M. Faverge and P. Ramet, Fine grain scheduling for sparse solver on manycore architectures, 15th SIAM Conference on Parallel Processing for Scientific Computing, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00769026

A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek et al., The Impact of Multicore on Math Software, 2006.
DOI : 10.1007/978-3-540-75755-9_1

A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear algebra algorithms for multicore architectures, Parallel Computing, vol.35, issue.1, pp.38-53, 2009.
DOI : 10.1016/j.parco.2008.10.002

E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak et al., Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects, Journal of Physics: Conference Series, vol.180, issue.1, p.12037, 2009.
DOI : 10.1088/1742-6596/180/1/012037

O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Generation Computer Systems, vol.20, issue.3, pp.475-487, 2004.
DOI : 10.1016/j.future.2003.07.011

J. D. Hogg, J. K. Reid, and J. A. Scott, Design of a Multicore Sparse Cholesky Factorization Using DAGs, SIAM Journal on Scientific Computing, vol.32, issue.6, pp.3627-3649, 2010.
DOI : 10.1137/090757216

X. S. Li, Evaluation of sparse LU factorization and triangular solution on multicore platforms, " in VECPAR, ser. Lecture Notes in Computer Science, pp.287-300, 2008.

T. A. Davis, Algorithm 915, SuiteSparseQR, ACM Transactions on Mathematical Software, vol.38, issue.1, p.8, 2011.
DOI : 10.1145/2049662.2049670

A. Buttari, Fine-Grained Multithreading for the Multifrontal $QR$ Factorization of Sparse Matrices, SIAM SISC and APO technical report number RT-APO-11-6, 2013.
DOI : 10.1137/110846427

URL : https://hal.archives-ouvertes.fr/hal-01122471

]. C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, StarPU: a unified platform for task scheduling on heterogeneous multicore architectures, Concurrency and Computation: Practice and Experience, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00384363

G. Bosilca, A. Bouteiller, A. Danalis, T. Hérault, P. Lemarinier et al., DAGuE: A generic distributed DAG engine for High Performance Computing, Parallel Computing, vol.38, issue.1, 2012.

A. Yarkhan, Dynamic task execution on shared and distributed memory architectures, 2012.

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar et al., Flexible Development of Dense Linear Algebra Algorithms on Massively Parallel Architectures with DPLASMA, 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, 2011.
DOI : 10.1109/IPDPS.2011.299

F. D. Igual, E. Chan, E. S. Quintana-ortí, G. Quintana-ortí, R. A. Van-de-geijn et al., The FLAME approach: From dense linear algebra algorithms to high-performance multi-accelerator implementations, Journal of Parallel and Distributed Computing, vol.72, issue.9, pp.1134-1143, 2012.
DOI : 10.1016/j.jpdc.2011.10.014

R. F. Lucas, G. Wagenbreth, D. M. Davis, and R. Grimes, Multifrontal Computations on GPUs and Their Multi-core Hosts, Proceedings of the 9th international conference on High performance computing for computational science, ser. VECPAR'10, pp.71-82, 2011.
DOI : 10.1016/0167-8191(86)90019-0

C. D. Yu, W. Wang, and D. Pierce, A CPU???GPU hybrid approach for the unsymmetric multifrontal method, Parallel Computing, vol.37, issue.12, pp.759-770, 2011.
DOI : 10.1016/j.parco.2011.09.002

J. W. Liu, The Role of Elimination Trees in Sparse Factorization, SIAM Journal on Matrix Analysis and Applications, vol.11, issue.1, pp.134-172, 1990.
DOI : 10.1137/0611010

I. S. Duff and J. K. Reid, The Multifrontal Solution of Indefinite Sparse Symmetric Linear, ACM Transactions on Mathematical Software, vol.9, issue.3, pp.302-325, 1983.
DOI : 10.1145/356044.356047

C. C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, H. D. Simon et al., Progress in Sparse Matrix Methods for Large Linear Systems On Vector Supercomputers, International Journal of High Performance Computing Applications, vol.1, issue.4, pp.10-30, 1987.
DOI : 10.1177/109434208700100403

M. Cosnard, E. Jeannot, and T. Yang, Compact DAG representation and its symbolic scheduling, Journal of Parallel and Distributed Computing, vol.64, issue.8, pp.921-935, 2004.
DOI : 10.1016/j.jpdc.2004.05.001

URL : https://hal.archives-ouvertes.fr/inria-00099958

V. Volkov and J. W. , Benchmarking GPUs to tune dense linear algebra, 2008 SC, International Conference for High Performance Computing, Networking, Storage and Analysis, pp.311-3111, 2008.
DOI : 10.1109/SC.2008.5214359

P. Hénon, P. Ramet, and J. Roman, On finding approximate supernodes for an efficient block-ILU(k) factorization, Parallel Computing, vol.34, issue.6-8, pp.345-362, 2008.
DOI : 10.1016/j.parco.2007.12.003

T. A. Davis, The university of Florida sparse matrix collection, ACM Transactions on Mathematical Software, vol.38, issue.1, 1994.
DOI : 10.1145/2049662.2049663

I. Yamazaki, S. Tomov, and J. Dongarra, One-sided Dense Matrix Factorizations on a Multicore with Multiple GPU Accelerators*, Procedia Computer Science, vol.9, issue.Complete, pp.37-46, 2012.
DOI : 10.1016/j.procs.2012.04.005

C. Nvidia, Cublas library, NVIDIA Corporation, vol.15, 2008.

G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao et al., Fast implementation of dgemm on fermi gpu Storage and Analysis, ser. SC '11, Proceedings of 2011 International Conference for High Performance Computing , Networking, pp.351-3511, 2011.

R. Nath, S. Tomov, and J. Dongarra, An Improved Magma Gemm For Fermi Graphics Processing Units, The International Journal of High Performance Computing Applications, vol.27, issue.1, pp.511-515, 2010.
DOI : 10.1177/1094342010385729

J. Kurzak, S. Tomov, and J. Dongarra, Autotuning GEMM Kernels for the Fermi GPU, IEEE Transactions on Parallel and Distributed Systems, vol.23, issue.11, pp.2045-2057, 2012.
DOI : 10.1109/TPDS.2011.311