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Analysis of Boyer and Moore’s MJRTY Algorithm

Laurent Alonso∗ Edward M. Reingold†

April 11, 2013

Abstract: Given a set of n elements each of which is either red or blue, Boyer
and Moore’s MJRTY algorithm uses pairwise equal/not equal color comparisons
to determine the majority color. We analyze the average behavior of their
algorithm, proving that if all 2n possible inputs are equally likely, the average
number of color comparisons used is n −

√

2n/π + O(1) with variance (π −
2)n/π −

√

2n/π +O(1).
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Given a set {x1, x2, . . . , xn}, each element of which is colored either red or
blue, we must determine an element of the majority color by making equal/not
equal color comparisons xu : xv; when n is even, we must report that there is no
majority if there are equal numbers of each color. How many such questions are
necessary and sufficient? It is easy to obtain an algorithm using at most n−ν(n)
questions, where ν(n) denotes the number of 1-bits in the binary representation
of n; furthermore, n− ν(n) is a lower bound on the number of questions needed
(see [?] and [?]). In [?], the average case was investigated: Assuming all 2n

distinct colorings of the n elements are equally probable, 2n
3 −

√

8n
9π +O(log n)

comparisons are necessary and sufficient in the average case to determine the
majority.

In this note we analyze the average performance of an inferior, but histori-
cally important majority algorithm, that of Boyer and Moore [?], first described
in 1980 as an example of the logic supported by the Boyer-Moore Theorem
Prover (1971; see [?]). The algorithm, Algorithm 1, is subtle in that it works
correctly even when there are arbitarily many colors as long as the set is known

to have an element that occurs more than half the time (in this multi-color case,
if the set is not known to have a majority element, a second pass over all n
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elements is necessary). It is Algorithm 1, called MJRTY in [?], that led to an
intensive study of the matter; see [?, sec. 5.8] and [?] for historical details.

Algorithm 1 Boyer and Moore’s MJRTY algorithm [?].

1: c← 0
2: for i← 1 to n do

3: // if c = 0 there are equal numbers of red/blue items among
4: // x1, . . . , xi−1; otherwise there are c more of the color of xj

5: if c = 0 then

6: j ← i
7: c← 1
8: else if xi = xj then

9: c← c+ 1
10: else

11: c← c− 1
12: end if

13: end for

14: if c = 0 then

15: No majority
16: else

17: Majority is color of xj

18: end if

In the two-color case, the number of color comparisons in line 8 of MJRTY is
equal to n less the number of times the algorithm finds c = 0 in line 5, so we
focus on counting that number of times. But c = 0 at line 5 can happen only
when i is odd, which happens at least once (when i = 1) and at most ⌈n/2⌉
times. It happens when i = 2k+1 if x1, . . . , x2k contains k copies of each of the
two colors, which happens with probability

(

2k
k

)

/22k if all 2n two-colorings of
x1, . . . , xn are equally probable. Let m = ⌈n/2⌉; the average number of times
that c = 0 in line 5 is thus

m−1
∑

k=0

(

2k

k

)

/22k, (1)

partial sums of the central binomial coefficients, divided by corresponding pow-
ers of 4. The generating function for the central binomial coefficients is C(z) =
1/
√
1− 4z, so the generating function for the partial sums in (1) is C(z/4)/(1−

z) = 2C ′(z/4); hence

m−1
∑

k=0

(

2k

k

)

/22k = m

(

2m

m

)

/22m−1, (2)

where m
(

2m
m

)

are called Apéry numbers [?, A005430]. By Stirling’s formula, the

righthand side of (2) is
√

2n/π + O(1) for m = ⌈n/2⌉. It follows that in the
two-color case Boyer and Moore’s MJRTY algorithm uses at least ⌊n/2⌋ and at
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most n− 1 color comparisons, and an average of

n−
√

2n/π −O(1) (3)

color comparisons.
We now compute the variance. Let S(n) be the set of all possible 2n two-

color input sequences to MJRTY. For I ∈ S(n) and 1 ≤ i ≤ n, let

ci(I) =

{

1 if c = 0 in line 5 at iteration i for input I,
0 otherwise,

and let Si(n) ⊆ S(n) be the set of input sequences I such that c = 0 at iteration
i for input I; and hence ci(I) = 1 for all I ∈ Si(n). With this notation, our
derivation of the average (3) is

∑

I∈S(n)

(

n−
n
∑

i=1

ci(I)

)

Pr(I) = n−
∑

I∈S(n)

(

n
∑

i=1

ci(I)

)

Pr(I)

= n−
√

2n/π −O(1). (4)

The variance is

∑

I∈S(n)

(

n−
n
∑

i=1

ci(I)

)2

Pr(I)−





∑

I∈S(n)

(

n−
n
∑

i=1

ci(I)

)

Pr(I)





2

=
∑

I∈S(n)

(

n
∑

i=1

ci(I)

)2

Pr(I)−





∑

I∈S(n)

(

n
∑

i=1

ci(I)

)

Pr(I)





2

, (5)

because Var(x − y) = Var(x) + Var(y) − 2CoVar(x, y) and we have x = n
which is constant. Thus we need the value of

∑

I∈S(n)

(

n
∑

i=1

ci(I)

)2

Pr(I) = 2−n
∑

I∈S(n)

(

n
∑

i=1

ci(I)

)





n
∑

j=1

cj(I)



 .

which, because Pr(I) = 1/|S(n)| = 2−n, and by distributivity,

= 2−n
∑

I∈S(n)

n
∑

i=1

ci(I)





n
∑

j=1

cj(I)



 ,

so changing the order of summation,

= 2−n

n
∑

i=1

∑

I∈S(n)

ci(I)





n
∑

j=1

cj(I)



 ,

= 2−n

n
∑

i=1

∑

I∈Si(n)





n
∑

j=1

cj(I)




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because ci(I) is 1 if I ∈ Si(n) and 0 otherwise,

= 2−n

n
∑

i=1

||Si(n)||, (6)

where ||Si(n)|| is the total number of times that c = 0 at line 5 over all inputs
I ∈ Si(n).

Note that for m ≥ 1, in the input sequence x1, . . . , x2m, the two possible
choices for the color of x2m do not affect the number of times that c = 0 at
line 5 (because x1, . . . , x2m−1 must contain a majority color, hence c 6= 0 in
line 5 for i = 2m). Thus we need only compute ||Si(n)|| for odd n because
||Si(2m)|| = 2||Si(2m− 1)||.

We can view an arbitrary odd-length input sequence x1, . . . , xn ∈ S2k+1(n),
n = 2m− 1, as being composed of two contiguous subsequences: a even-length
front part x1, . . . , x2k, in which there is no majority color, and an odd-length
rear part x2k+1, . . . , xn. These subsequences are independent, so we can count
the number times c = 0 in each separately.

First, consider the possible front parts, sequences x1, . . . , x2k with no major-
ity color. The total number of times that c = 0 at line 5 over all such sequences
is

fk =

k−1
∑

j=0

(

2j

j

)(

2(k − j)

k − j

)

=

k
∑

j=0

(

2j

j

)(

2(k − j)

k − j

)

−
(

2k

k

)

, (7)

because if c = 0 happens at line 5 for i = 2j + 1 (with j < k), neither of
the subsequences: x1, . . . , x2j and x2j+1, . . . , x2k (which is not empty) contains
a majority color. Observing that the sum in (7) is a convolution of the cen-
tral binomial numbers with themselves, the generating function for this sum is
C(z)2 = 1/(1− 4z) and hence

fk = 4k −
(

2k

k

)

.

Now consider the rear part, an arbitrary odd-length input sequence x1, . . . ,
x2k+1. The total number of times that c = 0 in line 5 over all such sequences is

rk =

k
∑

j=0

(

2j

j

)

22(k−j)+1 = 22k+1
k
∑

j=0

(

2j

j

)

/22j ,

because c = 0 at line 5 for i = 2j + 1 if x1, . . . , x2j contains j elements of each
color and the remaining 2(k − j) + 1 elements are colored arbitrarily,

= (k + 1)

(

2k + 2

k + 1

)

,

evaluated as in (2).

4



Finally, because each possible front word occurs 22m−1−2k times as first part
of a word in S2k+1(2m− 1), and each rear word occurs

(

2k
k

)

times, we obtain

||S2k+1(2m− 1)|| = 22m−1−2kfk +

(

2k

k

)

rm−1−k.

Therefore,

||S2k+1(2m− 1)|| = 22m−1 − 22m−1

(

2k

k

)

/22k +

(

2k

k

)(

(m− k)

(

2(m− k)

m− k

))

,

and so we have

2−2m+1
2m−1
∑

i=1

||Si(2m− 1)|| = 2−2m+1
m−1
∑

k=0

||S2k+1(2m− 1)||

=

m−1
∑

k=0

1−
m−1
∑

k=0

(

2k

k

)

/22k

+2−2m+1
n−1
∑

k=0

(

2k

k

)(

(m− k)

(

2m− 2k

m− k

))

.

We can simplify the second sum as in (2); for the third sum, we note that it is
a convolution,

C(z)(zC ′(z)) =
2z

(1− 4z)2
=

z

2

d

dz

(

1

1− 4z

)

=

∞
∑

j=1

j22j−2zj ,

so that

2−2m+1
2m−1
∑

i=1

||Si(2m− 1)|| = 2−2m
2m
∑

i=1

||Si(2m)||

= 2m

(

1−
(

2m
m

)

4m

)

. (8)

We have m = ⌈n/2⌉, so putting together (2), (5), (6), and (8), Stirling’s formula
gives the variance of the number of color comparisons in line 8 of MJRTY,

2m

(

1−
(

2m

m

)

/4m
)

−
(

m

(

2m

m

)

/22m−1

)2

=
π − 2

π
n−

√

2n/π +O(1).
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