Inverse reinforcement learning to control a robotic arm using a Brain-Computer Interface

Laurent Bougrain 1 Matthieu Duvinage 2 Edouard Klein 3
1 NEUROSYS - Analysis and modeling of neural systems by a system neuroscience approach
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
2 TCTS Lab
TCTS - Circuit Theory and Signal Processing Lab
Abstract : The goal of this project is to use inverse reinforce- ment learning to better control a JACO robotic arm developed by Kinova in a Brain-Computer Interface (BCI). A self-paced BCI such as a motor imagery based-BCI allows the subject to give orders at any time to freely control a device. But using this paradigm, even after a long training, the accuracy of the classifier used to recognize the order is not 100%. While a lot of studies try to improve the accuracy using a preprocessing stage that improves the feature extraction, we work on a post- processing solution. The classifier used to recognize the mental commands will provide as outputs a value for each command such as the posterior probability. But the executed action will not only depend on this information. A decision process will also take into account the position of the robotic arm and previous trajectories. More precisely, the decision process will be obtained applying an inverse reinforcement learning (IRL) on a subset of trajectories specified by an expert. At the end of the workshop, the convergence of the inverse reinforcement algorithm has not been achieved. Nevertheless, we developed a whole processing chain based on OpenViBE for controlling 2D- movements and we present how to deal with this high dimensional time series problem with a lot of noise which is unusual for the IRL community.
Liste complète des métadonnées

https://hal.inria.fr/hal-00924653
Contributeur : Laurent Bougrain <>
Soumis le : mardi 7 janvier 2014 - 09:39:51
Dernière modification le : mercredi 28 septembre 2016 - 11:01:05
Document(s) archivé(s) le : lundi 7 avril 2014 - 22:30:32

Fichier

eINTERFACE12-ArmBand-report.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00924653, version 1

Citation

Laurent Bougrain, Matthieu Duvinage, Edouard Klein. Inverse reinforcement learning to control a robotic arm using a Brain-Computer Interface. [Research Report] 2012. <hal-00924653>

Partager

Métriques

Consultations de
la notice

375

Téléchargements du document

849