeller. Why Programs Fail. Elsevier, 2009.

