R. Alcántara, K. B. Axelsen, and A. Morgat, Rhea--a manually curated resource of biochemical reactions, Nucleic Acids Research, vol.40, issue.D1, pp.754-60, 2012.
DOI : 10.1093/nar/gkr1126

D. Auber, Tulip ??? A Huge Graph Visualization Framework, 2004.
DOI : 10.1007/978-3-642-18638-7_5

R. Caspi, T. Altman, and K. Dreher, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Research, vol.40, issue.D1, pp.742-53, 2012.
DOI : 10.1093/nar/gkr1014

V. Chvatal, A Greedy Heuristic for the Set-Covering Problem, Mathematics of Operations Research, vol.4, issue.3, pp.233-235, 1979.
DOI : 10.1287/moor.4.3.233

M. Clugston and R. Flemming, Advanced Chemistry (Advanced Science), 2000.

P. De-matos, R. Alcántara, and A. Dekker, Chemical Entities of Biological Interest: an update, Nucleic Acids Research, vol.38, issue.Database, pp.249-254, 2010.
DOI : 10.1093/nar/gkp886

U. Feige, A threshold of ln n for approximating set cover, Journal of the ACM, vol.45, issue.4, pp.634-652, 1998.
DOI : 10.1145/285055.285059

O. Goldreich, Computational Complexity: A Conceptual Perspective, 2008.

M. Hucka, Groups Proposal, 2012.

M. Kanehisa, S. Goto, and Y. Sato, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Research, vol.40, issue.D1, pp.305-1048, 2012.
DOI : 10.1093/nar/gkr988

R. M. Karp, Reducibility Among Combinatorial Problems, Complexity of Computer Computations, pp.85-103, 1972.
DOI : 10.1007/978-3-540-68279-0_8

N. Loira, T. Dulermo, and J. M. Nicaud, A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica, BMC Systems Biology, vol.6, issue.1, p.35, 2012.
DOI : 10.1093/bioinformatics/btg015

URL : https://hal.archives-ouvertes.fr/hal-00784406

D. E. Metzler, Biochemistry: The Chemical Reactions of Living Cells. No. v. 1 in Biochemistry: The Chemical Reactions of Living Cells, 2001.

S. Moodie, N. Le-novere, and E. Demir, Systems Biology Graphical Notation: Process Description language Level 1, Nature Precedings, 2011.
DOI : 10.1038/npre.2011.3721.4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.665.9922

A. Muto, M. Kotera, and T. Tokimatsu, Modular Architecture of Metabolic Pathways Revealed by Conserved Sequences of Reactions, Journal of Chemical Information and Modeling, vol.53, issue.3, 2013.
DOI : 10.1021/ci3005379

H. Rohn, A. Junker, and A. Hartmann, VANTED v2: a framework for systems biology applications, BMC Systems Biology, vol.6, issue.1, p.139, 2012.
DOI : http://www.jfree.org/jfreechart

H. S. Stoker, General, Organic, and Biological Chemistry. Textbooks Available with Cengage YouBook Series, 2012.

N. Swainston, K. Smallbone, and P. Mendes, The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks, Journal of integrative bioinformatics, vol.8, issue.2, p.186, 2011.

I. Thiele and B. O. Palsson, A protocol for generating a high-quality genome-scale metabolic reconstruction, Nature Protocols, vol.161, issue.1, pp.93-121, 2010.
DOI : 10.1186/1752-0509-3-37

Y. Tohsato, H. Matsuda, and A. Hashimoto, A multiple alignment algorithm for metabolic pathway analysis using enzyme hierarchy, Proceedings / ... International Conference on Intelligent Systems for Molecular Biology ; ISMB. International Conference on Intelligent Systems for Molecular Biology, pp.376-83, 2000.

A. Zhukova and D. J. Sherman, Knowledge-based generalization of metabolic networks: A practical study, Journal of Bioinformatics and Computational Biology, vol.12, issue.02, 2013.
DOI : 10.1142/S0219720014410017

URL : https://hal.archives-ouvertes.fr/hal-00906911