
HAL Id: hal-00924080
https://inria.hal.science/hal-00924080

Submitted on 6 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic modeling of S-N curves
Rémy Fouchereau, Gilles Celeux, Patrick Pamphile

To cite this version:
Rémy Fouchereau, Gilles Celeux, Patrick Pamphile. Probabilistic modeling of S-N curves. Interna-
tional Journal of Fatigue, 2014, �10.1016/j.ijfatigue.2014.04.015�. �hal-00924080�

https://inria.hal.science/hal-00924080
https://hal.archives-ouvertes.fr


Probabilistic modeling of S-N curves
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aLabo de mathmatiques, Université Paris-Sud 11, 91405 Orsay, France
bSelect, Inria, 91405 Orsay, France

cSafran-Snecma, France

November 22, 2013

Abstract

S-N curve is the main tool to analyze and predict fatigue lifetime
of a material, component or structure. But, standard models based on
mechanic of rupture theory or standard probabilistic models for ana-
lyzing S-N curves could not fit S-N curve on the whole range of cycles
without microstructure information. This information is obtained from
costly fractography investigation rarely available in the framework of
industrial production. On the other hand, statistical models for fatigue
lifetime do not need microstructure information but they could not be
used to service life predictions because they have no material interpre-
tation. Moreover, fatigue test results are widely scattered, especially
for High Cycle Fatigue region where split S-N curves appear. This is
the motivation to propose a new probabilistic model. This model is
a specific mixture model based on a fracture mechanic approach, and
does not require microstructure information. It makes use of the fact
that the fatigue lifetime can be regarded as the sum of the crack initi-
ation and propagation lifes. The model parameters are estimated with
an EM algorithm for which the maximisation step combines Newton-
Raphson optimisation method and Monte Carlo integrations. The re-
sulting model provides a parsimonious representation of S-N curves
with parameters easily interpreted by mechanic or material engineers.
This model has been applied to simulated and real fatigue test data
sets. These numerical experiments highlight its ability to produce a
good fit of the S-N curves on the whole range of cycles.

Keywords: S-N curves, Lognormal Distributions, Mixture, Convolution
Product, EM algorithm, Quantile Estimation
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1 Introduction

A fatigue failure occurs when a component is subject to a repeated stress
over a long period of time. Fatigue failures are all the more dangerous since
they can occur for stress not higher than the service loading. In aeronau-
tic industry, fatigue is the most common reason of breaking for mechanic
parts. Fatigue failure analysis is an important issue for reliability analysis
and structures design in many domains such as power generation industry,
automotive industry and transportation, construction industry, civilian or
military engineering.

Fatigue test is the main tool for analyzing fatigue lifetime of a material,
component or structure. A material specimen is subjected to cyclic loading
S (stress, strain, amplitude,....) by a testing machine which counts N , the
number of cycles until failure. Fatigue test results are then plotted on a S-N
curve (cf. Figure 1).

Figure 1: An example of S-N Curve

The resulting lifetime data are highly scattered: the fatigue phenomenon
is indeed complex and depends on many effects of mechanical, microstruc-
tural, and environmental factors. Furthermore fatigue lifetime database was
collected over several years with different material batches.

Many probabilistic models for fatigue lifetime prediction have been pro-
posed. In 1870, Wöhler suggested that the fatigue lifetime N can be ex-
pressed as follows:

ln(N) = (aS + b) + ǫ,

where aS + b is the trend fatigue lifetime and ǫ a random noise. Many
other, and often more complex, relationships between N and S have been
proposed to provide a better fit with test results. For example Pascual and
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Meeker [15] proposed the following model:

ln(N) = a− b× log(S − S0) + ǫ,

where S0 is an unknown random variable that stands for the fatigue limit.
For industrial application, data are widely scattered due to variability in the
crack mechanism and its synergism with fatigue. However models mentioned
above do not deal with crack mechanism, thus they cannot provide a good
fit on the overall SN curve.

Moreover, recent fatigue studies reported that for High Cycle Fatigue
Region (HCF: 104 < N ≤ 107), a ”duplex SN curve” occurs ([17],[10]).
Deterministic and probabilistic approaches have been proposed to take into
account this phenomenon.

Deterministic models are based on the fracture mechanic theory. Those
models involve microstructure parameters which can explain the S-N curve
duality: crack nucleation in surface/subsurface, crack growth rate for small-
crack/large-crack, ...(cf.[18],[4]). Unfortunately, those models could not be
used without costly microstructure investigation involving a scanning elec-
tron microscope. Fractography analysis is not completed for the whole col-
lection of industrial data. In addition, microstructure parameters are diffi-
cult to be accurately estimated.

Probabilistic approach make use of competing risk models ([16],[5]) or
mixture models ([12], [8]). Components of competing risk, or mixture mod-
els, are connected to fatigue mechanisms: crack nucleation surface/subsurface,
etc. Yet again, those components are pre-identified through costly mi-
crostructure analysis of the material or the fracture. Therefore, those meth-
ods are both difficult to be used for industrial production where microstruc-
ture analysis are rarely done.

Alternative probabilistic models fit the data without using microstruc-
tural or mechanical information. Those models are data dependent and thus
cannot be employed for service life predictions.

We propose a mixture model based on the fracture mechanism, and
which do not require fractography investigations. This model exploits the
fact that the fatigue can be regarded as the sum of the crack initiation life
and the crack propagation life. The initiation lifetime, Ni, may be defined
as the number of cycles required to form a small crack (of the order of the
material grain size). The propagation lifetime, Np, is the number of cycles
required to extend the crack from this small crack size to the critical size
at which fracture occurs. Thus, a fatigue test lifetime can be written as
N = Np when a crack appears at the first load or N = Np + Ni otherwise
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(cf. [1]). This behavior leads to the mixture model

fN = π(S)fNp + (1− π(S))fNi+Np , (1)

π(S) being the probability of having a crack initiation at the first load of
S. Since the crack mechanism (propagation with or without initiation) is
unknown, the model parameters are estimated through the Expectation-
Maximisation algorithm (cf. [6]).
The paper is organized as follows. In Section 2, we propose a mixture
model based on a statistical analysis of fatigue data and detail its parametric
form. In Section 3, the maximum likelihood estimate of the mixture model
parameters is presented through the EM algorithm. Numerical experiments
from simulated data and from the collection of real data under study are
presented in Section 4. Some concluding remarks are given in Section 5,
while technical points are postponed to Appendix A.

2 The Initiation-Propagation Mixture model

The proposed model has been inspired by the analysis of fatigue data from
industrial production. Figure 2 represents the QQ-plot of these fatigue data
against a lognormal distribution.

Figure 2: QQ-plots of the empirical distribution of N vs. a log-normal
distribution as a function of S

Each symbol represents a different stress level. For high stress, a single
lognormal fits well the data: the corresponding QQ-plot is adjusted with a
line. The same observation can be made for the lowest stress. For medium
stresses, broken-line QQplots indicate an underlying mixture of two distri-
butions. Moreover the proportion of the two mixture components vary with
the stress: for high and low levels, a single component is present, while there
are two components for medium stress levels.
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The question is to understand where these two components come from.
If we refer to [1], the lifetime can be decomposed into two components:

• Ni: the crack initiation period,

• Np: the crack propagation period.

For high stress levels, at the first load, a small crack appears. Thus there is
no initiation. On the contrary the propagation lifetimes can be seen at all
stress levels. Finally a fatigue lifetime can be written as

N =

{

Np if Z = 1

Ni +Np if Z = 0

where Z denotes the label for an initiation at the first load (Z = 1 if the
crack starts at the first cycle, Z = 0 otherwise).

In most industrial fatigue databases, the values of the Z are not available.
From figure 2, it is reasonable to assume that Ni and Np follow lognormal
distributions.

fNi
(n, s) =

1

nσi
√
2π

exp

(

− [ln(n)− (αi s+ βi)]
2

2σ2
i

)

; (2)

fNp(n, s) =
1

nσp
√
2π

exp

(

− [ln(n)− (αp s+ βp)]
2

2σ2
p

)

, (3)

s being the stress level of the test. The resulting fatigue lifetime is assumed
to be a mixture of the propagation lifetime, Np, and the total lifetime Ni +
Np. Its density function is

fN = π(s) fNp + (1− π(s))fNi+Np , (4)

π being the probability that a crack initiation occurs at the first load.
The term Ni+Np, represents the standard fatigue behavior, whereas the

first term Np represents an unusual fatigue behavior of ”pure propagation”.
The proportion of each component varies with s, and it is to assumed that
π is linked with s by a logistic regression

π(s) =
eα+βs

1 + eα+βs
.

Obviously, it is important to prove the identifiability of this model which
ensures that a unique optimal set of (4) parameters can be fitted on fatigue
data. This is done in Appendix A.
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3 Estimation of the model parameters

Since we do not known if an crack initiation took place on first load or
after, this model is a missing structure data model. Thus the parameters
of model (4) are estimated with the Expectation-Maximisation algorithm
(EM, see [6]). The maximization step of the EM algorithm is here difficult,
since the expectation of the complete log-likelihood knowing the fatigue
data involves a complex non linear function of the parameters. It requires
an integral computation through Monte Carlo simulations. In addition the
maximization step is achieved by using the Newton-Raphson algorithm.
Let θ = (θp, θi, α, β) be the vector of parameters of the model (4), with
θp = (ap, bp, σp) and θi = (ai, bi, σi). The algorithm EM is a two step
algorithm maximizing the observed likelihood:

L(N,S ; θ) =

m
∏

k

f(N,S)(nk, sk ; θ). (5)

knowing the data (N,S) and a current value of the parameters. The EM
algorithm is making use of the complete likelihood

L(N,S,Z ; θ) =
m
∏

k

f(N,S,Z)(nk, sk, zk ; θ), (6)

where Z denotes the missing origin of the crack: Z = 1 if the crack starts
at the first load, and Z = 0 otherwise. Then

f(N,S,Z)(n, s, z ; θ) = (π(s)[fNi
(n, s)])z × ((1 − π(s))[fNi+Np(n, s)])

(1−z).

Since the indicator variable Z is not observed, the complete likelihood
L(N,S,Z ; θ) cannot be maximized directly. The Expectation step consists
of computing the expected value of the completed likelihood knowing the
data (N,S) and a current value of the parameters [6].

The EM algorithm Starting from a vector parameter θ(0) = (θ
(0)
p , θ

(0)
i ;α(0), β(0)),

this algorithm iterates the E and M steps.

1. E step: computation of the expected complete loglikelihood knowing
a current parameter θ(j) :

Q(θ|θ(j)) = E
[

lnL(N,S,Z ; θ) |(Z|N ; θ(j))
]

=

m
∑

k

[

t̂k ln(fNp(nk, sk ; θp))

+(1− t̂k) ln(fNi+Np(nk, sk ; θ))
]

;

(7)
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t̂k being the conditional distribution of Z:

t̂k = E[Z|N,S; θ(j)]

= P(Z = 1|N = nk, S = sk ; θ = θ(j))

=
π

(r)
(sk)fNp(nk; sk, θ

(r)

p )
∑

l=(i,p)

πl(sk)φl(nk; sk, θ(r))
;

where φl stands for fNp if l = 1, and fNi
∗ fNp otherwise.

2. M step: maximization of Q(θ|θ(j))

θ̂(j+1) = argmax
θ

Q(θ|θ(j)).

It can be decomposed in two independent maximisations

• max
α,β

N
∑

k=1

t̂k ln(π(sk)) + (1− t̂k) ln(1− π(sk));

• max
θ

N
∑

k=1

t̂k ln(fNp(nk, sk, θp)) + (1− t̂k) ln(fNi
∗ fNp(nk; sk, θ));

which can be achieved with a Newton-Raphson algorithm.

The sequence θ(1), θ(2),... generated by EM is expected to converge
toward a local maximum of the observed-data likelihood L(N,S ; θ)
under fairly general conditions (cf. [6]).

The solution provided by EM could be highly dependent of the initial pa-
rameter values. It appears not for the initiation-propagation mixture model
and the following initial values provide satisfactory parameter estimates.

• π(0) = 0.5;

• θ(0) = (θ
(0)
p , θ

(0)
i ) has been derived from a clusterwise linear regression

on the log-lifetimes (cf. [7]). For LCF region(N < 104) N ≃ Np,
whereas for VHCF region N ≃ Ni. Then clusterwise regression pro-
vides quickly an honest initial estimation of the model parameters and
the EM algorithm converges a sensible local maximum.

The maximization of Q(θ|θ(j)) requires a Newton-Raphson algorithm
combined with a Monte Carlo algorithm to evaluate the density of fNi+Np

which is now described.
The convolution product

fNi+Np(n) =

∫ n

0
fNi

(n− x)fNp(x)dx (8)
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used in (7) does not lead to a closed form expression. Using a Gauss-
Legendre Quadrature would not be efficient here, because for some x values
the function to be integrated is highly picked. This is why a Monte Carlo
approximation has been used and is now described. The integral can be
written

fNi+Np(n) =

∫ n

0
fNi

(n − x)fNp(x)dx (9)

= ENp [fNi
(n−Np)

+] (10)

= ENi
[fNp(n−Ni)

+]. (11)

It is then approximated by importance sampling using either (10), either
(11), according to σ̂(Np) < σ̂(Ni) or not. Without loss of generality assum-
ing that σ̂(Np) < σ̂(Ni) the procedure is as follows:

1. b independents replications of fNp are simulated: npj , j = 1, · · · , b. In
practice, b = 1000 appears to provide satisfactory results.

2. using (10), fNi+Np(n) is estimated by

f̂Ni+Np(n) =
1

b

b
∑

j=1

fni
(n− npj)

+.

Dealing with censored data Often fatigue data are right censored, the
likelihood includes also the probability P(N > c). Since this probability is
difficult to compute, two alternative solutions are proposed:

a. using an asymptotic approximation (cf [2]), we have

P(N > c) ∼ π2σie
− 1

2

(log(c)−µi)
2

σ2
i

√
2π(log(c) − µi)

.

But an asymptotic approximation is not realistic when censoring oc-
curs at low stress levels.

b. simulating the data over the censorship c, the EM algorithm is replaced
by the Stochastic EM algorithm (cf [3]). But, simulate values greater
than c, could take a huge computation time.

In order to circumvent the mentioned numerical problems, we make use of
the following hybrid heuristics which provides good results in practice.

• Each censored data is assumed to arises from the component with
density fNi+Np(n) and thus tk1 = 0.
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• Before each M-step, for each censored data, simulate at most one hun-
dred times the two lognormal distributions and sum them:

– if one of the 100 resulting values is greater than the censorship,
consider this simulated value as an observed value in the M step;

– otherwise, the censorship is considered to belong to the distribu-
tion tail and the asymptotic approximation above can be used.

4 Numerical experiments

4.1 Simulated data experiments

Table 1 reports the errors between the estimates and the actual values of the
model (4) for 50 lifetime data sets with size m = 200 simulated according
to this model with θ = (ap = 22, bp = −10, σp = .2, ai = 33, bi = −30, σi =
1, α = 15, β = −35). The results are satisfactory. The estimation of π is less
accurate. This is probably due to the fact that it is difficult to assign some
observations to a mixture component.

parameters α β

simulation parameters 15 −35

mean over 50 simulations 17.5 −40.9

standard deviation over 50 simulations 4.9 11

parameters αi βi σi
simulation parameters 22 −10 .2

mean over 50 simulations 21.9 −9.99 .20

standard deviation over 50 simulations .11 .16 .01

parameters αp βp σp
simulation parameters 33 −30 1

mean over 50 simulations 33.1 −30.3 .99

standard deviation over 50 simulations .54 1.71 .08

Table 1: Results of the parameters estimation for the simulated data

Figures (3) and (4) display the behavior of the EM algorithm. EM
does not produce an increasing likelihood sequence as expected. This is
due to the Monte Carlo approximation. Therefore, in order to get honest
parameter estimates, we recommend to compute the mean of the estimated
values on the last 50 iterations of EM after a burn-in period of about 100
EM iterations.

Moreover, it is important to note that the Monte Carlo integration is
highly CPU time consuming.
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Figure 3: Behavior of the likelihood along the EM iterations

Figure 4: Zoom on the behavior of the likelihood along the last EM iterations

4.2 S-N fitting on real data

All fatigue tests are carried out with constant amplitude loading and temper-
ature. Test specimens came from a unique superalloy with approximatively
600 points for the whole curve.
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After estimating the initiation-propagation mixture model, each data can
be assigned to one of the mixture components according to the following
Maximum A Posteriori (MAP) rule:

{

component 1 if P (Z = 1) > 0.5(cross)

component 2 otherwise (circles)

Figure 5: Classification of the failure times in the propagation component
(cross) or the initiation-propagation component (circles)

According to Figure 5, the classification is as good as expected. High
stress are all classify in the first component (”pure propagation”). For low
levels, the model makes a reasonable distinction between high and low life-
times. This prove that the initiation-propagation mixture model is efficient
to retrieve the failure origins without fractography investigations.

Figure 6 displays the QQ-plot of the empirical distribution of the data
versus the fitted mixture model (continuous lines). Some remarks are in
order:

• the model adequacy is pretty good when the propagation component
is prevailing (high stress);

• the mixing proportion estimate is also good, as the broken line on the
empirical distribution is apparent on the fitted mixture distribution;

• for medium and low stress the scatter is huge. If a lognormal distribu-
tion well fit the propagation, the multiple causes of crack initiations
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are badly taken into account with a single lognormal distribution.

Figure 6: QQ-plot with model approximation

An important question to be answered when modeling fatigue lifetime is to
provide good estimates of extreme quantiles on the whole range of stress
values. Using the estimated initiation-propagation mixture model, a 0.1%-
quantile has been designed from the simulation of 106 lifetimes according to
the estimated distribution. The resulting quantile is displayed in figure (7).
It appears to be quite satisfactory since one of the 600 observed data is be-
yond this 0.1%-quantile. It means that the initiation-propoagation mixture
model provides a useful estimation of the fatigue lifetime on the whole range
of stress values.

5 Conclusion

Fatigue tests and the resulting S-N curve, are the main basic tools for analyz-
ing and predicting fatigue lifetime of a material, component, or structure.
S-N curves are in general widely scattered, and therefore service lifetime
predictions are difficult. For instance, a ”duplex behavior” appears in the
S-N curves of High Cycle Fatigue region. This ”duplex behavior” can some-
times be characterized by costly fractography investigations. In an indus-
trial framework, fractography investigations are not completed after each
test, and standard prediction models cannot be used. We have proposed a
mixture model based on the fracture mechanism, without fractography in-
formation. This is a latent structure model and its parameters are estimated
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Figure 7: The curve is the 0.1%-quantile provided by the initiation-
propagation mixture model

through an EM algorithm. Since this so-called initiation-propagation model
is based on a fracture mechanic approach, this parsimonious model is easily
interpreted by material or mechanic engineers. Numerical experiments on
simulated and real fatigue data sets show that the initiation-propagation
mixture model fit well fatigue lifetime data on the whole range of cycles. In
particular, the ”duplex” phenomenon on High Cycle Fatigue region is prop-
erly identified and it is possible to assign the lifetimes to the “initiation-
propagation” or the “propagation” components using a the maximum a
posteriori classification rule with a high level of confidence. Morevoer this
model an honest estimation of extremes quantiles of the lifetimes distribu-
tions. Thus, it could be expected to be an efficient tool to set off alarms.
And, this model should also be a relevant diagnostic tool for material elab-
oration.

Possible improvements, under study, concern the use of information
from the manufacturing process to get more accurate lifetime estimation
for medium level of stress.
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Appendix A

This appendix is to devoted to prove the identifiability of the model

fN = π(s) fNp + (1− π(s))fNi+Np ,

under the realistic assumption for material lifetimes that σi > σp. It is
difficult to prove the identifiability in a single exercise and the proof is done
step by step.

1. At first, it is assumed that the mixing proportion π and the stress
level s are fixed, and the uniqueness of the position and dispersion
parameters µ and σ are proved for the two lognormal distributions.

2. Then by allowing the stress level s to vary, it is proved that the re-
gression parameters a and b used to define µ are unique for the two
lognormal distributions. Similarly the uniqueness of the parameters α
and β, involved in the logistic regression model for the proportion π,
are proved.

1: Assuming s and π fixed, under the assumption σi > σp, we have the
asymptotic equivalence for the tail distribution of model (4), see [2]:

P(N > x) ∼ π2σie
− 1

2

(log(x)−µi)
2

σ2
i

√
2π(log(x)− µi)

.

Thus, if the distribution of N has two parameterizations (π1, π2 = 1 −
π1, µi, σi, µp, σp) and (π′

1, π
′
2 = 1− π′

1, µ
′
i, σ

′
i, µ

′
p, σ

′
p), we have

lim
x→∞











π2σi√
2π(log(x)−µi)

e
− 1

2

(log(x)−µi)
2

σ2
i

π′

2σ
′

i√
2π(log(x)−µ′

i)
e
− 1

2

(log(x)−µ′
i
)2

σ
′2
i











= 1.

That is

lim
x→∞





π2σi

π′
2σ

′
i

log(x)− µi

log(x)− µ′
i

e
− 1

2
log2(x)( 1

σ2
i

− 1

σ
′2
i

)− 1
2
log(x)(− 2µi

σ2
i

+
2µ′i

σ
′2
i

)− 1
2
(
µ2i
σ2
i

−
µ
′2
i

σ
′2
i

)



 = 1

Since lim
x→∞

(

log(x)−µi

log(x)−µ′

i

)

= 1, it leads to

lim
x→∞





π2σi

π′
2σ

′
i

e
− 1

2
log2(x)( 1

σ2
i

− 1

σ
′2
i

)− 1
2
log(x)(− 2µi

σ2
i

+
2µ′i

σ
′2
i

)− 1
2
(
µ2i
σ2
i

−
µ
′2
i

σ
′2
i

)



 = 1.
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A necessary condition to ensure this equation is that the term in log2(x) is
zero, thus −1

2(
1
σi
− 1

σ′

i
) = 0 ⇒ σi = σ′

i. Then, the term in log(x) has to be zero

too and thus µi = µ′
i. And, finally, it leads to lim

x→∞
(π2
π′

2
) = 1 and thus π2 = π′

2.

To show the identifiability of the propogation parameter, we use the
Laplace transformation L(fN ) =

∫ +∞
0 estfN(t) dt of fN . We have

L(fN ) = π L(fNp) + (1− π)L(fNi
)L(fNp),

L(fN ) = L(fNp)(π + (1− π)L(fNi
)).

We have already shown that θi = θ′i, thus

L(fNp(n; θp))(π + (1− π)L(fNi
)) = L(fNp(n; θ

′
p))(π + (1− π)L(fNi

)),

which implies L(fNp(n; θp)) = L(fNp(n; θ
′
p)). If two variables have the same

Laplace transform, then they have the same distribution: fNp(n; θp) =
fNp(n; θ

′
p). Finally θp = θ′p since the lognormal distribution is identifiable.

2: For any stress level s, we have by definition of the model (4):

fN = π(s) fNp(n; s, µi(s), σi) + (1− π(s))fNi+Np(n; s, µi(s), µp(s), σi, σp),

with π(s) = eα+βs

1+eα+βs , µi(s) = ai + bis, and µp(s) = ap + bps.

For any s, we have proved that ap + bps = a′p + b′ps and ai + bis = a′i + b′is.
It implies straightforwardly that ap = a′p, bp = b′p, ai = a′i and bi = b′i.

Similarly, for any s, we have eα+βs

1+eα+βs = eα
′+β′s

1+eα
′+β′s

and thus α = α′ and β = β′

�
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