I. Gulbenkian-de-ciência, R. Da, and Q. Grande, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France. 3 European Molecular Biology Laboratory Wellcome Trust Genome Campus, European Bioinformatics Institute (EMBL-EBI), vol.6, issue.2 6, pp.2780-156

&. Swiss-prot, . Vital-it-group, and . Sib-swiss, CH-1015 Lausanne, Switzerland. 10 INRIA Grenoble ? Rhône-Alpes, 655 avenue de l'Europe, Montbonnot, 38334 Saint-Ismier Cedex, France. 11 IAE Grenoble, Université Pierre-Mendès-France, Domaine universitaire BP 47, 12 Instituto de Engenharia de Sistemas e Computadores -Investigação e Desenvolvimento Rua Alves Redol 9, 1000-029 Lisbon, Portugal. 13 Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany. 14 Computing and Mathematical sciences, California Institute of Technology. 15 Institut de Biologie de l'Ecole Normale Supérieure (IBENS) -UMR CNRS 8197 -INSERM 1024 46 rue d

S. Kauffman, Homeostasis and Differentiation in Random Genetic Control Networks, Nature, vol.217, issue.5215, pp.177-185, 1969.
DOI : 10.1038/224177a0

R. Thomas, Boolean formalisation of genetic control circuits, J Theor Biol, vol.42, pp.565-583, 1973.

F. Herrmann, A. Groß, D. Zhou, H. Kestler, and M. Kühl, A Boolean Model of the Cardiac Gene Regulatory Network Determining First and Second Heart Field Identity, PLoS ONE, vol.7, issue.10, p.46798, 2012.
DOI : 10.1371/journal.pone.0046798.s003

O. Akman, S. Watterson, A. Parton, N. Binns, A. Millar et al., Digital clocks: simple Boolean models can quantitatively describe circadian systems, Journal of The Royal Society Interface, vol.220, issue.4598, pp.2365-82
DOI : 10.1126/science.220.4598.671

C. Giacomantonio and G. Goodhill, A Boolean Model of the Gene Regulatory Network Underlying Mammalian Cortical Area Development, PLoS Computational Biology, vol.223, issue.9, p.1000936, 2010.
DOI : 10.1371/journal.pcbi.1000936.s001

T. Tokar, Z. Turcan, and J. Ulicny, Boolean network-based model of the Bcl-2 family mediated MOMP regulation, Theoretical Biology and Medical Modelling, vol.10, issue.1, p.40, 2013.
DOI : 10.1186/1742-4682-10-40

S. Sridharan, R. Layek, A. Datta, and J. Venkatraj, Boolean modeling and fault diagnosis in oxidative stress response, BMC Genomics, vol.13, issue.Suppl 6, p.4
DOI : 10.1109/GENSiPS.2011.6169471

N. Domedel-puig, P. Rué, A. Pons, and J. García-ojalvo, Information Routing Driven by Background Chatter in a Signaling Network, PLoS Computational Biology, vol.135, issue.12, p.1002297, 2011.
DOI : 10.1371/journal.pcbi.1002297.s013

A. Saadatpour, I. Albert, and R. Albert, Attractor analysis of asynchronous Boolean models of signal transduction networks, Journal of Theoretical Biology, vol.266, issue.4, pp.641-56, 2010.
DOI : 10.1016/j.jtbi.2010.07.022

A. Naldi, J. Carneiro, C. Chaouiya, and D. Thieffry, Diversity and Plasticity of Th Cell Types Predicted from Regulatory Network Modelling, PLoS Computational Biology, vol.212, issue.9, p.1000912, 2010.
DOI : 10.1371/journal.pcbi.1000912.s003

URL : https://hal.archives-ouvertes.fr/inserm-00704876

R. Samaga, J. Saez-rodriguez, L. Alexopoulos, P. Sorger, and S. Klamt, The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-Throughput Data, PLoS Computational Biology, vol.2, issue.8, p.1000438, 2009.
DOI : 10.1371/journal.pcbi.1000438.s007

L. Calzone, L. Tournier, S. Fourquet, D. Thieffry, B. Zhivotovsky et al., Mathematical Modelling of Cell-Fate Decision in Response to Death Receptor Engagement, PLoS Computational Biology, vol.2006, issue.3, p.1000702, 2010.
DOI : 10.1371/journal.pcbi.1000702.s008

URL : https://hal.archives-ouvertes.fr/inserm-00704979

T. Helikar, J. Konvalina, J. Heidel, and J. Rogers, Emergent decision-making in biological signal transduction networks, Proceedings of the National Academy of Sciences, vol.105, issue.6, pp.1913-1918, 2008.
DOI : 10.1073/pnas.0705088105

A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry, Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle, Bioinformatics, vol.22, issue.14, pp.124-155, 2006.
DOI : 10.1093/bioinformatics/btl210

M. Davidich and S. Bornholdt, Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast, PLoS ONE, vol.11, issue.12, p.1672, 2008.
DOI : 10.1371/journal.pone.0001672.t004

R. Todd and T. Helikar, Ergodic Sets as Cell Phenotype of Budding Yeast Cell Cycle, PLoS ONE, vol.7, issue.10, p.45780, 2012.
DOI : 10.1371/journal.pone.0045780.g006

O. Sahin, H. Fröhlich, C. Löbke, U. Korf, S. Burmester et al., Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance, BMC Systems Biology, vol.3, issue.1, p.1, 2009.
DOI : 10.1186/1752-0509-3-1

A. Madrahimov, T. Helikar, B. Kowal, G. Lu, and R. J. , Dynamics of Influenza Virus and Human Host Interactions During Infection and Replication Cycle, Bulletin of Mathematical Biology, vol.26, issue.1, pp.988-1011, 2013.
DOI : 10.1007/s11538-012-9777-2

R. Feuer, K. Gottlieb, G. Viertel, J. Klotz, S. Schober et al., Model-based analysis of an adaptive evolution experiment with Escherichia coli in a pyruvate limited continuous culture with glycerol, EURASIP Journal on Bioinformatics and Systems Biology, vol.2012, issue.1, p.14, 2012.
DOI : 10.1186/gb-2003-4-9-r54

L. Kazemzadeh, M. Cvijovic, and D. Petranovic, Boolean Model of Yeast Apoptosis as a Tool to Study Yeast and Human Apoptotic Regulations, Frontiers in Physiology, vol.3, p.446, 2012.
DOI : 10.3389/fphys.2012.00446

F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, The yeast cell-cycle network is robustly designed, Proceedings of the National Academy of Sciences, vol.101, issue.14, pp.4781-4787, 2004.
DOI : 10.1073/pnas.0305937101

A. Fauré, A. Naldi, F. Lopez, C. Chaouiya, A. Ciliberto et al., Modular logical modelling of the budding yeast cell cycle, Molecular BioSystems, vol.97, issue.2, pp.1787-96, 2009.
DOI : 10.1109/TCBB.2008.64

R. Albert and H. Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster, Journal of Theoretical Biology, vol.223, issue.1, pp.1-18, 2003.
DOI : 10.1016/S0022-5193(03)00035-3

L. Sánchez, C. Chaouiya, and D. Thieffry, Segmenting the fly embryo: logical analysis of the role of the Segment Polarity cross-regulatory module, The International Journal of Developmental Biology, vol.52, issue.8
DOI : 10.1387/ijdb.072439ls

A. González, C. Chaouiya, and D. Thieffry, Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc, Bioinformatics, vol.24, issue.16, pp.234-274, 2008.
DOI : 10.1093/bioinformatics/btn266

S. Li, S. Assmann, and R. Albert, Predicting Essential Components of Signal Transduction Networks: A Dynamic Model of Guard Cell Abscisic Acid Signaling, PLoS Biology, vol.34, issue.10, p.312, 2006.
DOI : 10.1371/journal.pbio.0040312.sd003

L. Mendoza, D. Thieffry, and E. Alvarez-buylla, Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis, Bioinformatics, vol.15, issue.7, pp.593-606, 1999.
DOI : 10.1093/bioinformatics/15.7.593

T. Helikar, N. Kochi, B. Kowal, M. Dimri, M. Naramura et al., A Comprehensive, Multi-Scale Dynamical Model of ErbB Receptor Signal Transduction in Human Mammary Epithelial Cells, PLoS ONE, vol.22, issue.4, p.61757, 2013.
DOI : 10.1371/journal.pone.0061757.s002

C. Terfve, T. Cokelaer, D. Henriques, A. Macnamara, E. Gonçalves et al., CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms, BMC Systems Biology, vol.6, issue.1, p.133, 2012.
DOI : 10.1186/1752-0509-6-133

F. Hinkelmann, M. Brandon, B. Guang, R. Mcneill, G. Blekherman et al., ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra, BMC Bioinformatics, vol.12, issue.1, p.295, 2011.
DOI : 10.1016/j.aam.2006.08.004

C. Müssel, M. Hopfensitz, and H. Kestler, BoolNet--an R package for generation, reconstruction and analysis of Boolean networks, Bioinformatics, vol.26, issue.10, pp.1378-80, 2010.
DOI : 10.1093/bioinformatics/btq124

I. Albert, J. Thakar, S. Li, R. Zhang, and R. Albert, Boolean network simulations for life scientists, Source Code for Biology and Medicine, vol.3, issue.1, p.16, 2008.
DOI : 10.1186/1751-0473-3-16

T. Helikar, B. Kowal, and J. Rogers, A Cell Simulator Platform: The Cell Collective, Clinical Pharmacology & Therapeutics, vol.93, issue.5, pp.393-398, 2013.
DOI : 10.1371/journal.pone.0046417

T. Helikar, B. Kowal, S. Mcclenathan, M. Bruckner, T. Rowley et al., The Cell Collective: Toward an open and collaborative approach to systems biology, BMC Systems Biology, vol.6, issue.1, p.96, 2012.
DOI : 10.1186/1752-0509-3-1

S. Klamt, J. Saez-rodriguez, and E. Gilles, Structural and functional analysis of cellular networks with cell NetAnalyzer, BMC Syst Biol, vol.17, issue.2, pp.1752-0509135, 2007.

T. Helikar and J. Rogers, ChemChains: a platform for simulation and analysis of biochemical networks aimed to laboratory scientists, BMC Systems Biology, vol.3, issue.1, p.58, 2009.
DOI : 10.1186/1752-0509-3-58

A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry et al., Logical modelling of regulatory networks with GINsim 2.3, Biosystems, vol.97, issue.2, pp.134-139, 2009.
DOI : 10.1016/j.biosystems.2009.04.008

J. Krumsiek, S. Pölsterl, D. Wittmann, and F. Theis, Odefy -- From discrete to continuous models, BMC Bioinformatics, vol.11, issue.1, p.233, 2010.
DOI : 10.1186/1471-2105-11-233

J. Zheng, D. Zhang, P. Przytycki, R. Zielinski, J. Capala et al., SimBoolNet--a Cytoscape plugin for dynamic simulation of signaling networks, Bioinformatics, vol.26, issue.1, pp.141-143, 2010.
DOI : 10.1093/bioinformatics/btp617

D. Cara, A. Garg, A. , D. Micheli, G. Xenarios et al., Dynamic simulation of regulatory networks using SQUAD, BMC Bioinformatics, vol.8, issue.1, p.462, 2007.
DOI : 10.1186/1471-2105-8-462

E. Clarke and O. Grumberg, Peled D: Model-checking, p.330, 1999.

G. Batt, D. Ropers, H. De-jong, J. Geiselmann, R. Mateescu et al., Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli, Bioinformatics, vol.21, issue.Suppl 1, pp.19-28, 2005.
DOI : 10.1093/bioinformatics/bti1048

URL : https://hal.archives-ouvertes.fr/hal-00171939

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore et al., NuSMV 2: An OpenSource Tool for Symbolic Model Checking, Lect Notes Comp Sci, vol.2404, pp.359-64, 2002.
DOI : 10.1007/3-540-45657-0_29

G. Bernot, J. Comet, A. Richard, and J. Guespin, Application of formal methods to biological regulatory networks: extending Thomas??? asynchronous logical approach with temporal logic, Journal of Theoretical Biology, vol.229, issue.3, pp.339-386, 2004.
DOI : 10.1016/j.jtbi.2004.04.003

N. Chabrier-rivier, F. Fages, and S. Soliman, The Biochemical Abstract Machine BIOCHAM, Lect Notes Comp Sci, vol.11, pp.171-91, 2005.
DOI : 10.1007/BF03037227

URL : https://hal.archives-ouvertes.fr/inria-00000814

P. Monteiro and C. Chaouiya, Efficient Verification for Logical Models of Regulatory Networks, Adv Intell Soft Comput, vol.154, pp.259-67, 2012.
DOI : 10.1007/978-3-642-28839-5_30

P. Monteiro, D. Ropers, R. Mateescu, A. Freitas, and H. De-jong, Temporal logic patterns for querying dynamic models of cellular interaction networks, Bioinformatics, vol.24, issue.16, pp.227-260, 2008.
DOI : 10.1093/bioinformatics/btn275

URL : https://hal.archives-ouvertes.fr/inria-00357805

M. Carrillo, P. Góngora, and D. Rosenblueth, An overview of existing modeling tools making use of model checking in the analysis of biochemical networks, Frontiers in Plant Science, vol.3, p.155, 2012.
DOI : 10.3389/fpls.2012.00155

M. Hucka, A. Finney, H. Sauro, H. Bolouri, J. Doyle et al., The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.
DOI : 10.1093/bioinformatics/btg015

L. Novère, N. Hucka, M. Mi, H. Moodie, S. Schreiber et al., The Systems Biology Graphical Notation, Nature Biotechnology, vol.267, issue.8, pp.735-776, 2009.
DOI : 10.1038/nbt.1558

S. Hardy and P. Robillard, MODELING AND SIMULATION OF MOLECULAR BIOLOGY SYSTEMS USING PETRI NETS: MODELING GOALS OF VARIOUS APPROACHES, Journal of Bioinformatics and Computational Biology, vol.02, issue.04, pp.595-613, 2004.
DOI : 10.1142/S0219720004000764

I. Koch and M. Heiner, Petri nets.I nBiol Netw Anal, pp.139-179
URL : https://hal.archives-ouvertes.fr/hal-00697985

C. Rohr, W. Marwan, and M. Heiner, Snoopy--a unifying Petri net framework to investigate biomolecular networks, Bioinformatics, vol.26, issue.7, pp.974-979, 2010.
DOI : 10.1093/bioinformatics/btq050

B. Bornstein, S. Keating, A. Jouraku, and M. Hucka, LibSBML: an API Library for SBML, Bioinformatics, vol.24, issue.6, pp.880-881, 2008.
DOI : 10.1093/bioinformatics/btn051

A. Dräger, N. Rodriguez, M. Dumousseau, A. Dörr, C. Wrzodek et al., JSBML: a flexible Java library for working with SBML, Bioinformatics, vol.27, issue.15, pp.2167-2175, 2011.
DOI : 10.1093/bioinformatics/btr361

J. Saez-rodriguez, L. Alexopoulos, J. Epperlein, R. Samaga, D. Lauffenburger et al., Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction, Molecular Systems Biology, vol.41, p.331, 2009.
DOI : 10.1038/msb.2009.87

S. Klamt, J. Saez-rodriguez, J. Lindquist, L. Simeoni, and E. Gilles, A methodology for the structural and functional analysis of signaling and regulatory networks, BMC Bioinformatics, vol.7, issue.1, p.56, 2006.
DOI : 10.1186/1471-2105-7-56

J. Egea, D. Henriques, T. Cokelear, A. Villaverde, J. Banga et al., MEIGO: a software suite based on metaheuristics for global optimization in systems biology and bioinformatics. Submitted (available on arXiv, p.1311

C. Guziolowski, S. Videla, F. Eduati, S. Thiele, T. Cokelaer et al., Exhaustively characterizing feasible logic models of a signaling network using Answer Set Programming, Bioinformatics, vol.29, issue.18, pp.2320-2326, 2013.
DOI : 10.1093/bioinformatics/btt393

URL : https://hal.archives-ouvertes.fr/hal-00853704

J. Saez-rodriguez, L. Alexopoulos, M. Zhang, M. Morris, D. Lauffenburger et al., Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical Models, Cancer Research, vol.71, issue.16, pp.5400-5411, 2011.
DOI : 10.1158/0008-5472.CAN-10-4453

F. Eduati, J. De-las-rivas, D. Camillo, B. Toffolo, G. Saez-rodriguez et al., Integrating literature-constrained and data-driven inference of signalling networks, Bioinformatics, vol.28, issue.18, pp.2311-2317, 2012.
DOI : 10.1093/bioinformatics/bts363

C. Chaouiya, A. Naldi, and D. Thieffry, Logical Modelling of Gene Regulatory Networks with GINsim, Methods Mol Biol, vol.804, pp.463-79, 2012.
DOI : 10.1007/978-1-61779-361-5_23

D. Thieffry, Dynamical roles of biological regulatory circuits, Briefings in Bioinformatics, vol.8, issue.4, pp.220-225, 2007.
DOI : 10.1093/bib/bbm028

D. Bérenguier, C. Chaouiya, P. Monteiro, A. Naldi, E. Remy et al., Dynamical modeling and analysis of large cellular regulatory networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.23, issue.2, p.25114, 2013.
DOI : 10.1063/1.4809783

A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya, Dynamically consistent reduction of logical regulatory graphs, Theoretical Computer Science, vol.412, issue.21, pp.2207-2225, 2011.
DOI : 10.1016/j.tcs.2010.10.021

URL : https://hal.archives-ouvertes.fr/hal-01284743

A. Naldi, P. Monteiro, and C. Chaouiya, Efficient Handling of Large Signalling-Regulatory Networks by Focusing on Their Core Control, Lect Notes Comp Sci, vol.7605, pp.288-306, 2012.
DOI : 10.1007/978-3-642-33636-2_17

T. Helikar, B. Kowal, A. Madrahimov, M. Shrestha, J. Pedersen et al., Bio-Logic Builder: A Non-Technical Tool for Building Dynamical, Qualitative Models, PLoS ONE, vol.7, issue.10, p.46417, 2012.
DOI : 10.1371/journal.pone.0046417.s001

A. Macnamara, C. Terfve, D. Henriques, B. Bernabé, and J. Saez-rodriguez, State???time spectrum of signal transduction logic models, Physical Biology, vol.9, issue.4, p.45003, 2012.
DOI : 10.1088/1478-3975/9/4/045003

E. Gonçalves, M. Van-iersel, and J. Saez-rodriguez, CySBGN: A Cytoscape plug-in to integrate SBGN maps, BMC Bioinformatics, vol.14, issue.1, p.17, 2013.
DOI : 10.1093/bioinformatics/btm032

C. Wrzodek, F. Büchel, M. Ruff, A. Dräger, and A. Zell, Precise generation of systems biology models from KEGG pathways, BMC Systems Biology, vol.7, issue.1, p.15, 2013.
DOI : 10.1186/1471-2105-9-399

F. Büchel, N. Rodriguez, N. Swainston, C. Wrzodek, T. Czauderna et al., Path2Models: large-scale generation of computational models from biochemical pathway maps, BMC Systems Biology, vol.7, issue.1, p.116, 2013.
DOI : 10.1186/1471-2105-9-399

G. Batt, B. Besson, P. Ciron, H. De-jong, E. Dumas et al., Genetic Network Analyzer: A Tool for the Qualitative Modeling and Simulation of Bacterial Regulatory Networks, Methods Mol Biol, vol.804, pp.439-62, 2012.
DOI : 10.1007/978-1-61779-361-5_22

URL : https://hal.archives-ouvertes.fr/hal-00762122

V. Chelliah, C. Laibe, L. Novère, and N. , BioModels Database: A Repository of Mathematical Models of Biological Processes, Methods Mol Biol, vol.1021, pp.189-99, 2013.
DOI : 10.1007/978-1-62703-450-0_10

L. Glass and S. Kauffman, The logical analysis of continuous, non-linear biochemical control networks, Journal of Theoretical Biology, vol.39, issue.1, pp.103-132, 1973.
DOI : 10.1016/0022-5193(73)90208-7

R. Alur, C. Belta, F. Ivan?i?, V. Kumar, M. Mintz et al., Hybrid modeling and simulation of biomolecular network, Hybrid Syst Comput Control, pp.19-32, 2001.

A. Brazma, K. Cerans, D. Ruklisa, T. Schlitt, and J. Viksna, HSM ??? a hybrid system based approach for modelling intracellular networks, Gene, vol.518, issue.1, pp.70-77, 2013.
DOI : 10.1016/j.gene.2012.11.084

T. Mestl, E. Plahte, and S. Omholt, A mathematical framework for describing and analysing gene regulatory networks, Journal of Theoretical Biology, vol.176, issue.2, pp.291-300, 1995.
DOI : 10.1006/jtbi.1995.0199

B. Aldridge, J. Saez-rodriguez, J. Muhlich, P. Sorger, and D. Lauffenburger, Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling, PLoS Computational Biology, vol.13, issue.4, p.1000340, 2009.
DOI : 10.1371/journal.pcbi.1000340.s007

G. Batt, R. Salah, and O. Maler, On timed models of gene networks.I nForm model anal timed syst, pp.38-52

H. Siebert and A. Bockmayr, Temporal constraints in the logical analysis of regulatory networks, Theoretical Computer Science, vol.391, issue.3, pp.258-275, 2008.
DOI : 10.1016/j.tcs.2007.11.010

M. Morris, Z. Shriver, R. Sasisekharan, and D. Lauffenburger, Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions, Biotechnology Journal, vol.39, issue.3, pp.374-86, 2012.
DOI : 10.1002/biot.201100222

D. Waltemath, R. Adams, D. Beard, F. Bergmann, U. Bhalla et al., Minimum Information About a Simulation Experiment (MIASE), PLoS Computational Biology, vol.5307, issue.4, p.1001122, 2011.
DOI : 10.1371/journal.pcbi.1001122.s002

URL : https://hal.archives-ouvertes.fr/hal-00772491

M. Courtot, N. Juty, C. Knüpfer, D. Waltemath, A. Zhukova et al., Controlled vocabularies and semantics in systems biology, Controlled vocabularies and semantics in systems biology, p.543, 2011.
DOI : 10.1016/j.jbi.2010.10.003

URL : https://hal.archives-ouvertes.fr/hal-00767736

D. Waltemath, R. Adams, F. Bergmann, M. Hucka, F. Kolpakov et al., Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language, BMC Systems Biology, vol.5, issue.1, p.198, 2011.
DOI : 10.1038/35002125