N

N
N

HAL

open science

Square root and division elimination in PVS

Pierre Neron

» To cite this version:

Pierre Neron. Square root and division elimination in PVS. ITP - 4th Conference on Interactive The-
orem Proving, Jul 2013, Rennes, France. pp.457-462, 10.1007/978-3-642-39634-2_ 33 . hal-00924359

HAL Id: hal-00924359
https://inria.hal.science/hal-00924359

Submitted on 6 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00924359
https://hal.archives-ouvertes.fr

Square root and division elimination in PVS

Pierre Neron

Ecole polytechnique - INRIA

Abstract. In this paper we present a new strategy for PVS that imple-
ments a square root and division elimination in order to use automatic
arithmetic strategies that were not able to deal with these operations in
the first place. This strategy relies on a PVS formalization of the square
root and division elimination and deep embedding of PVS expressions
inside PVS. Therefore using computational reflection and symbolic com-
putation we are able to automatically transform expressions into division
and square root free ones before using these decision procedures.

Introduction Proof verification systems such as PVS [7] embed proofs strate-
gies that allow the user to deal with arithmetic problems automatically. However
most of these techniques such as the use of SMT solvers [2/4] or quantifier elimi-
nation [3] are not able to manage all arithmetics operations, in particular division
and mainly square roots. Being able to transform any goal or hypothesis con-
taining square roots or divisions into an equivalent one that is free of them would
allow the use of arithmetic decision procedures to resolve the current goal.

A program transformation that removes square roots and divisions from pro-
grams has been defined and proved correct in PVS, see [6]. We now aim at
using this implementation of the transformation and the proof of the semantics
equivalence between the input and the output formulas to define a PVS strategy
[I]. This strategy, elim-sqrt, transforms any goal or hypothesis by eliminating
square roots and divisions from it e.g.,

{-1} x <=1 N {-1} x <=

elim-sqrt

[
{1} x <= sqrt(x) {1} x * x - x <=0

This is realized by doing a deep embedding [§] of a fragment of PVS inside PVS

in order to use computational reflection for transformation computation [5]. This

is a big difference with PVS or Coq fields strategies, that are written in the

strategy language, since the size of the proof does not depend on the input terms.

1 Deep embedding

First of all we need to sketch how this transformation is specified in PVS, the
complete definition can be found in [6].

Definitions The transformation in PVS is defined on programs represented in
an abstract datatype program. It represents variables, constants, some operators,
pairs, projections, variable definitions and conditional expressions:

Definition 1.1 (program abstract datatype)

program : DATATYPE
value(va : variable) : value?
const(co : constant) : const?
uop(uop : unop, pr : program) : uop?
bop(bop : binop, pl : program, pr : program) : bop?
pair(pl : program, pr : program) : pair?
fst(pr : program) : fst?
snd(pr : program) : snd?
letin(x : variable, body : program, scope : program) : letin?
ift(fm : program, prt : program, prf : program) : ift?

The operators in the binop and unop datatypes represent +, —, %, /, >, > =V, A
and —. Functions computing the type and the semantics of a program in a given
environment are defined in PVS. The semantics of a program is either a failure
(e.g., division by 0) or a tuple of boolean and numerical values:

Definition 1.2 (Semantics function)
sem(p : program, env : eval_env) : RECURSIVE prog_val

where prog_val : DATATYPE
numv(re : real): numv?
boolv(bo : bool): boolv?
pairv(vl : prog_value, vr : prog_value): pairv?
failv: failv?

and eval_env = [variable -> prog_vall

Given these definitions, we can now introduce the main definition of the trans-
formation as a PVS function elim defined on program. PVS subtyping allows
us to embed the preservation of the semantics in the type of this function:

Definition 1.3 (Main transformation)
elim(p : program)

{pp : program_N_sq | preserves_semantics_no_fail(p) (pp)}
where program_N_sq is the subtype of program without square roots and divisions
and preserves_semantics_no_fail(p) (pp) the following statement:

V env, nofailv(sem(p,env)) IMPLIES sem(p,env) = sem(pp,env)

In order to use this transformation, we have to transpose a PVS statement into
this formalism, this realizes a deep embedding of a fragment of PVS inside PVS.

Deep embedding Given a proof context in PVS, we aim at transforming a
statement (either a goal or an hypothesis) into an equivalent one which is free
of divisions and square roots. First of all, as we can see in definition the
formalism only represents a fragment of PVS, therefore the statement we want
to transform has to match this formalism. Given such a statement, we call it S,

the first step of this embedding is to compute the equivalent p : program and
the corresponding evaluation environment env such that:

sem(p,env) = boolv(S)

Indeed, the variable of the program type are not PVS variables but identifiers
(e.g., string or natural numbers), therefore we need the environment to make the
link between these identifiers and their value, i.e., the value of the correspond-
ing PVS variables. From now on, given a PVS variable x in a statement and
the corresponding environment env, its identifier will be the string "X". These
elements, the program and environment, have to be computed as their PVS
string representation:

Example 1.1 (Equivalent program in environment)
p = "bop(gt,uop(sqrt,fst(var("X"))), var("y"))"

[--- {1} _, env = "LAMBDA (z : string)
sqrt(x‘1) > y IF z = "X" THEN pairv(numv(x‘1),numv(x‘2))
ELSIF z = "Y" THEN numv(y) ELSE O ENDIF"

This string representation allows us to introduce these items in the current con-
text with some PVS prover commands.

Equivalent program computation Given a PVS context and a statement S,
by using the strategy language we can access to the corresponding lisp tree struc-
ture that represents the abstract syntax of the PVS statement. Therefore if the
statement matches the embedded fragment, computing the equivalent program
can be done by decomposing this lisp structure and building the corresponding
string. As most of the cases are staightforward, we only detail a few of them:

— the variable: as mentioned earlier, the variables of the program type are
identifiers (e.g., string) and we need to have a mapping beetween every PVS
variable and its corresponding string identifier.

— the projections: in PVS, tuples are represented as arrays (int — element),
the corresponding lisp object is a list and we need to translate it as a binary
tree, e.g., list (el e2 e3) gives pair(el,pair(e2,e3)) and the projection
x¢3 is translated into "snd(snd(Value"X"))"

Corresponding evaluation environment As we can see in example the
correspondence between identifiers and variables is not straightforward either.
Indeed, we need to build the value corresponding to each identifier. Given an
identifier "X" and its associated variable x, if x has a basic type, number or
bool, then the semantics of value("X") is x, but if x is a tuple, then we need
to extract its elements and build the corresponding prog_val. For example if
x is a triple of type [bool,real,real] then the associated value prog_val is
pairv(boolv(x‘1) ,pairv(numv(x¢2) ,numv(x¢3))).

Given a PVS statement E, we are able to compute the corresponding program
p and environment env, such that E can be replaced by the semantics of p, i.e.,

bo(sem(p,env)). This allows us to work on the program p in order to apply
the transformation.

2 Strategy definition
In this section we present how to build the strategy that transforms a current
goal or hypothesis into an equivalent square root and division free one. In the

program expressions we will avoid writing constructors that are obvious, e.g.,
we will write "A" and plus(el,e2) instead of val("A") and bop(plus,el,e2).

Strategy principles Fig.[T|describes the main steps of the elim-sqrt strategy:

[— strategy {1} -b 0
77777777777777 > -b >
{1} sqrt(a) > b 2} a>b *b
(1) grind[1(4) grind
sem(gt (sqrt ("A"),"B") ,env) sem(or (gt (0,B) ,gt (A,times (B,B))) ,env)

(2) typepred "eIirN (3) eval-expr

sem(elim(gt (sqrt(4),B)) ,env)

Fig. 1. elim-sqrt strategy outlines

(1) we introduce the equivalent program and environment and prove this equiv-
alence using symbolic evaluation with grind

(2) using the type predicate of elim we apply this function to the program

(3) we compute the elimination using computational reflection eval-expr

(4) we return into the PVS language itself using symbolic evaluation of the
square root and division free program semantics

In section [2] we gave the main steps of the transformation strategy, we will
now see how these different expressions can be introduced in the PVS prover,
and their equivalence proved. In this section we will assume that we have an
hypothesis, H, we want to remove square roots from, the elimination in a positive
formula (e.g., a Goal) being similar.

From PVS expression to program datatype As mentioned in section [T] the
transformation is defined using the program abstract datatype, the first step of
the strategy is therefore to transpose the PVS statement into this datatype. In
we introduced a lisp function that, given a PVS statement, builds the correspond-
ing program, p and environment env. The first step of the strategy is to intro-
duce this program equivalent to H using its boolean semantics bo(sem(p,env)).
The extraction of the boolean part of the semantics with bo such as the use of
the type of the elim function will require to prove that sem(p,env) does not fail

and is a boolean prog_val, this can be done by doing a symbolic evaluation of
sem(p,env) but this evaluation is not very efficient. Therefore in order to do it
only once, we introduce explicitly this hypothesis with the following command:

(case "boolv?(sem(p,env)) AND bo(sem(p,env))")

This rule introduces a new hypothesis we first have to prove in the current con-
text. The proof of boolv?(sem(p,env)) AND bo(sem(p,env)) only uses the
symbolic evaluation of sem(p,env) that produces boolv(H) and therefore fin-
ishes that case. Now that we have introduced bo(sem(p,env)) equivalent to H,
we can delete H from the context.

elim function introduction We now want to eliminate square roots and di-
visions from p. Hence, we introduce the type of elim(p), with the typepred
command (1), nofail(sem(p,env)) is straightforward using the -2 hypothesis
and thus it allows the use of the semantics equality to replace p by elim(p) (2):

{-1} nofail(sem(p,env)) IMPLIES

sem(p,env) = sem(elim(p),env) {-1} boolv?(sem(elim(p) ,env))
{-2} boolv?(sem(p,env)) {-2} bo(sem(elim(p) ,env))
(1) {-3} bo(sem(p,env)) (2) {-3} Hypothesis

{-4} Hypothesis [
[— {1} Goal
{1} Goal

Computational reflection The next step is to produce the equivalent square
root, and division free formula, this is done by computational reflection of elim(p).
The use of this technique requires two hypotheses:

— the function, (i.e., elim) has to be completely defined with computable struc-
tures (e.g., use list instead of sets), so there is a corresponding executable
lisp function,

— the arguments have to be ground (do not contain any PVS variable), this is
ensured by using identifiers to represent the original PVS variable, the link
between these identifiers and variables being handled separately by env.

Therefore we can compute elim(p) in order to get the equivalent program, p?,
free of square roots and divisions with the eval-expr strategy.

Semantics evaluation From our new square root and division free program
p’ we want to get the corresponding PVS expression. Therefore we have to
compute the semantics of this program. This is done once again by symbolic
evaluation and in the end we get a new PVS statement H’, equivalent to H, free
of square roots and divisions. Square roots and divisions being eliminated in this
hypothesis we can now continue the proof using our favorite arithmetic strategy.

Conclusion

We have described how to turn a PVS computable specification and the corre-
sponding proof of a program transformation into a PVS strategy. We realized
it by doing a deep embedding of PVS inside PVS, using symbolic evaluation
to prove the correspondence between PVS and its embedding when the trans-
formation itself uses computational reflection. This kind of embedding can be
generalized for any transformation defined in PVS on an abstract datatype rep-
resenting a fragment of PVS.

This strategy has been tested on various examples, from simple comparisons
to more complex statements that embed variable definitions and conditional ex-
pressions. The strategy takes between 20 sec to few minutes mainly depending
on the number of square roots. These results can be explained by the low perfor-
mances of the PVS symbolic evaluation whereas the transformation itself that
uses reflection, is almost instantaneous.

This strategy is also the first step of a larger scale transformation that aims at
eliminating square roots and divisions from full PVS specifications and producing
a semantics equivalence proof certificate.

Acknowledgment I would like to thank César Mufioz for the many ideas he
had on this project. This work was supported by the Assurance of Flight Crit-
ical System’s project of NASA’s Aviation Safety Program at Langley Research
Center under Research Cooperative Agreement No. NNLO9AAOOA awarded to
the National Institute of Aerospace.

References

1. M. Archer, B. D. Vito, and C. Muiioz. Developing user strategies in PVS: A tutorial.
In Proceedings of Design and Application of Strategies/Tactics in Higher Order Log-
ics STRATA’03, NASA /CP-2003-212448, NASA LaRC,Hampton VA 23681-2199,
USA, September 2003.

2. C. Barrett and C. Tinelli. Cvc3. In W. Damm and H. Hermanns, editors, CAV,
volume 4590 of LNCS, pages 298-302. Springer, 2007.

3. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition: a synopsis. SIGSAM Bull., 10:10-12, February 1976.

4. B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for dpll(t). In T. Ball
and R. B. Jones, editors, CAV, volume 4144 of LNCS, pages 81-94. Springer, 2006.

5. S. Lescuyer and S. Conchon. Improving coq propositional reasoning using a lazy
cnf conversion scheme. In S. Ghilardi and R. Sebastiani, editors, FroCoS, volume
5749 of LNCS, pages 287-303. Springer, 2009.

6. P. Neron. A formal proof of square root and division elimination in embedded
programs. In C. Hawblitzel and D. Miller, editors, CPP, volume 7679 of LNCS,
pages 256—272. Springer, 2012.

7. S. Owre, J. M. Rushby, and N. Shankar. Pvs: A prototype verification system. In
D. Kapur, editor, CADE, volume 607 of LNCS, pages 748-752. Springer, 1992.

8. M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow versus deep
embedding. In K. Slind, A. Bunker, and G. Gopalakrishnan, editors, TPHOLs,
volume 3223 of LNCS, pages 305-320. Springer, 2004.

	Square root and division elimination in PVS

