V. I. Arnold, Mathematical methods of classical mechanics, 1989.

B. Bonnard, J. Caillau, R. Sinclair, and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.4, pp.1081-1098, 2009.
DOI : 10.1016/j.anihpc.2008.03.010

URL : https://hal.archives-ouvertes.fr/hal-00212075

B. Bonnard, O. Cots, J. Pomet, and N. Shcherbakova, Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem, 52nd IEEE Conference on Decision and Control, 2012.
DOI : 10.1109/CDC.2013.6760144

URL : https://hal.archives-ouvertes.fr/hal-00925078

P. Gurfil, A. Elipe, W. Tangren, and M. Efroimsky, The Serret-Andoyer formalism in rigid-body dynamics: I. Symmetries and perturbations, Regular and Chaotic Dynamics, vol.12, issue.4, pp.389-425, 2007.
DOI : 10.1134/S156035470704003X

V. Jurdjevic, Geometric control theory, Cambridge Studies in Advanced Mathematics, 1997.

M. Lara and S. Ferrer, Integration of the Euler-Poinsot Problem in New Variables, submitted to Mechanics Research Communications, 2010.

K. Y. Lum and A. M. Bloch, Generalized Serret-Andoyer transformation and applications for the controlled rigid body, Dynamics and Control, vol.9, issue.1, pp.39-66, 1999.
DOI : 10.1023/A:1008342708491

H. Poincaré, Sur Les Lignes Geodesiques Des Surfaces Convexes, Transactions of the American Mathematical Society, vol.6, issue.3, pp.237-274, 1905.
DOI : 10.2307/1986219

K. Shiohama, T. Shioya, and M. Tanaka, The geometry of total curvature on complete open surfaces, Cambridge Tracts in Mathematics, vol.159, 2003.
DOI : 10.1017/CBO9780511543159

H. Yuan, Geometry, optimal control and quantum computing, 2006.

H. Yuan, R. Zeier, N. Khaneja, and S. Lloyd, Elliptic functions and efficient control of Ising spin chains with unequal couplings, Physical Review A, vol.77, issue.3, p.32340, 2008.
DOI : 10.1103/PhysRevA.77.032340