
HAL Id: hal-00926105
https://inria.hal.science/hal-00926105

Submitted on 9 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the performance of energy-aware mappings
Anne Benoit, Rami Melhem, Paul Renaud-Goud, Yves Robert

To cite this version:
Anne Benoit, Rami Melhem, Paul Renaud-Goud, Yves Robert. Assessing the performance of energy-
aware mappings. Parallel Processing Letters, 2013, 23 (2), �10.1142/S0129626413400033�. �hal-
00926105�

https://inria.hal.science/hal-00926105
https://hal.archives-ouvertes.fr

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

Parallel Processing Letters
c© World Scientific Publishing Company

Assessing the performance of energy-aware mappings

Anne Benoit

Laboratoire de l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon

46 allée d’Italie, 69364 Lyon Cedex 07, France

Anne. Benoit@ ens-lyon. fr

and

Rami Melhem

Department of Computer Science, University of Pittsburgh

6429 Sennot Square, Pittsburgh, USA

melhem@ cs. pitt. edu

and

Paul Renaud-Goud

Laboratoire de l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon

46 allée d’Italie, 69364 Lyon Cedex 07, France

Paul. Renaud-Goud@ ens-lyon. fr

and

Yves Robert

Laboratoire de l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon

46 allée d’Italie, 69364 Lyon Cedex 07, France

and University of Tennessee Knoxville, TN, USA

Yves. Robert@ ens-lyon. fr

Received December 2012
Revised March 2013

Communicated by Jack Dongarra and Bernard Tourancheau

Abstract

We aim at mapping streaming applications that can be modeled by a series-parallel graph
onto a 2-dimensional tiled chip multiprocessor (CMP) architecture. The objective of the
mapping is to minimize the energy consumption, using dynamic voltage and frequency
scaling (DVFS) techniques, while maintaining a given level of performance, reflected by
the rate of processing the data streams. This mapping problem turns out to be NP-hard,

and several heuristics are proposed. We assess their performance through comprehensive

simulations using the StreamIt workflow suite and randomly generated series-parallel
graphs, and various CMP grid sizes.

Keywords: multicore, energy, period, optimization, DVFS, streaming applications.

1

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

2 Parallel Processing Letters

1. Introduction

The energy consumption of computational platforms has recently become a critical

problem, both for economic and environmental reasons [7]. To reduce energy con-

sumption, processors can run at different speeds. Faster speeds allow for a faster

execution, but they also lead to a much higher (superlinear) power consumption.

Energy-aware scheduling aims at minimizing the energy consumed during the execu-

tion of the target application, both for computations and for communications. But

the price to pay for a lower energy consumption usually is a much larger execution

time, so this approach makes sense only if coupled with some performance bound to

be achieved. In other words, we have a bi-criteria optimization problem, with one

objective being energy minimization, and the other being performance-related.

In this paper, we aim at minimizing the energy consumption of streaming appli-

cations whose task graph is a series-parallel graph (SPG). Streaming applications,

or workflows, are ubiquitous in many domains, as for instance image processing ap-

plications, astrophysics, meteorology, neuroscience, and so on [5, 12]. Most of these

applications have simple and regular task graphs, such as linear chains, trees, fork-

join graphs, or general SPGs (see Section 2 for a formal definition of SPGs). For

instance, all the benchmarks of the StreamIt suite [13] are SPGs. The performance-

related objective coupled with energy minimization is the period of the streaming

application. Typically, a series of data sets enter the input stage and progress from

stage to stage, following the dependencies of the application, until the final result is

computed. Each stage has its own communication and computation requirements:

it reads inputs from the previous stage(s), processes the data and outputs results

to the next stage(s). The pipeline operates in a dataflow mode: after a transient be-

havior due to the initialization delay, a new data set is completed every period. The

period, which corresponds to the inverse of the throughput, is a key performance-

related objective for streaming applications [14, 5]. Formally, the period is the time

interval between the arrival of two consecutive data sets in the application, in steady

state. Given a mapping of the application onto a platform, the time spent in each

resource (processor or communication link) should not exceed the period.

Finally, the target platform for this study is a chip multiprocessor (CMP), com-

posed of p×q homogeneous cores arranged along a 2D grid. During the last century,

advances in integrated circuit technology have led chip designers to increase micro-

processor performance by increasing the integration density thus allowing for higher

clock rates and new innovations in micro-architectures. Such innovations included

wider instructions, speculative execution, branch prediction and dynamic schedul-

ing. However, in 1996, Olukotum et al. [9] argued that such a trend would not

continue because of the diminishing return caused by limited instruction level par-

allelism and they showed that a better way for using the denser integration would

be to layout multiple simpler processors on the same chip. Moreover, power con-

sumption consideration prevented the push towards faster clocks, thus leaving the

design of chip multiprocessors as the only alternative for increasing the on-chip com-

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

Assessing the performance of energy-aware mappings 3

putational capability. Specifically, increasing the number of cores rather than the

processor’s complexity translates into slower growth in power consumption. Cur-

rently, chip multiprocessors are commercially available and the trend is towards the

continuous increase in the number of cores on single chips. The challenge is now to

be able to efficiently utilize the parallelism available on chip [2].

An essential step for exploring the parallelism available in a streaming applica-

tion is to provide algorithms and scheduling strategies for mapping a series-parallel

graph onto a CMP, with the objective of minimizing the energy consumption while

not exceeding a prescribed period. In some applications, data sets arrive at fixed

time intervals, and hence the period of the application is given a priori, before any

mapping is computed. In other applications, there is the freedom to choose between

a set of possible periods, which are prescribed by the user. In all cases, the main goal

is to reduce the energy consumption of the mapping, while enforcing the constraint

on the period bound. The main contribution of this paper is the design and evalua-

tion of a set of heuristics to solve this difficult optimization problem, building upon

the theoretical results of [1]. After recalling the framework and complexity results

in Section 2, we design heuristics to solve the most general problem (Section 3), and

we assess their performance through simulations (Section 4). Finally, we conclude

and discuss future research directions in Section 5.

2. Framework

Applicative framework. The application that is to be scheduled is a streaming

application: it operates on a collection of data sets that are executed in a pipelined

fashion. In this study, the application is a series-parallel graph G = (S, E), or SPG.

Nodes of the graph correspond to different application stages, and are denoted by

Si, with 1 ≤ i ≤ n, where n = |S| is the size of the graph. For each precedence

constraint in the application, say from stage Si to stage Sj , we have an edge Li,j ∈ E .

For 1 ≤ i ≤ n, wi is the computation requirement of stage Si, and for each Li,j ∈ E ,

with 1 ≤ i, j ≤ n, δi,j is the volume of communication to be sent from Si to Sj

before Sj can start its computation.

An SPG is built from a sequence of compositions (parallel or series) of smaller-

size SPGs. The smallest SPG consists of two nodes connected by an edge. The first

node is the source of the SPG while the second is its sink. When composing two

SPGs in series, we merge the sink of the first SPG with the source of the second.

For a parallel composition, the two sources are merged, as well as the two sinks. We

are given a maximum elevation of the SPG, ymax, which is the maximum number of

concurrent parallel compositions, i.e., it denotes the maximal degree of parallelism

of the SPG.

Platform. The target platform is a chip multiprocessor (CMP), composed of p× q

homogeneous cores Cu,v, with 1 ≤ u ≤ p, 1 ≤ v ≤ q, arranged along a rectangular

grid. There is a vertical (internal and bi-directional) communication link between

Cu,v and Cu+1,v, for 1 ≤ u ≤ p−1, 1 ≤ v ≤ q, and a horizontal link between Cu,v and

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

4 Parallel Processing Letters

Cu,v+1, for 1 ≤ u ≤ p, 1 ≤ v ≤ q−1. All links have the same bandwidth BW (in each

direction). This means that it takes a time δ
BW

to send δ bytes from one processor

to a neighboring processor. It is possible to use only some of the communication

links, and for instance to configure the p× q CMP as a 1× pq bi-directional linear

array, called bi-directional uni-line CMP.

The voltage and frequency of each core of the CMP can be set to different values.

Altogether, there is a set of possible supply voltages, together with a set of possible

frequencies (or modes, or speeds), for each core. Let S = {s(1), . . . , s(m)} denote the

set of all possible speeds. It takes a time wi

s(k) to execute one data set for stage Si

at speed s(k) ∈ S on a given core. Each speed induces a different dynamic power

consumption, as developed below.

Mapping strategies. We discuss several mapping rules to map the SPG applica-

tion onto the CMP. As for the application graph, we use DAG-partition mappings,

which represent a trade-off between one-to-one and general mappings. The ratio-

nale is the following. One-to-one mappings obey the simplest rule: each application

stage is mapped onto a distinct core. While easier to optimize and implement, this

rule may be unduly restrictive, and is likely to lead to high communication costs.

Obviously, it also requires that p× q ≥ n, thereby limiting its applicability to large

platforms or small applications. A natural extension is to search for DAG-partition

mappings: we first partition the initial SPG into subsets, or clusters, such that the

resulting graph is acyclic. Hence this mapping rule states that if two stages Si and

Sj are in the same subset of the partition, then any other stage Sk which has an

incoming dependency from Si and an outgoing dependency to Sj , must be in the

same subset of the partition. Then we map the subsets of the partition onto the

cores in a one-to-one fashion. Using this mapping rule, a core which is executing a

subset I of stages {Si}i∈I will perform at most one input and one output commu-

nication for each elevation value {yi}i∈I . This is well in accordance with our initial

assumption that the SPG has bounded elevation ymax, because it ensures that each

core has at most ymax communications to perform at each period. In contrast, a

fully general mapping, that allow for arbitrary partitions of the original application

graph, would require an arbitrary number of communications, only bounded by

the total number of stages n, hence an unlimited amount of buffer space. Moreover,

even for bounded-elevation SPGs, the problem of finding the general mapping which

minimizes the energy given a period bound is trivially NP-complete (linear chain

onto two processors, reduction from 2-PARTITION [6]).

Formally, the mapping is defined by an allocation function alloc : {1, . . . , n} →

{1, . . . , p} × {1, . . . , q}, which maps stages onto cores. In other words, stage Si is

mapped onto core Cu,v if and only if we have alloc(i) = (u, v). Once application

stages are mapped onto cores, there remains to decide how to route communications

between two cores which need to communicate because of the stage assignment.

Therefore, for each application edge Li,j ∈ E , if alloc(i) 6= alloc(j), we define pathi,j

as the set of communication links that are used to communicate from core Calloc(i)

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

Assessing the performance of energy-aware mappings 5

to core Calloc(j). Note that these paths must be defined for the mapping to be fully

determined.

Optimization criteria: period and energy. As motivated above, we assume

that data sets arrive at regular time intervals, which is called the period of the ap-

plication, and denoted by T . Then, given a mapping and an execution speed for

each core, we can check whether the application can be executed at the prescribed

rate: we must ensure that the cycle-time of each resource (computation or commu-

nication link) does not exceed T . Let wu,v =
∑

1≤i≤n|alloc(i)=(u,v) wi be the total

amount of work assigned to core Cu,v, running at speed su,v ∈ S. The cycle-time

of Cu,v for computations is wu,v/su,v. For communications, b(u,v)→(u′,v′), which is

equal to
∑

1≤i,j≤n|(u,v)→(u′,v′)∈pathi,j
δi,j is the number of bits sent from Cu,v to a

neighbor core Cu′,v′
a. The cycle-time of the communication link (u, v) → (u′, v′)

is b(u,v)→(u′,v′)/BW . We can then compute the maximum cycle-time, which is the

maximum cycle-time of all resources, and check that it is not greater than T .

Once an SPG application has been mapped onto the CMP, there are two sources

of energy consumption: the cores consume energy for computations and the routers

consume additional energy for communications.

For the computations, we assume that each core involved in the execution con-

sumes some static energy during the whole period T , and some dynamic energy that

depends on the amount of operations, and on the speed at which these operations

are executed. Let A be the set of active cores: A = {Cu,v, 1 ≤ u ≤ p, 1 ≤ v ≤

q | ∃ 1 ≤ i ≤ n, alloc(i) = (u, v)}. The total energy consumed for computations is

E(comp) = |A| × P
(comp)
leak × T +

∑

Cu,v∈A
wu,v

su,v
× P

(comp)
su,v , where T is the prescribed

period, P
(comp)
leak is the leakage power dissipated together with computations, and

P
(comp)
su,v is the dynamic power associated with speed su,v.

For the communications, there is also a static part due to leakage, which is

paid for all cores: even if a core is not enrolled in the computation, its routers and

communication links may be used to route data between remote processors. The

dynamic part is directly proportional to the number of bits that are sent across each

link. Hence, E(comm) = P
(comm)
leak ×T +

(

∑

u,v

∑

u′,v′ b(u,v)→(u′,v′)

)

×E(bit), where T

is the period, P
(comm)
leak is the aggregated leakage power dissipated by all routers and

links, and E(bit) is the energy to transfer a bit across neighboring cores. Finally, the

total energy consumption is E = E(comp) + E(comm).

Optimization problem. We are ready to formally define the optimization prob-

lem: given a bounded-elevation SPG and a period threshold T , find a mapping

whose maximal cycle-time does not exceed T and whose energy E is minimum.

The only polynomial instance of this problem is for the uni-directional uni-line

CMP. In this case, there is a dynamic programming algorithm that finds the optimal

solution [1]. It is worth noting that this polynomial instance becomes NP-complete

a(u′=u+ 1 and v
′=v) or (u′=u− 1 and v

′=v) or (u′=u and v
′=v + 1) or (u′=u and v

′=v − 1).

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

6 Parallel Processing Letters

for SPGs of unbounded elevation. All other problem instances are NP-hard, in

particular for bi-directional 2D meshes.

3. Heuristics

Random. This heuristic calls a procedure that works in two steps. First, we ran-

domly build a DAG-partition of the initial SPG, while ensuring that the period

is matched for computations: we choose randomly a speed for the core which will

handle the current subgraph G (initially, the source of the SPG), and we keep a list

of stages of the SPGs that can be added to G while maintaining a DAG-partition.

We pick a stage from this list randomly as long as computations do not exceed the

period. When moving to the next core, we choose the first stage in the current list

and iterate. In a second step, we decide randomly on which core each subgraph is

mapped, and communications are done following a XY routing: a communication

from Cu,v to Cu′,v′ follows horizontal links from Cu,v to Cu,v′ , and then vertical links

from Cu,v′ to Cu′,v′ . If the period is not exceeded on any communication link, then

the mapping is valid, otherwise there is no solution. For each problem instance,

Random calls ten times this procedure, and keeps the solution that minimizes the

energy consumption, if there is at least one valid solution; otherwise it fails. This

heuristic performs a random mapping, and it is used for comparison purposes.

Greedy. This heuristic greedily assigns the SPG onto the platform, on which all

cores are running at speed s. We try all possible speed values s ∈ S, and keep the

best solution. Given a speed s ∈ S, we keep a list of cores that are ready to be

processed, and for each core, a list of successors, together with the corresponding

outgoing communications. Initially, the only core in the list is C1,1, and we assign

to this core the source stage S1. The corresponding list of successors corresponds to

the successors of S1 in the SPG, and they are sorted by non-increasing communi-

cation volume to S1. When we process a core Cu,v, we successively try to add some

of the successors (from the current list) to this same core until the list is empty

or the period is exceeded for computations on Cu,v. For each set of stages mapped

onto Cu,v and the corresponding list of successors, we greedily share the correspond-

ing communications between neighboring cores Cu,v+1 and Cu+1,v: communications

are taken from the sorted list and assigned to the core that has currently the small-

est amount of incoming communications. Then, we check that the partitioning is

correct (no cycles in the dependence graph, i.e., we have a DAG-partition), and

we check whether the bound on the period is achieved, both for computations and

communications. If it is correct, we save the current solution before adding one more

stage onto core Cu,v and iterating. At the end of the iteration, we keep the last valid

(saved) solution, i.e., the valid solution with the most number of stages onto Cu,v.

Cores Cu,v+1 and Cu+1,v are then added to the list of ready cores, together with

the list of successors (i.e., the stages that can either be assigned to this core, or

forwarded to the neighboring cores).

The procedure finishes when the list of ready cores is empty, which means that

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

Assessing the performance of energy-aware mappings 7

all stages have been processed. Otherwise, the heuristic fails, and we move to the

next speed. The energy for the mapping obtained with a given speed is computed

by first downgrading the speed of each core, if possible: the procedure returns the

mapping, and then we compute the amount of computations on each core, and

set the core to the slowest possible speed, in order to save energy. Cores that are

not used are turned off. Finally, the Greedy heuristic selects the mapping which

corresponds to the lowest energy consumption.

2D dynamic programming algorithm DPA2D. This heuristic starts by map-

ping the initial SPG onto an xmax×ymax grid (xi is defined as the number of stages

along a longest path from the source node to Si, and xmax = max1≤i≤n xi). Then,

this grid is mapped onto the CMP, thanks to a double nested dynamic programming

algorithm. First, we perform a dynamic programming algorithm to cut the grid into

a set of columns, which are to be mapped onto a column of cores. Let F(m, v,D) be

the optimal energy consumption to compute the first m levels of the SPG (i.e., all

stages Si with xi ≤ m), using v columns of cores, regardless of the outgoing com-

munications. D is then the corresponding distribution of outgoing communications,

i.e., a list of triplets (y, b, i), where y is the row from which communication is outgo-

ing (i.e., the communication is initiated by core Cy,v), b is the amount of data, and

Si is the destination stage. We enforce these communications to go through Cy,v+1,

and then the communication will be redistributed to the destination core through

vertical links. The solution is F(xmax, q,D), and the recurrence is written as:

F(m, v,D) = min
m′<m

(

F(m′, v − 1, D′) + Fcomm(D′) + Fcol(m′ + 1,m,D′, D)
)

,

with the initialization F(m, 1, D) = Fcol(1,m, ∅, D).

D′ is the distribution of outgoing communications corresponding to the m′

which leads to the optimal energy consumption, i.e., obtained with F(m′, v−1, D′).

Fcomm(D′) is the energy consumption induced by communications from column v−1

to column v (on horizontal links), given the distribution D′ of outgoing communi-

cations of column v + 1. If the bandwidth is exceeded on one of these horizontal

links (i.e., ∃1 ≤ y ≤ p such that
∑

(y,b,i)∈D′ b > BW), we set Fcomm(D′) = +∞.

Fcol(m1,m2, D
′, D) is the optimal energy consumption of the column of the CMP

which is processing stages Si with m1 ≤ xi ≤ m2: it accounts both for computations,

and for vertical communications in the column, given the distribution of outgoing

communications of the previous column, D′. The distribution of outgoing com-

munications of this column is then D. Note that in the recurrence, D is an output

of Fcol(m′+1,m,D′, D), while D′ is an output of F(m′, v−1, D′). The values of Fcol

(and therefore, distribution D) are computed thanks to another dynamic program-

ming algorithm: we compute Fcol
(m1,m2,D′,D)(g, u), which corresponds to the mapping

of stages Si, with m1 ≤ xi ≤ m2 and yi ≤ g, onto the u first cores of a column of

the CMP. As before, D′ is an input, it corresponds to the distribution of outgoing

communications arriving into the current column, while D is the distribution of out-

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

8 Parallel Processing Letters

going communications of the current column for the solution which minimizes the

energy consumption. Then we have Fcol(m1,m2, D
′, D) = Fcol

(m1,m2,D′,D)(ymax, p).

For the distribution within a column, the recurrence writes:

Fcol
(m1,m2,D′,D)(g, u) = min

g′≤g

(

Fcol
(m1,m2,D′,D)(g

′, u− 1) + Fcal
(m1,m2,D)(g

′ + 1, g)

+Fver
(m1,m2,D′)(g

′ + 1, g, u− 1)
)

,

with the initialization Fcol
(m1,m2,D′,D)(0, u) = 0, and no outgoing communications

from row 1 to row u, except the communications from D′ that must be forwarded

to the next column.

Fver
(m1,m2,D′)(g

′ + 1, g, u− 1) is the energy consumption of the vertical communi-

cations between cores u− 1 and u in the column. These communications can either

come from two dependent stages of the column, or be forwarded from the previous

column (D′). If the bandwidth of the link is exceeded, we set the value to +∞.

Finally, Fcal
(m1,m2,D)(g

′ + 1, g) is the optimal energy consumption of a core which is

computing all stages Si such that m1 ≤ xi ≤ m2, and g′ +1 ≤ yi ≤ g. If the period

constraint cannot be fulfilled, or if the corresponding partition does not fulfill the

DAG-partition constraint, the value is set to +∞. Moreover, this function is adding

to distribution D the communications from a stage Si to another stage Sj , with

xj > m2. These communications will occur on row u. Note that in the recursive

computation of Fcol, we can have g′ = g, which means that no stage is assigned to

core Cu,v. This may happen if there are not enough stages in the column, or if this

would save communications.

1D heuristics. The two last heuristics configure the CMP as a uni-directional

uni-line CMP with r = p× q cores, by embedding it into the bi-directional platform

as a snake:
C1,1 → C1,2 → . . .→ C1,q

↓

C2,1 ← . . .← C2,q−1 ← C2,q
↓

C3,1 → C3,2 → . . .

The DPA1D heuristic computes the optimal solution of the dynamic program-

ming algorithm of [1] with r = p × q cores. The mapping is then done along the

snake; no other communication link is used. Note that if the SPG is a linear chain,

even if there are communication costs, then this heuristic is optimal, since any other

solution could not exploit the communication links discarded with the snake struc-

ture. It is also optimal for any SPG without communication. However, DPA1D

may take wrong decisions when communications are intensive, since it is restricted

to a subset of communication links. Moreover, its complexity of O(p×q×n×nymax)

makes it intractable for SPGs with large ymax.

Finally, the DPA2D1D heuristic computes the solution with the DPA2D

heuristic on a 1× r CMP, and then does the mapping along the snake, similarly to

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

Assessing the performance of energy-aware mappings 9

DPA1D. The goal of this heuristic is to obtain efficient solutions when communi-

cations are not too intensive, and when the optimal DPA1D cannot find a solution

in reasonable time.

4. Simulation results

This section reports simulation results assessing the performance of the various

heuristics. As for the applications, we use both real-life applications taken from the

StreamIt suite [13], and randomly generated applications, which allows us to cover

a broader spectrum. As for the target platform, we use 4× 4 and 6× 6 CMP grids,

whose hardware characteristics are representative of state-of-the-art devices. The

source code for all simulations is publicly available at [11].

4.1. Simulation setting

StreamIt suite. There are 12 workflows in the StreamIt suite [13]. Their main

characteristics are summarized in Table 1, where we give the size n, the maximum

label values ymax and xmax, and their computation-to-communication ratio (CCR),

defined as the sum
∑n

i=1 wi of all computations over the sum
∑

Li,j∈E δi,j of all

communications. We observe in Table 1 that all workflows have a large CCR, hence

are compute-intensive rather than data-intensive. In the simulations, we first use the

workflows as such, with the original CCR values, and then we scale communication

weights (the δi,j) to change each CCR successively to 10, 1, and 0.1, so as to assess

the impact of the communications on the performance of the heuristics.

Randomly generated applications. We randomly build SPG applications (by

applying recursively series and parallel compositions of SPG applications), and

we extract their size n, their elevation ymax, together with their computation-to-

communication ratio (CCR).

Index Name n ymax xmax CCR

1 Beamformer 57 12 12 537

2 ChannelVocoder 55 17 8 453

3 Filterbank 85 16 14 535

4 FMRadio 43 12 12 330

5 Vocoder 114 17 32 38

6 BitonicSort 40 4 23 6

7 DCT 8 1 8 68

8 DES 53 3 45 7

9 FFT 17 1 17 17

10 MPEG2-noparser 23 5 18 9

11 Serpent 120 2 111 9

12 TDE 29 1 29 12

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

10 Parallel Processing Letters

CMP configuration. For processor speeds and power consumption, we use the

model of [4, 8], with five speeds for each core su,v = (0.15, 0.4, 0.6, 0.8, 1) GHz,

and corresponding power consumptions P
(comp)
su,v = (80, 170, 400, 900, 1600) mW .

The power consumption of the processor when it is idle is P
(comp)
leak = 80mW .

We use 16-byte wide communication links [10], whose bandwidths are BW = 16×

1.2 Gbytes, which is reasonable according to [10]. Note that from the communication

perspective, decreasing CCR has the same effect on the results as decreasing the

width of the communication link below 16 bytes. The link energy is assumed to

be between 1 and 10 picojoule per bit [3]; we fix E(bit) = 6pJ . Finally, we use

P
(comm)
leak = 0 without loss of generality (because for all heuristics the same quantity

P
(comm)
leak × T will be added to the total energy).

Period bound T . We need to find a meaningful value of T for each workflow.

Indeed, if T is too large, all heuristics will map all stages onto a single processor

running at the slowest speed, while if T is too small, all heuristics will fail. We

choose T as follows: for each workflow, we start with T = 1s. With such a period,

we observe that at least one heuristic succeeds. Then we iteratively divide the period

by a factor of 10 and run all heuristics under this new value until all heuristics fail.

We retain the period as the penultimate value, which is the last one before total

failure. Note that this value depends upon the workflow, and that it is chosen to

give some tightness to the mapping problem: at least one heuristic succeeds to find

a mapping that matches the bound T , but none does for T/10.

4.2. Simulation results

4.2.1. StreamIt suite

In Figure 1, we plot the energy computed by the five heuristics for each application,

given a CMP size (4×4 or 6×6) and a CCR ratio (set to the original value, 10,

1 and 0.1). On the horizontal x axis, each group corresponds to an application,

and x is the number of the application in Table 1. On the vertical axis, we plot

the energy found by each heuristic, normalized by the minimum value obtained

over all heuristics (so that the best heuristic returns 1, and the other ones return

higher values). The DPA1D heuristic fails to return a solution for the first four

applications, because there are too many possible splits to explore, and it is not

plotted for those applications. More generally, each time a heuristic fails on a given

application, it does not appear on the corresponding graph.

4×4 CMP grid. Results for a 4×4 CMP grid are given in Figure 1(a). When com-

putations are predominant, i.e., when the CCR is set to its original value, or uni-

formly equal to 10, we observe that Greedy, DPA2D, DPA1D and DPA2D1D

return similar results, and that Random always is within a factor of two. We also

observe that DPA2D often fails on graphs with small elevation (linear graphs),

because it wastes a lot of cores. For instance, if the application is exactly a pipeline

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

Assessing the performance of energy-aware mappings 11

(a) CMP 4× 4

CCR: 0.1 CCR: 1

CCR: 10 CCR: init

0

1

2

3

4

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Graph ID

N
o
rm

a
liz
e
d
e
n
e
rg
y

Heuristic Random Greedy DPA2D DPA1D DPA2D1D

CCR: 0.1 CCR: 1

CCR: 10 CCR: init

0

1

2

3

4

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Graph ID

N
o
rm

a
liz
e
d
e
n
e
rg
y

(b) CMP 6× 6

Figure 1. Normalized energy on the set of StreamIt applications.

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

12 Parallel Processing Letters

(workflows numbered 7, 9 and 12), DPA2D can only enroll 4 cores over the 16 that

are available. This fact holds true irrespective of the CCR.

When communications are more important, i.e., when the CCR is uniformly

set to 1 or 0.1, Random gets much worse than the other heuristics: if it does

not fail, its energy is between 2 and 4 times worse than the best one. In a general

manner, we see that DPA2D is the best heuristic when the application graph has a

high elevation. We point out that DPA1D and DPA2D1D are the only successful

heuristics for the workflow 11, whatever the CCR ratio is. This workflow fits very

well with the main design idea of DPA1D and DPA2D1D: it is a pipeline-like

graph (its elevation is only 2) with numerous stages. The other heuristics fail to

find a good load-balance of computations and communications for this application.

The difference between DPA1D and DPA2D1D is tiny: when DPA1D finds a

solution, DPA2D1D finds a close one, and there is only one graph (numbered 5)

on which DPA2D1D succeeds, whereas DPA1D fails, because of the high memory

complexity. Note that, in some cases, the solution of DPA1D is better than that of

DPA2D1D, confirming that DPA2D1D does not return the optimal 1D mapping.

Altogether, Greedy seems to be a general-purpose heuristic that succeeds on

most graphs, and it is always superior to Random. On the contrary, DPA1D,

DPA2D1D and DPA2D are “specialized” heuristics, the first two heuristics are

very efficient for long and almost linear graphs but not good for fat graphs of large

elevation, and the last one behaving just as the opposite.

6×6 CMP grid. Results for a 6 × 6 CMP grid are given in Figure 1(b). Because

the target grid is larger, it is easier to find a mapping that matches the period

bound, especially for applications with a small number of stages. This is quantified

in Table 2, where we report the number of failures for each heuristic.

We observe that the difference between solutions of DPA2D1D and solutions

of DPA1D almost disappears. Otherwise, the conclusion remains more or less the

same as on the 4×4 CMP grid, with Greedy always successful but also always infe-

rior to one of the three specialized heuristics, DPA1D, DPA2D1D and DPA2D,

depending upon the graph shape.

Platform size Random Greedy DPA2D DPA1D DPA2D1D

4× 4 5 4 16 20 16

6× 6 0 0 17 20 8

4.2.2. Random SPGs

For the randomly generated SPGs, we plot six groups of two graphs; in each group,

the two graphs correspond to a number of nodes n that is either 50 or 150, and are

obtained for a given CCR (10, 1 or 0.1) and for a given number of cores p in a row

of the square CMP (4 or 6). On the horizontal axis, we represent the elevation of

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

Assessing the performance of energy-aware mappings 13

CCR Random Greedy DPA2D DPA1D DPA2D1D

10 58 56 156 1516 2

1 58 56 156 1520 4

0.1 300 287 348 1340 916

the SPG. For each value of the elevation, we average the results obtained on 100

randomly generated applications. On the vertical axis, we plot the inverse of the

energy found by each heuristic, normalized to the minimum value obtained over all

heuristics (so that the best heuristic returns 1, and the other ones return smaller

values).

With 50 nodes and a 4×4 CMP grid. Results are given in Figure 2. When

computations are predominant, i.e., when the CCR is uniformly equal to 10, we

observe that the two 1D heuristics always return good results. For small elevations,

DPA1D is the best, but it often fails as soon as the elevation is greater than 4,

thus leading to poor results. DPA2D1D returns very good results whatever the

elevation of the graph. The 2D heuristic DPA2D is the best for elevations greater

than 6, but it often fails on graphs with small elevation, because it wastes a lot of

cores. For instance, if the application is exactly a pipeline (elevation 1), DPA2D can

only enroll 4 cores over the 16 that are available. This fact holds true irrespective of

the CCR. Greedy and Random are not as good, but Greedy always outperforms

Random.

When communications and computations are more balanced (CCR of 1), similar

results can be observed, but DPA2D1D is a bit further from the best solution, since

it cannot utilize all the communication links. Finally, for communication-intensive

applications (CCR of 0.1), Random gets much worse than the other heuristics: its

energy can be up to 10 times worse than the best one. Also, the 1D heuristics do

not perform well, except for small elevation graphs, because of their restriction in

the communication pattern. In a general manner, we see that DPA2D is the best

heuristic when the application graph has a high elevation.

Number of failures. In Table 3, we report the number of failures for each heuris-

tic, again with 50 nodes and a 4×4 CMP grid. With a large CCR (10 or 1),

DPA2D1D almost always succeeds to find a solution, which are in turn pretty

good (see Figure 2). Greedy is always reasonably robust, whatever the CCR, and

is followed closely by Random. DPA2D fails a bit more frequently because it

does not often succeed with graphs of small elevation, as explained earlier. Finally,

DPA1D succeeds only for graphs of small elevation, which leads to a very high

failure rate.

Other results. We have performed further simulations on larger applications

and/or different CMP grid sizes, see Figures 2 and 3. Overall, the conclusions re-

main the same, and they confirm the results derived from the real-life StreamIt

applications.

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

14 Parallel Processing Letters

N: 50 N: 150

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

C
C

R
: 0.1

C
C

R
: 1

C
C

R
: 10

5 10 15 20 0 10 20 30
elevation

N
or

m
al

iz
ed

 in
ve

rs
e

en
er

gy

Heuristic Random Greedy DPA2D DPA1D DPA2D1D

Figure 2. Normalized energy inverse on a random set of applications for a 4× 4 CMP grid.

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

Assessing the performance of energy-aware mappings 15

N: 50 N: 150

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

C
C

R
: 0.1

C
C

R
: 1

C
C

R
: 10

5 10 15 20 0 10 20 30
elevation

N
or

m
al

iz
ed

 in
ve

rs
e

en
er

gy

Heuristic Random Greedy DPA2D DPA1D DPA2D1D

Figure 3. Normalized energy inverse on a random set of applications for a 6× 6 CMP grid.

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

16 Parallel Processing Letters

5. Conclusion

This paper contributes to the efficient utilization of multicores by considering an

important class of streaming applications that can be modeled by a series-parallel

graph, and studying the problem of mapping these applications to 2-dimensional

tiled CMP architectures. The objective of the mapping is to minimize the energy

consumption while maintaining a given level of performance, reflected by the pro-

cessing rate of the data streams. While both processing and communication capabil-

ities are considered during the mapping, only the processing power can be managed

through dynamic voltage and frequency scaling.

This is a first attempt to propose practical solutions to the problem, and to the

best of our knowledge, there are no other heuristics from the literature to give a

basis for comparison, and we rather compare our heuristics to a random mapping.

The simulations conducted with the StreamIt suite and the randomly generated

SPGs confirm the efficiency of the main design principles underlying the various

heuristics. While Greedy is the most robust approach, it is always superseded

by at least one of the three specialized algorithms, DPA1D for long pipeline-like

graphs, DPA2D for fat graphs of large elevation or DPA2D1D for any graph

containing low communication weights and for graphs of low elevation. While there

is no absolute winner, in practice the shape of the task graph is given, and the best

heuristic can be selected accordingly. Furthermore, one could run several heuristics

and select the best result. Indeed, all heuristics have low complexity, so that (i) their

execution time will very likely be negligible in front of the application execution

time; and (ii) they are expected to scale well for larger CMP architectures (of size

16× 16 or even larger).

Future research may investigate general mappings, and assess the difference

with DAG-partition mappings, both from a theoretical and a practical perspective.

It would also be interesting to consider systems in which the communication power

can also be managed.

Acknowledgments

We would like to thank the reviewers, whose comments and suggestions greatly

helped us to improve the final version of the paper. This work has been supported

in part by the ANR RESCUE project. Anne Benoit and Yves Robert are with the

Institut Universitaire de France.

January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit

REFERENCES 17

References

[1] A. Benoit, R. Melhem, P. Renaud-Goud, and Y. Robert. Energy-aware map-

pings of series-parallel workflows onto chip multiprocessors. Research Report

7521, INRIA, France, Jan. 2011. Available at http://graal.ens-lyon.fr/

~abenoit/. Short version appeared in ICPP’2011.

[2] G. Blake, R. Dreslinski, and T. Mudge. A survey of multicore processors. Signal

Processing Magazine, 26(6):26–37, Nov. 2009.

[3] G. Chen, F. Li, M. Kandemir, and M. J. Irwin. Reducing NoC energy con-

sumption through compiler-directed channel voltage scaling. SIGPLAN Not.,

41:193–203, June 2006.

[4] J.-J. Chen and T.-W. Kuo. Procrastination determination for periodic real-time

tasks in leakage-aware dynamic voltage scaling systems. In Proc. of ICCAD’07,

the Int. Conf. on Computer-Aided Design, pages 289–294, 2007.

[5] DataCutter. DataCutter Project: Middleware for Filtering Large Archival Sci-

entific Datasets in a Grid Environment. http://www.cs.umd.edu/projects/

hpsl/ResearchAreas/DataCutter.htm, -.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1990.

[7] M. P. Mills. The internet begins with coal. Environment and Climate News,

1999.

[8] L. Niu. Energy Efficient Scheduling for Real-Time Embedded Systems with

QoS Guarantee. In Proc. of RTCSA, the 16th Int. Conf. on Embedded and

Real-Time Comp. Syst. and App., pages 163 –172, 2010.

[9] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case

for a single-chip multiprocessor. SIGPLAN Not., 31:2–11, Sept. 1996.

[10] J. D. Owens, W. J. Dally, R. Ho, D. N. J. Jayasimha, S. W. Keckler, and L.-S.

Peh. Research Challenges for On-Chip Interconnection Networks. IEEE Micro,

27:96–108, Sept. 2007.

[11] P. Renaud-Goud. Source Code for the Experiments, 2011. http://graal.

ens-lyon.fr/~prenaud/sp-cmp/.

[12] F. Schueller, J. Qin, F. Nadeem, R. Prodan, T. Fahringer, and G. Mayr. Perfor-

mance, Scalability and Quality of the Meteorological Grid Workflow MeteoAG.

In Proc. of 2nd Austrian Grid Symp., 2006.

[13] StreamIt Project. http://groups.csail.mit.edu/cag/streamit/apps/

stream-graphs, 2008.

[14] J. Subhlok and G. Vondran. Optimal mapping of sequences of data parallel

tasks. In Proc. of PPoPP’95, the 5th Symp. on Principles and Practice of

Parallel Programming, 1995.

