Converse Lyapunov-Krasovskii theorems for uncertain retarded differential equations

Ihab Haidar 1 Paolo Mason 1 Mario Sigalotti 2, 3
3 GECO - Geometric Control Design
Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR7641
Abstract : In this article we give a collection of converse Lyapunov–Krasovskii theorems for uncertain retarded differential equations. We show that the existence of a weakly-degenerate Lyapunov–Krasovskii functional is a necessary and sufficient condition for the global exponential stability of linear retarded functional differential equations. This is carried out using a switched system representation approach.
Document type :
Journal articles
Complete list of metadatas

Cited literature [22 references]  Display  Hide  Download

https://hal.inria.fr/hal-00924252
Contributor : Mario Sigalotti <>
Submitted on : Friday, December 22, 2017 - 6:02:06 PM
Last modification on : Wednesday, March 27, 2019 - 4:08:31 PM

Identifiers

Citation

Ihab Haidar, Paolo Mason, Mario Sigalotti. Converse Lyapunov-Krasovskii theorems for uncertain retarded differential equations. Automatica, Elsevier, 2015, 62, pp.263-273. ⟨10.1016/j.automatica.2015.09.034 ⟩. ⟨hal-00924252v3⟩

Share

Metrics

Record views

512

Files downloads

267