Effective diffusion in vanishing viscosity

Fabien Campillo 1, 2 Andrey L. Piatnitski 3
1 MODEMIC - Modelling and Optimisation of the Dynamics of Ecosystems with MICro-organisme
CRISAM - Inria Sophia Antipolis - Méditerranée , MISTEA - Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie
Abstract : We study the asymptotic behavior of effective diffusion for singular perturbed elliptic operators with potential first order terms. Assuming that the potential is a random perturbation of a fixed periodic function and that this perturbation does not affect essentially the structure of the potential, we prove the exponential decay of the effective diffusion. Moreover, we establish its logarithmic asymptotics in terms of proper percolation level for the random potential.
Type de document :
Chapitre d'ouvrage
D. Cioranescu and J.-L. Lions. Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998), 31, North-Holland, pp.133--145, 2002
Liste complète des métadonnées

https://hal.inria.fr/hal-00924088
Contributeur : Fabien Campillo <>
Soumis le : lundi 6 janvier 2014 - 12:11:17
Dernière modification le : samedi 27 janvier 2018 - 01:31:34

Identifiants

  • HAL Id : hal-00924088, version 1

Collections

Citation

Fabien Campillo, Andrey L. Piatnitski. Effective diffusion in vanishing viscosity. D. Cioranescu and J.-L. Lions. Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998), 31, North-Holland, pp.133--145, 2002. 〈hal-00924088〉

Partager

Métriques

Consultations de la notice

343