
HAL Id: hal-00926178
https://hal.inria.fr/hal-00926178

Submitted on 9 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Survey of Pipelined Workflow Scheduling: Models
and Algorithms

Anne Benoit, Umit Catalyurek, Yves Robert, Erik Saule

To cite this version:
Anne Benoit, Umit Catalyurek, Yves Robert, Erik Saule. A Survey of Pipelined Workflow Scheduling:
Models and Algorithms. ACM Computing Surveys, Association for Computing Machinery, 2013, 45
(4), <10.1145/2501654.2501664>. <hal-00926178>

https://hal.inria.fr/hal-00926178
https://hal.archives-ouvertes.fr


A Survey of Pipelined Workflow Scheduling:

Models and Algorithms

ANNE BENOIT

École Normale Supérieure de Lyon, France

and

ÜMİT V. ÇATALYÜREK

Department of Biomedical Informatics and Department of Electrical & Computer En-

gineering, The Ohio State University

and

YVES ROBERT

École Normale Supérieure de Lyon, France & University of Tennessee Knoxville

and

ERIK SAULE

Department of Biomedical Informatics, The Ohio State University

A large class of applications need to execute the same workflow on different data sets of identical
size. Efficient execution of such applications necessitates intelligent distribution of the application

components and tasks on a parallel machine, and the execution can be orchestrated by utilizing
task-, data-, pipelined-, and/or replicated-parallelism. The scheduling problem that encompasses
all of these techniques is called pipelined workflow scheduling, and it has been widely studied in
the last decade. Multiple models and algorithms have flourished to tackle various programming
paradigms, constraints, machine behaviors or optimization goals. This paper surveys the field by
summing up and structuring known results and approaches.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Se-
quencing and scheduling; C.1.4 [Parallel Architectures ]: Distributed architectures

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: workflow programming, filter-stream programming, schedul-
ing, pipeline, throughput, latency, models, algorithms, distributed systems, parallel systems

Authors’ Address: Anne Benoit and Yves Robert, Laboratoire de l’Informatique du Parallélisme,
École Normale Supérieure de Lyon, 46 Allée d’Italie 69364 LYON Cedex 07, FRANCE,
{Anne.Benoit|Yves.Robert}@ens-lyon.fr.
Ümit V. Çatalyürek and Erik Saule, The Ohio State University, 3190 Graves Hall — 333 W. Tenth

Ave., Columbus, OH 43210, USA, {umit|esaule}@bmi.osu.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2014 ACM 0000-0000/2014/0000-0001 $5.00

ACM Computing Surveys, Vol. V, No. N, January 2014, Pages 1–0??.



2 · Anne Benoit et al.

1. INTRODUCTION

For large-scale applications targeted to parallel and distributed computers, finding
an efficient task and communication mapping and schedule is critical to reach the
best possible application performance. At the heart of the scheduling process is a
graph, the workflow, of an application: an abstract representation that expresses the
atomic computation units and their data dependencies. Hence, the application is
partitioned into tasks that are linked by precedence constraints, and it is described
by, usually, a directed acyclic graph (also called DAG), where the vertices are the
tasks, and the edges represent the precedence constraints. In classical workflow
scheduling techniques, there is a single data set to be executed, and the goal is to
minimize the latency or makespan, which corresponds to the total execution time
of the workflow, where each task is executed once [KA99b].
The graphical representations are not only used for parallelizing computations.

In mid 70s and early 80s, a graphical representation called dataflow [Den74; Dav78;
Den80] emerged as a powerful programming and architectural paradigm. Lee and
Parks [LP95] present a rigorous formal foundation of dataflow languages, for which
they coined the term dataflow process networks and presented it as a special case
of Kahn process networks (KPN) [Kah74]. In KPN, a group of deterministic se-
quential tasks communicate through unbounded first-in, first-out channels. As a
powerful paradigm that implicitely supports parallelism, dataflow networks (hence
KPNs) have been used to exploit parallelism at compile time [HL97] and run
time [NTS+08].
With the turn of the new millennium, Grid computing [FKT01] emerged as a

global cyber-infrastructure for large-scale, integrative e-Science applications. At
the core of Grid computing sit Grid workflow managers that schedule coarse-grain
computations onto dynamic Grid resources. Yu and Buyya [YB05] present an excel-
lent survey on workflow scheduling for Grid computing. Grid workflow managers,
such as DAGMan [TWML01] (of the Condor project [LLM88; TTL02]), Pega-
sus [DShS+05], GrADS [BCC+01], Taverna [OGA+06], and ASKALON [FJP+05],
utilize DAGs and abstract workflow languages for scheduling workflows onto dy-
namic Grid resources using performance modeling and prediction systems like
Prophesy [TWS03], NWS [WSH99] and Teuta [FPT04]. The main focus of such
Grid workflow systems are the discovery and utilization of dynamic resources that
span over multiple administrative domains. It involves handling of authentication
and authorization, efficient data transfers, and fault tolerance due to the dynamic
nature of the systems.

The main focus of this paper is a special class of workflow scheduling that we call
pipelined workflow scheduling (or in short pipelined scheduling). Indeed, we focus
on the scheduling of applications that continuously operate on a stream of data sets,
which are processed by a given wokflow, and hence the term pipelined. In steady-
state, similar to dataflow and Kahn networks, data sets are pumped from one task to
its successor. These data sets all have the same size, and they might be obtained by
partitioning the input into several chunks. For instance in image analysis [SKS+09],
a medical image is partitioned in tiles, and tiles are processed one after the other.
Other examples of such applications include video processing [GRRL05], motion
detection [KRC+99], signal processing [CLW+00; HFB+09], databases [CHM95],

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 3

molecular biology [RKO+03], medical imaging [GRR+06], and various scientific
data analyses, including particle physics [DBGK03], earthquake [KGS04], weather
and environmental data analyses [RKO+03].

The pipelined execution model is the core of many software and programming
middlewares. It is used on different types of parallel machines such as SMP (Intel
TBB [Rei07]), clusters (DataCutter [BKÇ+01], Anthill [TFG+08], Dryad [IBY+07]),
Grid computing environments (Microsoft AXUM [Mic09], LONI [MGPD+08], Ke-
pler [BML+06]), and more recently on clusters with accelerators (see for instance
DataCutter [HÇR+08] and DataCutter-Lite [HÇ09]). Multiple models and algo-
rithms have emerged to deal with various programming paradigms, hardware con-
straints, and scheduling objectives.

It is possible to reuse classical workflow scheduling techniques for pipelined ap-
plications, by first finding an efficient parallel execution schedule for one single data
set (makespan minimization), and then executing all the data sets using the same
schedule, one after the other. Although some good algorithms are known for such
problems [KA99a; KA99b], the resulting performance of the system for a pipelined
application may be far from the peak performance of the target parallel platform.
The workflow may have a limited degree of parallelism for efficient processing of a
single data set, and hence the parallel machine may not be fully utilized. Rather,
for pipelined applications, we need to decide how to process multiple data sets in
parallel. In other words, pipelined scheduling is dealing with both intra data set
and inter data set parallelism (the different types of parallelism are described below
in more details). Applications that do not allow the latter kind of parallelism are
outside the scope of this survey. Such applications include those with a feedback
loop such as iterative solvers. When feedback loops are present, applications are
typically scheduled by software pipelining, or by cyclic scheduling techniques (also
called cyclic PERT-shop scheduling, where PERT refers to Project Evaluation and
Review Technique). A survey on software pipelining can be found in [AJLA95],
and on cyclic scheduling in [LKdPC10].

To evaluate the performance of a schedule for a pipelined workflow, various op-
timization criteria are used in the literature. The most common ones are (i) the
latency (denoted by L), or makespan, which is the maximum time a data set spends
in the system, and (ii) the throughput (denoted by T ), which is the number of data
sets processed per time unit. The period of the schedule (denoted by P) is the
time elapsed between two consecutive data sets entering the system. Note that
the period is the inverse of the achieved throughput, hence we will use them inter-
changeably. Depending on the application, a combination of multiple performance
objectives may be desired. For instance, an interactive video processing application
(such as SmartKiosk [KRC+99], a computerized system that interacts with multi-
ple people using cameras) needs to be reactive while ensuring a good frame rate;
these constraints call for an efficient latency/throughput trade-off. Other criteria
may include reliability, resource cost, and energy consumption.

Several types of parallelism can be used to achieve good performance. If one task
of the workflow produces directly or transitively the input of another task, the two
tasks are said to be dependent; otherwise they are independent. Task-parallelism
is the most well-known form of parallelism and consists in concurrently executing

ACM Computing Surveys, Vol. V, No. N, January 2014.



4 · Anne Benoit et al.

independent tasks for the same data set; it can help minimize the workflow latency.
Pipelined-parallelism is used when two dependent tasks in the workflow are be-

ing executed simultaneously on different data sets. The goal is to improve the
throughput of the application, possibly at the price of more communications, hence
potentially a larger latency. Pipelined-parallelism was made famous by assembly
lines and later reused in processors in the form of the instruction pipeline in CPUs
and the graphic rendering pipeline in GPUs.
Replicated-parallelism can improve the throughput of the application, because

several copies of a single task operate on different data sets concurrently. This is
especially useful in situations where more computational resources than workflow
tasks are available. Replicated-parallelism is possible when reordering the pro-
cessing of the data sets by one task does not break the application semantics, for
instance when the tasks perform a stateless transformation. A simple example of a
task allowing replicated-parallelism would be computing the square root of the data
set (a number), while computing the sum of the numbers processed so far would be
stateful and would not allow replicated-parallelism.
Finally, data-parallelism may be used when some tasks contain inherent paral-

lelism. It corresponds to using several processors to execute a single task for a single
data set. It is commonly used when a task is implemented by a software library
that supports parallelism on its own, or when a strongly coupled parallel execution
can be performed.
Note that task-parallelism and data-parallelism are inherited from classical work-

flow scheduling, while pipelined-parallelism and replicated-parallelism are only found
in pipelined workflow scheduling.

In a nutshell, the main contributions of this survey are the following: (i) proposing
a three-tiered model of pipelined workflow scheduling problems; (ii) structuring
existing work; and (iii) providing detailed explanations on schedule reconstruction
techniques, which are often implicit in the literature.
The rest of this paper is organized as follows. Before going into technical de-

tails, Section 2 presents a motivating example to illustrate the various parallelism
techniques, task properties, and their impact on objective functions.
The first issue when dealing with a pipelined application is to select the right

model among the tremendous number of variants that exist. To solve this issue,
Section 3 organizes the different characteristics that the target application can
exhibit into three components: the workflow model, the system model, and the
performance model. This organization helps position a given problem with respect
to related work.
The second issue is to build the relevant scheduling problem from the model

of the target application. There is no direct formulation going from the model
to the scheduling problem, so we cannot provide a general method to derive the
scheduling problem. However, in Section 4, we illustrate the main techniques on
basic problems, and we show how the application model impacts the scheduling
problem. The scheduling problems become more or less complicated depending
upon the application requirements. As usual in optimization theory, the most basic
(and sometimes unrealistic) problems can usually be solved in polynomial time,
whereas the most refined and accurate models usually lead to NP-hard problems.

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 5

Although the complexity of some problems is still open, Section 4 concludes by
highlighting the known frontier between polynomial and NP-complete problems.

Finally, in Section 5, we survey various techniques that can be used to solve
the scheduling problem, i.e., to find the best parallel execution of the application
according to the performance criteria. We provide optimal algorithms to solve the
simplest problem instances in polynomial time. For the most difficult instances,
we present some general heuristic methods, which aim at giving good approximate
solutions.

2. MOTIVATING EXAMPLE

In this section, we focus on a simple pipelined application and emphasize the need
for scheduling algorithms.
Consider an application composed of four tasks, whose dependencies form a linear

chain: a data set must first be processed by task t1 before it can be processed
by t2, then t3, and finally t4. The computation weights of tasks t1, t2, t3 and t4
(or task weights) are set respectively to 5, 2, 3, and 20, as illustrated in Fig. 1(a).
If two consecutive tasks are executed on two distinct processors, then some time
is required for communication, in order to transfer the intermediate result. The
communication weights are set respectively to 20, 15 and 1 for communications
t1 → t2, t2 → t3, and t3 → t4 (see Fig. 1(a)). The communication weight along
an edge corresponds to the size of the intermediate result that has to be sent from
the processor in charge of executing the source task of the edge to the processor
in charge of executing the sink task of the edge, whenever these two processors are
different. Note that since all input data sets have the same size, the intermediate
results when processing different data sets also are assumed to have identical size,
even though this assumption may not be true for some applications.
The target platform consists of three processors, with various speeds and inter-

connection bandwidths, as illustrated in Fig. 1(b). If task t1 is scheduled to be
executed on processor P2, a data set is processed within 5

1 = 5 time units, while the
execution on the faster processor P1 requires only 5

10 = 0.5 time units (task weight
divided by processor speed). Similarly, the communication of a data of weight c
from processor P1 to processor P2 takes c

1 time units, while it is ten times faster to
communicate from P1 to P3.

First examine the execution of the application when mapped sequentially on the
fastest processor, P3 (see Fig. 1(c)). For such an execution, there is no communi-
cation. The communication weights and processors that are not used are shaded
in grey on the figure. On the right, the processing of the first data set (and the
beginning of the second one) is illustrated. Note that because of the dependencies
between tasks, this is actually the fastest way to process a single data set. The
latency is computed as L = 5+2+3+20

20 = 1.5. A new data set can be processed once
the previous one is finished, hence the period P = L = 1.5.
Of course, this sequential execution does not exploit any parallelism. Since there

are no independent tasks in this application, we cannot use task-parallelism here.
However, we now illustrate pipelined-parallelism: different tasks are scheduled on
distinct processors, and thus they can be executed simultaneously on different data
sets. In the execution of Fig. 1(d), all processors are used, and we greedily balance

ACM Computing Surveys, Vol. V, No. N, January 2014.



6 · Anne Benoit et al.

1

5 2 3 20

20 15

t1 t3 t4t2

(a) Application.

5
10

1

20

10

1
P2

P1 P3

(b) Platform.

1

p
ro

ce
ss

o
r

3

time
0 0.25 1.50.5

10

1

20

10

1 5

5 2 3 20

20 15 1

t1 t2 t3 t4

P1

P2

P3

t1 t3 t4t2

(c) Sequential execution on the fastest processor.

0.5

1

10

1 5

5 2 3 20

20 15 11

10 20

0

p
ro

ce
ss

o
r

2

20.5

1

3

time
38.937.937.822.5 37.5

P1

P2

P3

t1 t3 t4t2

t1

t2

t3

t4

(d) Greedy execution using all processors.

3
1

10

1 5

5 2 3 20

20 15 11

10 20

time
0 0.5

1

p
ro

ce
ss

o
r

1 2 32.1

P1

P2

P3

t1 t3 t4t2

t1 t2 t3

t4

(e) Resource selection to optimize period.

Fig. 1. Motivating example.

the computation requirement of tasks according to processor speeds. The perfor-
mance of such a parallel execution turns out to be quite bad, because several large
communications occur. The latency is now obtained by summing up all computa-
tion and communication times: L = 5

10 + 20 + 2 + 15 + 3
10 + 1

10 + 20
20 = 38.9, as

illustrated on the right of the figure for the first data set. Moreover, the period
is not better than the one obtained with the sequential execution presented pre-
viously, because communications become the bottleneck of the execution. Indeed,
the transfer from t1 to t2 takes 20 time units, and therefore the period cannot be
better than 20: P ≥ 20. This example of execution illustrates that parallelism
should be used with caution.

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 7

However, one can obtain a period better than that of the sequential execution
as shown in Fig. 1(e). In this case, we enforce some resource selection: the slowest
processor P2 is discarded (in grey) since it only slows down the whole execution. We
process different data sets in parallel (see the execution on the right): within one
unit of time, we can concurrently process one data set by executing t4 on P3, and
another data set by executing t1, t2, t3 (sequentially) on P1. This partially sequential
execution avoids all large communication weights (in grey). The communication
time corresponds only to the communication between t3 and t4, from P1 to P3,
and it takes a time 1

10 . We assume that communication and computation can
overlap when processing distinct data sets, and therefore, once the first data set
has been processed (at time 1), P1 can simultaneously communicate the data to P3

and start computing the second data set. Finally, the period is P = 1. Note that
this improved period is obtained at the price of a higher latency: the latency has
increased from 1.5 in the fully sequential execution to L = 1 + 1

10 + 1 = 2.1 here.
This example illustrates the necessity of finding efficient trade-offs between an-

tagonistic criteria.

3. MODELING TOOLS

This section gives general information on the various scheduling problems. It should
help the reader understand the key properties of pipelined applications.
All applications of pipelined scheduling are characterized by properties from three

components that we call the workflow model, the system model and the performance
model. These components correspond to “which kind of program we are schedul-
ing”, “which parallel machine will host the program”, and “what are we trying to
optimize”. This three-component view is similar to the three-field notation used to
define classical scheduling problems [Bru07].
In the example of Section 2, the workflow model is an application with four

tasks arranged as a linear chain, with computation and communication weights;
the system model is a three-processor platform with speeds and bandwidths; and
the performance model corresponds to the two optimization criteria, latency and
period. We present in Sections 3.1, 3.2 and 3.3 the three models; then Section 3.4
classifies work in the taxonomy that has been detailed.

3.1 Workflow Model

The workflow model defines the program that is going to be executed; its compo-
nents are presented in Fig. 2.
As stated in the introduction, programs are usually represented as Directed

Acyclic Graphs (DAGs) in which nodes represent computation tasks, and edges
represent dependencies and/or communications between tasks. The shape of the
graph is a parameter. Most program DAGs are not arbitrary but instead have some
predefined form. For instance, it is common to find DAGs that are a single linear
chain, as in the example of Section 2. Some other frequently encountered structures
are fork graphs (for reduce operations), trees (in arithmetic expression evaluation;
for instance in database [HM94]), fork-join, and series-parallel graphs (commonly
found when using nested parallelism [BHS+94]). The DAG is sometimes extended
with two zero-weight nodes, a source node, which is made a predecessor of all entry
nodes of the DAG, and a sink node, which is made a successor of all exit nodes of

ACM Computing Surveys, Vol. V, No. N, January 2014.



8 · Anne Benoit et al.

Workflow Model

Shape
Task

Weight

Comm.

Weight

Task

Parellelism

Task

Execution

sequential, 

parallel

Linear chain, fork, tree, 

fork-join, series-parallel, 

general DAG

unit, non-unit
0 (precedence only),

unit, non-unit

monolithic, 

replicable

Fig. 2. The components of the workflow model.

the DAG. This construction is purely technical and allows for faster computation
of dependence paths in the graph.
The weight of the tasks are important because they represent computation re-

quirements. For some applications, all the tasks have the same computation require-
ment (they are said to be unit tasks). The weight of communications is defined
similarly, it usually corresponds to the size of the data to be communicated from
one task to another, when mapped on different processors. Note that a zero weight
may be used to express a precedence between tasks, when the time to communicate
can be ignored.
The tasks of the program may themselves contain parallelism. This adds a level

of parallelism to the execution of the application, that is called data-parallelism.
Although the standard model only uses sequential tasks, some applications feature
parallel tasks. Three models of parallel tasks are commonly used (this naming was
proposed by [FRS+97] and is now commonly used in job scheduling for production
systems): a rigid task requires a given number of processors to execute; a moldable
task can run on any number of processors, and its computation time is given by
a speed-up function (that can either be arbitrary, or match a classical model such
as the Amdahl’s law [Amd67]); and a malleable task can change the number of
processors it is executing on during its execution.
The task execution model indicates whether it is possible to execute concurrent

replicas of a task at the same time or not. Replicating a task may not be possible due
to an internal state of the task; the processing of the next data set depends upon the
result of the computation of the current one. Such tasks are said to be monolithic;
otherwise they are replicable. When a task is replicated, it is common to impose
some constraints on the allocation of the data sets to the replicas. For instance, the
dealable stage rule [Col04] forces data sets to be allocated in a round-robin fashion
among the replicas. This constraint is enforced to avoid out-of-order completion
and is quite useful when, say, a replicated task is followed by a monolithic one.

3.2 System Model

The system model describes the parallel machine used to run the program; its
components are presented in Fig. 3 and are now described in more details.

First, processors may be identical (homogeneous), or instead they can have dif-
ferent processing capabilities (heterogeneous). There are two common models of
heterogeneous processors. Either their processing capabilities are linked by a con-
stant factor, i.e., the processors have different speeds (known as the related model
in scheduling theory and sometimes called heterogeneous uniform), or they are not

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 9

System Model

Processor Network Communication

homogeneous, 

hetero-related, 

hetero-unrelated

Fully Connected, 

Structured, Unstructured

single-port, unbounded 

multi-port, bw-bounded 

multi-port, k-port

Topology Type

homogeneous, 

heterogeneous

Compute &

Communicate

overlap, 

non-overlap

Fig. 3. The components of the system model.

speed-related, which means that a processor may be fast on a task but slow on
another one (known as the unrelated model in scheduling theory and sometimes
called completely heterogeneous). Homogeneous and related processors are com-
mon in clusters. Unrelated processors arise when dealing with dedicated hardware
or from preventing certain tasks to execute on some machines (to handle licensing
issues or applications that do not fit in some machine memory). This decomposition
in three models is classical in the scheduling literature [Bru07].

The network defines how the processors are interconnected. The topology of
the network describes the presence and capacity of the interconnection links. It is
common to find fully connected networks in the literature, which can model buses
as well as Internet connectivity. Arbitrary networks whose topologies are specified
explicitly through an interconnection graph are also common. In between, some
systems may exhibit structured networks such as chains, 2D-meshes, 3D-torus, etc.
Regardless of the connectivity of the network, links may be of different types. They
can be homogeneous – transport the information in the same way – or they can
have different speeds. The most common heterogeneous link model is the bandwidth
model, in which a link is characterized by its sole bandwidth. There exist other
communication models such as the delay model [RS87], which assumes that all
the communications are completely independent. Therefore, the delay model does
not require communications to be scheduled on the network but only requires the
processors to wait for a given amount of time when a communication is required.
Frequently, the delay between two tasks scheduled on two different processors is
computed based on the size of the message and the characteristics (latency and
bandwidth) of the link between the processors. The LogP (Latency, overhead, gap
and Processor) model [CKP+93] is a realistic communication model for fixed size
messages. It takes into account the transfer time on the network, the latency of the
network and the time required by a processor to prepare the communication. The
LogGP model [AISS95] extends the LogP model by taking the size of the message
into account using a linear model for the bandwidth. The latter two models are
seldom used in pipelined scheduling.
Some assumptions must be made in order to define how communications take

place. The one-port model [BRP03] forbids a processor to be involved in more
than one communication at a time. This simple, but somewhat pessimistic, model
is useful for representing single-threaded systems; it has been reported to accurately

ACM Computing Surveys, Vol. V, No. N, January 2014.



10 · Anne Benoit et al.

model certain MPI implementations that serialize communications when the mes-
sages are larger than a few megabytes [SP04]. The opposite model is the multi-port
model that allows a processor to be involved in an arbitrary number of communi-
cations simultaneously. This model is often considered to be unrealistic since some
algorithms will use a large number of simultaneous communications, which induces
large overheads in practice. An in-between model is the k-port model where the
number of simultaneous communications must be bounded by a parameter of the
problem [HP03]. In any case, the model can also limit the total bandwidth that a
node can use at a given time (that corresponds to the capacity of its network card).
Finally, some machines have hardware dedicated to communication or use multi-

threading to handle communication; thus they can compute while using the net-
work. This leads to an overlap of communication and computation, as was assumed
in the example of Section 2. However, some machines or software libraries are still
mono-threaded, and then such an overlapping is not possible.

3.3 Performance Model

The performance model describes the goal of the scheduler and tells from two valid
schedules which one is better. Its components are presented in Fig. 4.

The most common objective in pipelined scheduling is to maximize the through-
put of the system, which is the number of data sets processed per time unit. In
permanent applications such as interactive real time systems, it indicates the load
that the system can handle. Recall that this is equivalent to minimizing the period,
which is the inverse of the throughput.
Another common objective is to minimize the latency of the application, which

is basically defined as the time taken by a single data set to be entirely processed.
It measures the response time of the system to handle each data set. The objective
chosen to measure response time is most of the time the maximum latency, since
the latency of different data sets may be different. Latency is mainly relevant
in interactive systems. Note that latency minimization corresponds to makespan
minimization in DAG scheduling, when there is a single data set to process.

Other objectives have also been studied. When the size of the computing system
increases, hardware and software become more likely to be affected by malfunctions.
There are many formulations of this problem (see [BBG+09] for details), but most
of the time it reduces to optimizing the probability of correct execution of the
application, which is called the reliability of the system [GST09]. Another objective
function that is extensively studied is the energy consumption, which has recently

Performance Model

Single 

Objective

Multiple 

Objectives

throughput, latency, 

resource, reliability, 

energy

latency vs throughput, 

latency vs reliability,

latency vs resources, etc.

Fig. 4. The components of the performance model.

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 11

become a critical problem, both for economic and environmental reasons [Mil99]. It
is often assumed that the speed of processors can be dynamically adjusted [JPG04;
WvLDW10], and the slower a processor is, the less energy it consumes. Different
models exist, but the main parameters are how the energy cost is computed from
the speed (the energy cost is usually quadratic or cubic in the speed) and whether
possible speeds are given by a continuous interval [YDS95; BKP07] or by a discrete
set of values [OYI01; Pra04].
The advent of more complex systems and modern user requirements increased

the interest in the optimization of several objectives at the same time. There are
various ways to optimize multiple objectives [DRST09], but the most classical one is
to optimize one of the objectives while ensuring a given threshold value on the other
ones. Deciding which objectives are constrained, and which one remains to opti-
mize, makes no theoretical difference [TB07]. However, there is often an objective
that is a more natural candidate for optimization when designing heuristics.

3.4 Placing Related Work in the Taxonomy

The problem of scheduling pipelined linear chains, with both monolithic and repli-
cable tasks, on homogeneous or heterogeneous platforms, has extensively been ad-
dressed in the scheduling literature [LLP98; SV96; BR08; BR10]. [LLP98] proposes
a three-step mapping methodology for maximizing the throughput of applications
comprising a sequence of computation stages, each one consisting of a set of identical
sequential tasks. [SV96] proposes a dynamic programming solution for optimizing
latency under throughput constraints for applications composed of a linear chain
of data-parallel tasks. [BR08] addresses the problem of mapping pipelined linear
chains on heterogeneous systems. [BR10] explores the theoretical complexity of the
bi-criteria optimization of latency and throughput for chains and fork graphs of
replicable and data-parallel tasks under the assumptions of linear clustering and
round-robin processing of input data sets.
Other works that address specific task graph topologies include [CNNS94], which

proposes a scheme for the optimal processor assignment for pipelined computations
of monolithic parallel tasks with series-parallel dependencies, and focuses on mini-
mizing latency under throughput constraints. Also, [HM94] (extended in [CHM95])
discusses throughput optimization for pipelined operator trees of query graphs that
comprise sequential tasks.
Pipelined scheduling of arbitrary precedence task graphs of sequential monolithic

tasks has been explored by a few researchers. In particular, [JV96] and [HO99] dis-
cuss heuristics for maximizing the throughput of directed acyclic task graphs on
multiprocessor systems using point-to-point networks. [YKS03] presents an ap-
proach for resource optimization under throughput constraints. [SRM06] proposes
an integrated approach to optimize throughput for task scheduling and scratch-pad
memory allocation based on integer linear programming for multiprocessor system-
on-chip architectures. [GRRL05] proposes a task mapping heuristic called EXPERT
(EXploiting Pipeline Execution undeR Time constraints) that minimizes latency of
streaming applications, while satisfying a given throughput constraint. EXPERT
identifies maximal clusters of tasks that can form synchronous stages that meet the
throughput constraint, and maps tasks in each cluster to the same processor so as
to reduce communication overhead and minimize latency.

ACM Computing Surveys, Vol. V, No. N, January 2014.



12 · Anne Benoit et al.

Pipelined scheduling algorithms for arbitrary DAGs that target heterogeneous
systems include the work of [Bey01], which presents the Filter Copy Pipeline (FCP)
scheduling algorithm for optimizing latency and throughput of arbitrary applica-
tion DAGs on heterogeneous resources. FCP computes the number of copies of each
task that is necessary to meet the aggregate production rate of its predecessors and
maps these copies to processors that yield their least completion time. Later on,
[SFB+02] proposed Balanced Filter Copies, which refines Filter Copy Pipeline.
[BHCF95] and [RA01] address the problem of pipelined scheduling on heteroge-
neous systems. [RA01] uses clustering and task duplication to reduce the latency
of the pipeline while ensuring a good throughput. However, these works target
monolithic tasks, while [SFB+02] targets replicable tasks. Finally, [VÇK+07] (ex-
tended in [VÇK+10]) addresses the latency optimization problem under throughput
constraints for arbitrary precedence task graphs of replicable tasks on homogeneous
platforms.

An extensive set of papers dealing with pipelined scheduling is summed up in
Table I. Each paper is listed with its characteristics. Since there are too many
characteristics to present, we focus on the main ones: structure of the precedence
constraints, type of computation, replication, performance metric, and communica-
tion model. The table is sorted according to the characteristics, so that searching
for papers close to a given problem is made easier. Different papers with the same
characteristics are merged into a single line.
The structure of the precedence constraints (the Structure column) can be a

single chain (C), a structured graph such as a tree or series-parallel graph (S) or
an arbitrary DAG (D). Processing units have computation capabilities (the Comp.
column) that can be homogeneous (H), heterogeneous related (R) or heterogeneous
unrelated (U). Replication of tasks (the Rep. column) can be authorized (Y) or not
(N). The performance metric to compare the schedules (the Metric column) can be
the throughput (T), the latency (L), the reliability (R), the energy consumption
(E) or the number of processors used (N). The multi-objective problems are de-
noted with an & so that T&L denotes the bi-objective problem of optimizing both
throughput and latency. Finally, the communication model (the Comm. column)
can follow the model with only precedence constraints and zero communication
weights (P), the one-port model (1), the multi-port model (M), the k-port model
(k), the delay model (D) or can be abstracted in the scheduling problem (abstr).
When a paper deals with several scheduling models, the variations are denoted
with a slash (/). For instance, paper [BRSR08] deals with scheduling a chain (C)
on either homogeneous or heterogeneous related processors (H/R) without using
replication (N) to optimize latency, reliability, or both of them (L/R/L&R) under
the one-port model (1).

4. FORMULATING THE SCHEDULING PROBLEM

The goal of this section is to build a mathematical formulation of the scheduling
problem from a given application. As explained below, it is a common practice to
consider a more restrictive formulation than strictly necessary, in order to focus on
more structured schedules that are likely to perform well.
We outline some principles in Section 4.1, and then we detail a few examples to

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 13

Table I. Papers on pipelined scheduling, with characteristics of the scheduling problems.
Reference Structure Comp. Rep. Metric Comm.

[Bok88][HNC92] [Iqb92][MO95] C H N T P

[Nic94][PA04] [LLP98] C H N T P

[Dev09] C H N T&L P
[MCG+08] C H Y T P

[BR08] C H/R N T 1

[ABR08] C H/R N T/L M
[BRGR10] C H/R N T/L/E 1

[BRSR08] C H/R N L/R/L&R 1
[BR09] C H/R Y/N T/L/T&L 1

[BKRSR09] C R N T&L 1

[BRT09] C R N L 1
[BRSR07] C R N T/L/T&L 1

[ABMR10] C R N T/L/T&L 1/M

[dNFJG05] C R Y T&N M
[BGGR09] C R Y T 1/M
[KN10] C R Y/N T M

[BR10] C/S H/R Y/N T/L&T P
[HM94] [CHM95] S H N T M

[CNNS94] S H N T&L P

[JV96] D H N T M
[HO99] D H N T&L M

[GRRL05] D H N T&L D
[KRC+99] D H N T&L P

[VÇK+07] D H Y T&L M
[VÇK+10] D H Y T&L k
[SV95] D H Y/N T abstr

[SV96] D H Y/N T&L abstr
[RA01] D H/U N T&L M
[TC99] D R N T M

[YKS03] D R N T&N D
[Bey01][SFB+02] D R Y T M

[BHCF95] D U N T D

[SRM06] D U N T M

illustrate the main techniques in Section 4.2. Finally we conclude in Section 4.3 by
highlighting the known frontier between polynomial and NP-complete problems.

4.1 Compacting the Problem

One way to schedule a pipelined application is to explicitly schedule all the tasks
of all the data sets, which amounts to completely unrolling the execution graph
and assigning a start-up time and a processor to each task. In order to ensure
that all dependencies and resource constraints are fulfilled, one must check that all
predecessor relations are satisfied by the schedule, and that every processor does
not execute more than one task at a given time. To do so, it may be necessary
to associate a start-up time to each communication, and a fraction of the band-
width used (multi-port model). However, the number of tasks to schedule could be
extremely large, making this approach highly impractical.
To avoid this problem, a solution is to construct a more compact schedule, which

hopefully has some useful properties. The overall schedule should be easily deduced

ACM Computing Surveys, Vol. V, No. N, January 2014.



14 · Anne Benoit et al.

from the compact schedule in an incremental way. Checking whether the overall
schedule is valid or not, and computing the performance index (e.g., throughput,
latency) should be easy operations. To make an analogy with compilation, this
amounts to transitioning from DAG scheduling to loop nest scheduling. In the
latter framework, one considers a loop nest, i.e., a collection of several nested loops
that enclose a sequence of scalar statements. Each statement is executed many
times, for each value of the surrounding loop counters. Compiler techniques such
as Lamport hyperplane vectors, or space-time unimodular transformations [Wol89;
DRV00; KA02] can efficiently expose the parallelism within the loop nest, by provid-
ing a linear or affine closed-form expression of scheduling dates for each statement
instance within each loop iteration. On the contrary, a DAG schedule would com-
pletely unroll all loops and provide an exhaustive list of scheduling dates for each
statement instance.

The most common types of schedules that can be compacted are cyclic sched-
ules. If a schedule has a period P, then all computations and communications are
repeated every P time units: two consecutive data sets are processed in exactly the
same way, with a shift of P time units. The cyclic schedule is constructed from
the elementary schedule, which is the detailed schedule for one single data set. If
task ti is executed on processor j at time si in the elementary schedule, then the
execution of this task ti for data set x will be executed at time si + (x − 1)P on
the same processor j in the cyclic schedule. The elementary schedule is a compact
representation of the global cyclic schedule, while it is straightforward to derive the
actual start-up time of each task instance, for each data set, at runtime. The re-
lation between cyclic and elementary schedule will be exemplified in Sections 4.2.1
and 4.2.2.

With cyclic schedules, one data set starts its execution every P time units. Thus,
the system has a throughput T = 1/P. However, the latency L of the application
is harder to compute; in the general case, one must follow the entire processing of
a given data set (but all data sets have the same latency, which helps simplify the
computation). The latency L is the length of the elementary schedule.

Checking the validity of a cyclic schedule is easier than that of an arbitrary
schedule. Intuitively, it is sufficient to check the data sets released in the last L
units of time, in order to make sure that a processor does not execute two tasks
at the same time, and that a communication link is not used twice. Technically,
we can build an operation list [ABMR10] whose size is proportional to the original
application precedence task graph, and does not depend upon the number of data
sets that are processed.

A natural extension of cyclic schedules are periodic schedules, which repeat their
operation every K data sets [LKdPC10]. When K = 1, we retrieve cyclic schedules,
but larger values of K are useful to gain performance, in particular through the use
of replicated parallelism. We give an example in which the throughput increases
when periodic schedules are allowed. Suppose that we want to execute a single task
of weight 1, and that the platform consists of three different-speed processors P1, P2

and P3 with speeds 1/3, 1/5 and 1/8, respectively. For a cyclic schedule, we need to
specify on which processor the task is executed, and the optimal solution is to use
the fastest processor, hence leading to a throughput T = 1/3. However, with the

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 15

use of replication, within 120 time units, P1 can process 40 data sets, P2 can process
24 data sets, and P3 can process 15 data sets, resulting in a periodic schedule with
K = 40+24+15 = 79, and a throughput T = 79/120, about twice that of the cyclic
schedule. Of course it is easy to generalize the example to derive an arbitrarily bad
throughput ratio between cyclic and periodic schedules. Note however that the
gain in throughput comes with a price: because of the use of replication, it may
become very difficult to compute the throughput. This is because the pace of
operation for the entire system is no longer dictated by a single critical resource,
but instead by a cycle of dependent operations that involves several computation
units and communication links (refer to [BGGR09] for details). Periodic schedules
are represented in a compact way by a schedule that specifies the execution of K
data sets similarly to the elementary schedule of a cyclic schedule.
Other common compact schedules consist in giving only the fraction of the time

each processor spends executing each task [BLMR04; VÇK+10]. Such represen-
tations are more convenient when using linear programming tools. However, re-
constructing the actual schedule involves advanced concepts from graph theory,
and may be difficult to use in practice (although it can be done in polynomial
time) [BLMR04].

4.2 Examples

The goal of this section is to provide examples to help the reader understand how
to build a scheduling problem from the workflow model, system model and perfor-
mance model. We also discuss how the problem varies when basic assumptions are
modified.

4.2.1 Chain on Identical Processors with Interval Mapping. We consider the
problem of scheduling a linear chain of n monolithic tasks onto m identical proces-
sors (with unit speed), linked by an infinitely fast network. For 1 ≤ i ≤ n, task ti
has a weight pi, and hence a processing time pi on any processor. Fig. 5 presents
an instance of this scheduling problem with four tasks of weights p1 = 1, p2 = 2,
p3 = 4, and p4 = 3.
When scheduling chains of tasks, several mapping rules can be enforced:

—The one-to-one mapping rule ensures that each task is mapped to a different
processor. This rule may be useful to deal with tasks having a high memory
requirement, but all inter-task communications must then be paid.

—Another classical rule is the interval mapping rule, which ensures that each pro-
cessor executes a set of consecutive tasks. Formally, if a processor executes tasks
tibegin and tiend

, then all tasks ti, with ibegin ≤ i ≤ iend, are executed on the
same processor. This rule, which provides an extension of one-to-one mappings,
is often used to reduce the communication overhead of the schedule.

—Finally, the general mapping rule does not enforce any constraint, and thus any
schedule is allowed. Note that for a homogeneous platform with communication
costs, [ABR08] showed for the throughput objective that the optimal interval
mapping is a 2-approximation of the optimal general mapping.

In this section, we consider interval mappings. Therefore, a solution to the
scheduling problem is a partition of the task set {t1, . . . , tn} into m sets or in-

ACM Computing Surveys, Vol. V, No. N, January 2014.



16 · Anne Benoit et al.

1 2 4 3

t1 t3 t4t2

Fig. 5. An instance of the chain scheduling problem.

0 1 3 7 10 time

p
ro
ce
ss
o
r

2

1 t1 t2 t3

t4

Fig. 6. The solution of optimal throughput to the instance of Fig. 5 using an interval mapping on
two processors.

tervals {I1, . . . , Im}, where Ij (1 ≤ j ≤ m) is a set of consecutive tasks. Note that
one could want to have fewer intervals than processors, leaving some processor(s)
completely idle, but here we assume that all the processors are used to make the
notation simpler. The length of an interval is defined as the sum of the processing
time of its tasks: Lj =

∑
i∈Ij

pi, for 1 ≤ j ≤ m. Processors are identical (with unit

speed), so that all mappings of intervals onto processors are identical too.
In this case, the intervals form a compact representation of the schedule. The

elementary schedule represents the execution of a single data set: task ti starts
its execution at time si =

∑
i′<i pi′ on the processor in charge of its interval. An

overall schedule of period P = max1≤j≤m Lj can now be constructed: task ti is
executed at time si + (x− 1)P on the x-th data set. A solution of the instance of
Fig. 5 on two processors that use the intervals {t1, t2, t3} and {t4} is depicted in
Fig. 6, where the boxes represent tasks and data sets are identified by colors. The
schedule is focused on the cyan data set (the labeled tasks), which follows the green
one (partially depicted) and precedes the red one (partially depicted). Each task is
periodically scheduled every 7 time units (a period is depicted with dotted lines).
Processor 2 is idle during 4 time units within each period.
One can check that such a schedule is valid: the precedence constraints are

respected, two tasks are never scheduled on the same processor at the same time
(the processor in charge of interval Ij executes tasks for one single data set during
Lj time units, and the next data set arrives after maxj′ Lj′ time units), and the
monolithic constraint is also fulfilled, since all the instances of a task are scheduled
on a unique processor.

To conclude, the throughput of the schedule is T = 1
P

= 1
max1≤j≤mLj

, and its

latency is L =
∑

1≤i≤n pi. Note that given an interval mapping, T is the optimal
throughput since the processor for which Lj = maxj′ Lj′ will never be idle, and it
is the one that defines the period. Note also that the latency is optimal over all
schedules, since

∑
1≤i≤n pi is a lower bound on the latency.

For such a problem (no communication, identical processors, linear dependency

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 17

1

2

p
ro
ce
ss
o
r

0 1 2 3 4 5 7 11 15 17 20
time

t2

t1 t3

t4

Fig. 7. The solution of optimal throughput to the instance of Fig. 5 using a general mapping on
two processors.

p
ro
ce
ss
o
r

2

1

0 1 2 3 4 5 6 10 13 15
time

20

t1

t4

t3

t2

Fig. 8. A solution of the same throughput with Fig. 7, but with a better latency.

graph, no replication, interval mapping), the problem of optimizing the throughput
is reduced to the classical chains-on-chains partitioning problem [PA04], and it can
be solved in polynomial time, using for instance a dynamic programming algorithm.

4.2.2 Chain on Identical Processors with General Mapping. This problem is a
slight variation of the previous one: solutions are no longer restricted to interval
mapping schedules, but any mapping may be used. By suppressing the interval
mapping constraint, we can usually obtain a better throughput, but the scheduling
problem and schedule reconstruction become harder, as we illustrate in the following
example.
The solution of a general mapping can be expressed as a partition of the task

set {t1, . . . , tn} into m sets {A1, . . . , Am}, but these sets are not enforced to be
intervals anymore. The optimal period is then P = max1≤j≤m

∑
i∈Aj

pi.
We present a generic way to reconstruct from the mapping a cyclic schedule that

preserves the throughput. A core schedule is constructed by scheduling all the tasks
according to the allocation without leaving any idle time and, therefore, reaching
the optimal period. Task ti in set Aj is scheduled in the core schedule at time
si =

∑
i′<i,i′∈Aj

pi′ . A solution of the instance presented in Fig. 5 is depicted in

Fig. 7 between the dotted lines (time units 0 to 5); it schedules tasks t1 and t3 on
processor 1, and tasks t2 and t4 on processor 2.

The notion of core schedule is different than the notion of elementary schedule.
Informally, the elementary schedule describes the execution of a single data set
while the tasks in the core schedule may process different data sets.
The cyclic schedule is built so that each task takes its predecessor from the

previous period: inside a period, each task is processing a different data set. We
can now follow the execution of the x-th data set: it starts being executed for task ti
at time si + (i + x − 1)P, as illustrated for the white data set (x = 0) in Fig. 7.
This technique produces schedules with a large latency, between (n− 1)P and nP.
In the example, the latency is 20, exactly 4 times the period. In Fig. 7, the core

ACM Computing Surveys, Vol. V, No. N, January 2014.



18 · Anne Benoit et al.

schedule is given between the dotted lines (from time step 0 to 5). The elementary
schedule is given by restricting the figure to the white data set (i.e., removing all
other data sets).
The strict rule of splitting the execution in n periods ensures that no precedence

constraint is violated. However, if the precedence constraint between task ti and
task ti+1 is respected in the core schedule, then it is possible to schedule both of
them in a single time period. Consider the schedule depicted in Fig. 8. It uses the
same allocation as the one in Fig. 7, but tasks t2 and t4 have been swapped in the
core schedule. Thus, tasks t1 and t2 can be scheduled in the same period, leading
to a latency of 13 instead of 20.
Note that the problem of finding the best general mapping for the throughput

maximization problem is NP-complete: it is equivalent to the 2-PARTITION prob-
lem [GJ79] (consider an instance with two processors).

4.2.3 Chain with a Fixed Processor Allocation. In the previous examples, we
have given hints of techniques to build the best core schedule, given a mapping
and a processor allocation, in simple cases with no communication costs. In those
examples, we were able to schedule tasks in order to reach the optimal throughput
and/or latency.
Given a mapping and a processor allocation, obtaining a schedule that reaches

the optimal latency can be done by greedily scheduling the tasks in the order of the
chain. However, this may come at the price of a degradation of the throughput,
since idle times may appear in the schedule. We can ensure that there will be no
conflicts if the period equals the latency (only one data set in the pipeline at any
time step).
If we are interested in minimizing the period, the presence of communications

makes the problem much more difficult. In the model without computation and
communication overlap, it is actually NP-hard to decide the order of communica-
tions (i.e., deciding the start time of each communication in the core schedule) in
order to obtain the minimum period (see [ABMR10] for details). If computation
and communication can be overlapped, the processor works simultaneously on var-
ious data sets, and we are able to build a conflict free schedule. When a bi-criteria
objective function is considered, more difficulties arise, as the ordering of commu-
nications also becomes vital to obtain a good trade-off between latency and period
minimization.

4.2.4 Scheduling Moldable Tasks with Series-Parallel Precedence. Chains are
not the only kind of precedence constraints that are structured enough to help
derive interesting results. For instance, series-parallel graphs [VTL82] are defined
by composition. Given two series-parallel graphs, a series composition merges the
sink of one graph with the root (or source) of the other one; a parallel composition
merges the sinks of both graphs and the roots of both graphs. No other edges
are added or removed. The basic series-parallel graph is composed of two vertices
and one edge. Fig. 9 gives an example of a series-parallel graph. The chain of
length three (given as t2, t5 and t7 in Fig. 9) is obtained by composing in series
the chain of length two with itself. The diamond graph (given as t1, t3, t4 and t6
in Fig. 9) is obtained by composing in parallel the chain of length three with itself.

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 19

t0

t4

t2t1

t3

t8

t7t6

t5
S

S

P

S

S

P

S

S

t3 t4

t2t1

t0

t8

t6 t7

t5

Fig. 9. A series-parallel graph, and its binary decomposition tree.

In parallel computing, series-parallel workflow graphs appear when using nested
parallelism [BHS+94; BS05].
[CNNS94] considers the scheduling of series-parallel pipelined precedence task

graphs, composed of moldable tasks. A given processor executes a single task and
communications inside the moldable task are assumed to be included in the parallel
processing times. There is no communication required between the tasks, just a
precedence constraint. Provided a processor allocation, one can build an elementary
schedule by scheduling the tasks as soon as possible. Since a processor is only
involved in the computation of a single task, this elementary schedule reaches the
optimal latency (for the processor allocation). Moreover, the elementary schedule
can be executed with a period equal to the length of the longest task, leading to a
cyclic schedule of optimal throughput (for the processor allocation).
Since the application task graph is a series-parallel graph, the latency and through-

put of a solution can be expressed according to its Binary Decomposition Tree
(BDT) [VTL82]. Each leaf of the BDT is a vertex of the graph and each internal
node is either a series node S(l, r) or a parallel node P (l, r). A series node S(l, r)
indicates that the subtree l is a predecessor of the subtree r. A parallel node P (l, r)
indicates that both subtrees l and r are independent. A Binary Decomposition Tree
is depicted in Fig. 9.

In the BDT form, the throughput of a node is the minimum of the throughputs of
the children of the node: T (S(l, r)) = T (P (l, r)) = min(T (l), T (r)). The expression
of the latency depends on the type of the considered node. If the node is a parallel
node, then the latency is the maximum of the latencies of its children: L(P (l, r)) =
max(L(l),L(r)). If it is a series node, the latency is the sum of the latencies of its
children: L(S(l, r)) = L(l) + L(r).

4.2.5 Arbitrary DAGs on Homogeneous Processors. Many applications cannot
be represented by a structured graph such as a chain or a series-parallel graph.
Arbitrary DAGs are more general but at the same time they are more difficult to
schedule efficiently. Fig. 10 presents a sample arbitrary DAG.

Scheduling arbitrary DAGs poses problems that are similar to those encountered
when scheduling chains. Consider first the case of one-to-one mappings, in which
each task is allocated to a different processor. A cyclic schedule is easily built by

ACM Computing Surveys, Vol. V, No. N, January 2014.



20 · Anne Benoit et al.

0

8 2

3 2

0

t1

t2 t3

t6

t5t4

Fig. 10. An arbitrary DAG (the task weight is the label next to the task).

p
ro
ce
ss
o
r

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11
time

t3

t5

t2

t4

Fig. 11. One-to-one mapping of the instance of Fig. 10 with L = 11 and T = 1
8
. Tasks t1 and t6

have computation time 0, therefore they are omitted.

scheduling all tasks as soon as possible. Task i is scheduled in the cyclic schedule
on processor i at time si = maxi′∈pred(i) si′ + pi′ . This schedule can be executed

periodically every P = maxi pi with throughput T = 1
maxi pi

. The latency is the
longest path in the graph, i.e., L = max si + pi. A schedule built in such a way
does not schedule two tasks on the same processor at the same time; indeed, each
task is executed during each period on its own processor, and its processing time
is smaller or equal to the period. Under the one-to-one mapping constraint, this
schedule is optimal for both objective functions. The solution for the graph of
Fig. 10 is presented in Fig. 11, with a latency L = 11 and a throughput T = 1

8 .
When there is no constraint enforced on the mapping rule, problems similar to

those of general mappings for linear chains appear (see Section 4.2.2): we cannot
easily derive an efficient cyclic schedule from the processor allocation. Establishing
a cyclic schedule that reaches the optimal throughput given a processor allocation
is easy without communication cost, but it can lead to a large latency. Similarly to
the case of chains, a core schedule is obtained by scheduling all the tasks consec-
utively without taking care of the dependencies. This way, we obtain the optimal
period (for this allocation) equal to the load of the most loaded processor. The
cyclic schedule is built so that each task takes its data from the execution of its
predecessors in the last period. Therefore, executing a data set takes as many pe-
riods as the depth of the precedence task graph. On the instance of Fig. 10, the
optimal throughput on two processors is obtained by scheduling t2 alone on a pro-
cessor. Fig. 12 presents a cyclic schedule for this processor allocation according to

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 21

0 1 3 7 102 4 5 6 8 9 11

time

1

2

p
ro
ce
ss
o
r

12 13 14 15

t3

t2

t4t5

Fig. 12. A general mapping solution of the instance of Fig. 10 with L = 15 and T = 1
8
. Tasks t1

and t6 have computation time 0, therefore they are omitted.

0 1 3 7 102 4 5 6 8 9 11

time

1

2

p
ro
ce
ss
o
r

12 13 14 15

t2

t5t3 t4

Fig. 13. A general mapping solution of the instance of Fig. 10 with L = 11 and T = 1
8
. Tasks t1

and t6 have computation time 0, therefore they are omitted.

this generic technique, leading to a latency L = 15. Note that t5 could be scheduled
in the same period as t3 and in general this optimization can be done by a greedy
algorithm. However, it does not guarantee to obtain the schedule with the optimal
latency, which is presented in Fig. 13 and has a latency L = 11. Indeed, contrarily
to linear pipelines, given a processor allocation, obtaining the cyclic schedule that
minimizes the latency is NP-hard [RSBJ95].
The notion of interval mapping cannot be directly applied on a complex DAG.

However, we believe that the interest of interval mapping schedules of chains can
be transposed to convex clustered schedules on DAGs. In a convex clustered sched-
ule, if two tasks are executed on one processor, then all the tasks on all the paths
between these two tasks are scheduled on the same processor [LT02]. Convex clus-
tered schedules are also called processor ordered schedules, because the graph of
the inter-processor communications induced by such schedules is acyclic [GMS04].
The execution of the tasks of a given processor can be serialized and executed with-
out any idle time (provided their execution starts after all the data have arrived).
This leads to a reconstruction technique similar to the one applied on chains of
tasks following the interval mapping rule. Two processors that are independent in
the inter-processor communication graph can execute their tasks on a given data
set during the same period in any order, without violation of the precedence con-
straints. Such a construction leads to the optimal throughput for a given convex
clustered mapping of the tasks to the processors, and to a latency L ≤ xP ≤ mP,
where x is the length of the longest chain in the graph of communications between
processors.
Algorithms to generate convex clustered schedules based on recursive decom-

position have been proposed for classical DAG scheduling problems [PST05]. In
pipelined scheduling, heuristic algorithms based on stages often generate convex
clustered schedule such as [BHCF95; GRRL05]. However the theoretical properties
of such schedules have never been studied for pipelined workflows.

ACM Computing Surveys, Vol. V, No. N, January 2014.



22 · Anne Benoit et al.

0 1 3 7 102 4 5 6 8 9 11

1

2

12 13 14

p
ro
ce
ss
o
r

3

time

t3

t2

t5 t4t5t3

t2

t4

Fig. 14. A general mapping solution of the instance of Fig. 10 with L = 14 and T = 1
7
when task

t2 is replicable. Tasks t1 and t6 have computation time 0, therefore they are omitted.

4.2.6 Scheduling Arbitrary DAGs on Homogeneous Processors with Replication.
A task is replicable if it does not contain an internal state. It means that the same
task can be executed at the same time on different data sets. Replication allows one
to increase the throughput of the application. (We point out that this is different
from duplication, which consists in executing the same task on the same data set on
multiple different processors. Redundantly executing some operations aims at either
reducing communication bottlenecks, or increasing reliability.) On the instance
presented in Fig. 10, only two processors can be useful: the dependencies prevent
any three tasks from being executed simultaneously, so a third processor would
improve neither the throughput nor the latency for monolithic tasks. However, if
task t2 is replicable, the third processor could be used to replicate the computation
of this task, therefore leading to the schedule depicted in Fig. 14.
Replicating t2 leads to a periodic schedule that executes two data sets every 14

time units (K = 2). Its throughput is therefore T = 2
14 = 1

7 , which is better than
without replication. The latency is the maximum time a data set spends in the
system. Without replication, all the data sets spend the same time in the system.
With replication, this statement no longer holds. In the example, the cyan data
set spends 11 time units in the system whereas the green one spends 14 time units.
The latency of the schedule is therefore L = 14. If task t4 was replicable as well,
two copies could be executed in parallel, improving the throughput to T = 2

11 and
the latency to L = 11. A fourth processor could be used to pipeline the execution
of t4 and reach a period of P = 8 and, hence, a throughput of T = 1

4 .
A schedule with replication is no longer cyclic but instead is periodic, with the

definitions of Section 4.1. Such a schedule can be seen as a pipelined execution
of an unrolled version of the graph. The overall schedule should be specified by
giving a periodic schedule of length ℓ (the time between the start of the first task
of the first data set of the period and the completion of the last task of the last
data set of the period), detailing how to execute K consecutive data sets, and
providing its period P. Verifying that the schedule is valid is done in the same
way as for classical elementary schedules: one needs to expand all the periods that
have a task running during the schedule, that is to say the tasks that start during
the elementary schedule and within the ℓ time units before. Such a schedule has a
throughput of T = K

P
, and its latency should be computed as the maximum latency

of the data sets in the elementary schedule.
Note that if all tasks are replicable, the whole task graph can be replicated on

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 23

all the m processors. Each processor executes sequentially exactly one copy of the
application. This leads to a schedule of latency and period P = L =

∑
i pi, and a

throughput of T = m∑
i
pi

.

When using replication, it is possible that data set i is processed before its pre-
decessor i − 1. This behavior mainly appears when processors are heterogeneous.
The semantic of the application might not allow data sets to be processed in such
an out-of-order fashion. For instance, if a task is responsible for compressing its
input, providing the data sets out-of-order will change the output of the program.
One can then either impose a delay, or use some other constraints, as for instance
the dealable stage constraint [Col04].

4.2.7 Model Variations. In most cases, heterogeneity does not drastically change
the scheduling model. However, the compact schedule description must then con-
tain the processor allocation, i.e., it must specify which task is executed on which
processor. Otherwise the formulations stay similar.

A technique to reduce latency is to consider duplication [AK98; VÇK+10]. Du-
plicating a task consists in executing the same task more than once on different
processors for every data set. Each task receives its data from one of the duplicates
of each of its predecessors. Hence, this allows more flexibility for dealing with data
dependency. The idea is to reduce the communication overheads at the expense of
increasing the computation load. Another goal is to increase the reliability of the
system: whenever the execution of one duplicate would fail, that of another dupli-
cate could still be successful. The major difference of duplication as compared to
replication is the following: with duplication, a single data set is executed in each
period, whereas with replication, several data sets can be executed in each period.

Communication models affect the schedule formulation. The easiest communi-
cation model is the one-port model where a machine communicates with a single
other machine at a time. Therefore, in the schedule, each machine is represented
by two processors, one for the computations and one for the communications. A
valid schedule needs to “execute” a communication task at the same time on the
communication processor of both machines involved in the data transfer. A com-
mon variation on the one-port model is to forbid communication and computation
overlap. This model is used in [HO99]. In this case, there is no need for a communi-
cation processor; the communication tasks have to be scheduled on the computation
processor [BRSR07].

To deal with more than one communication at a time, a realistic model would be
to split the bandwidth equally among the communications. However such models
are more complicated to analyze, and are therefore not used in practice. Two ways
of overcoming the problem exist. The first one is to consider the k-port model where
each machine has a bandwidth B divided equally into k channels. The scheduling
problem amounts to using k communication processors per machine. This model
has been used in [VÇK+10].

When only the throughput matters (and not the latency), it is enough to ensure
that no network link is overloaded. One can reconstruct a periodic schedule ex-
plicitly, by using the model detailed previously, considering each network link as a
processor. This approach has been used in [TC99].

ACM Computing Surveys, Vol. V, No. N, January 2014.



24 · Anne Benoit et al.

4.3 Complexity

The goal of this section is to provide reference pointers for the complexity of the
pipelined scheduling problem. Lots of works are dedicated to highlighting the fron-
tier between polynomial and NP-hard optimization problems in pipelined schedul-
ing.

The complexity of classical scheduling problems have been studied in [Bru07].
One of the main contributions was to determine some constraint changes that al-
ways make the problem harder. Some similar results are valid on pipelined schedul-
ing. For instance, heterogeneous versions of problems are always harder than their
homogeneous counterpart, since homogeneous cases can be easily represented as
heterogeneous problem instances but not vice versa. A problem with an arbitrary
task graph or architecture graph is always harder than the structured counter-
part, and in general considering a superset of graphs makes problems harder. Also,
removing communications makes the problem easier.

As seen in the previous examples, throughput optimization is always NP-hard
for general mappings, but polynomial instances can be found for interval mappings.
The communication model plays a key role in complexity. The optimization of
latency is usually equivalent to the optimization of the makespan in classical DAG
scheduling [KA99b].

The complexity of multi-objective problem instances relates to three different
types of questions. First, the decision problems of multi-objective problems are di-
rectly related to those for mono-objective problems. A threshold value is given
for all the objectives, and the problem is to decide whether a solution exists,
that matches all these thresholds. Multi-objective decision problems are obviously
harder than their mono-objective counter part. Second, the counting problem con-
sists in computing how many Pareto-optimal solutions a multi-objective problem
has; a Pareto-optimal solution is such that no other solution is strictly better than
it. Finally, the enumeration problem consists in enumerating all the Pareto-optimal
solution of an instance. The enumeration problem is obviously harder than the de-
cision problem and the counting problem, since it is possible to count the number
of solutions with an enumeration algorithm, and to decide whether given thresholds
are feasible. A complete discussion of these problems can be found in [TB07].

The complexity class of enumeration problems expresses the complexity of the
problem as a function of both the size of the input of the problem and the number of
Pareto-optimal solutions leading to classes EP (Enumeration Polynomial) and ENP
(for Enumeration Non-deterministic Polynomial) [TBE07]. Therefore, the decision
version of a multi-objective problem might be NP-complete, but since it has an
exponential number of Pareto optimal solution, its enumeration version is in EP (the
problem 1 ||

∑
CA

i ;
∑

CB
i of [AMPP04] is one of the many examples that exhibit

this property). Therefore, the approaches based on exhaustive enumeration can take
a long time. However, [PY00] shows that most multi-objective problems admit an
approximate set of Pareto optimal solutions whose cardinality is polynomial in the
size of the instance (but it is exponential in the number of objectives and in the
quality of the approximation). It was also shown in [PY00] that an approximation
algorithm for the decision problem can be used to derive an approximation of
the Pareto set in polynomial time. These results motivate the investigation of

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 25

Table II. Summary of complexity results for period minimization of a linear task graph.

Mapping rule Platform type

Fully Hom. Comm. Hom. Hetero.

one-to-one polynomial polynomial, NP-hard (rep.) NP-hard

interval polynomial NP-hard NP-hard

general NP-hard, polynomial (rep.) NP-hard

Table III. Summary of complexity results for latency minimization of a linear task graph.

Mapping rule Platform type

Fully Hom. Comm. Hom. Hetero.

one-to-one polynomial [BR09] NP-hard [BRSR08]

interval polynomial [BR09] NP-hard [BRT09]

general polynomial [BRSR08]

algorithms that enforce thresholds on some objectives, and optimize the other ones.
The complexity of linear graph problems has been widely studied since it roots the

general DAG case, and most of the structured graph ones [BR08; BR10; BRSR07;
ABR08; BRSR08; BRT09; BR09; ABMR10]. The large number of variants for
these scheduling problems makes complexity results very difficult to apprehend.
An exhaustive list of such results can be found in [Ben09]. We provide in Ta-
bles II and III a summary of complexity results for period and latency optimization
problems, which hold for all communication models. Fully Hom. platforms refer
to homogeneous computations and communications. Comm. Hom. platforms add
one level of heterogeneity (heterogeneous related processors). Finally, Hetero. plat-
forms are fully heterogeneous (heterogeneous related processors and heterogeneous
communication links).
For the period minimization problem, the reader can refer to [BR08] for the vari-

ant with no replication, and to [BR10] otherwise (results denoted with (rep.)). For
the latency minimization problem, we report here results with no data-parallelism;
otherwise the problem becomes NP-hard as soon as processors have different speeds
(related model), with no communication costs [BR10].

5. SOLVING PROBLEMS

The goal of this section is to give methods to solve the pipelined scheduling problem
using exact algorithms or heuristic techniques.

5.1 Scheduling a Chain of Tasks with Interval Mappings

The first problem that we consider has been presented in Section 4.2.1. It consists
in scheduling a chain of n tasks onto m identical (homogeneous) processors, without
communication, and enforcing the interval mapping constraint. Section 4.2.1 states
that the latency of such schedules is constant, however the throughput can be
optimized by minimizing the length of the longest interval.
The optimization of the throughput problem is the same combinatorial problem

as the well-known chains-on-chains partitioning problem, which has been solved
by a polynomial algorithm in [Bok88], and then refined to reach lower complexity

ACM Computing Surveys, Vol. V, No. N, January 2014.



26 · Anne Benoit et al.

in [Iqb92; Nic94; MO95]. For very large problems, some heuristics have also been
designed to reduce the scheduling times even further (see [PA04] for a survey). The
first algorithm was based on a shortest path algorithm in an assignment graph.
The approach below has a lower complexity, and is easier to understand.

The core of the technique is the Probe function that takes as a parameter the
processing time of the tasks and the length of the longest interval P. It constructs
intervals I = {I1, . . . , Im} such that max1≤j≤m Lj ≤ P , or shows that no such
intervals exist (remember that Lj =

∑
i∈Ij

pi, where pi is the processing time

of task ti). Probe recursively allocates the first x tasks of the chain to the first
processor so that

∑
i≤x pi ≤ P and

∑
i≤x+1 pi > P until no task remains, and then

returns the schedule. If the number of intervals is less than the number of processors,
this function builds a schedule having no interval of length exceeding P. Otherwise,
no schedule of maximal interval length less than P exists with m processors. It can
be easily shown that the schedules constructed are dominant, i.e., if a schedule
exists, then there is one respecting this construction. The last problem is to choose
the optimal value for the threshold P. The optimal value is obtained by using
a binary search on the possible values of P, which are tested using the Probe
function. This construction is polynomial but has a quite high complexity. It is
possible to reduce the complexity of the Probe function using prefix sum arrays and
binary search so that fewer values of P can be tested by analyzing the processing
time values. In the general case, the lowest complexity is reached by using Nicol’s
algorithm [Nic94] with the algorithm for the Probe function described in [HNC92],
leading to a total complexity of O(n+m2 log(n) log(n/m)) (see [PA04] for details).

The same idea can be used to deal with different problems, for instance with
non-overlapping communications following the one-port model [Iqb92]. Since there
is no overlapping, the communication time is included in the computation of the
throughput of both processors involved in the communication. Then, setting the
boundary of the interval on a communication larger than the length of the previ-
ous task plus its in-bound communication is never efficient: the two tasks can be
merged without losing optimality. (The same argument applies towards the next
task.) Detecting these tasks and merging them can be performed in linear time.
The resulting chain is said to be monotonic. Then, an algorithm similar to the
partitioning of a chain in intervals without communication can be applied, leading
to the optimal solution [Iqb92].

The same algorithm can also be used to optimally solve the case with related
processor heterogeneity (processor speeds differ) if the order in which a data set
goes through the processors is known. This is the case on dedicated hardware
where the processor network forces the order of execution between the processors.
However, if this order is not known, the problem is NP-complete in the strong
sense [BRSR07], even without taking communication costs into account. There are
too many permutations to try, but the Probe algorithm sets a solid ground to build
heuristics upon.

[BR08] proposes three heuristics to build interval mappings for optimizing the
throughput on heterogeneous processors. The first one, called SPL, starts by assign-
ing all the tasks to the fastest processor and then greedily splits the largest interval
by unloading work to the fastest available processor. The splitting point is chosen

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 27

so as to minimize the period of the new solution. The two other heuristics BSL and
BSC use a binary search on the period of the solution. This period is used as a goal
in the greedy allocation of the tasks to the processors. BSL allocates the beginning
of the chain of tasks to the processor that will execute the most computations while
respecting the threshold. On the other hand, BSC chooses the allocation that is
the closest to the period. Note that [PTA08] surveys chains-on-chains partitioning
problems with heterogeneous resources, and proposes several heuristics that can be
transposed to throughput optimization without communication costs.

[KN10] proposes a heuristic algorithm called ThroughputPipeline to schedule
a chain using interval mappings on Grid computing systems (related processors,
bounded multi-port, communication and computation overlapping, no replication),
considering routing through intermediate nodes. ThroughputPipeline is based on
Dijkstra’s shortest path algorithm. Simulation shows that its performance is within
30% of the general mapping optimal solution (obtained by an Integer Linear Pro-
gramming formulation).

Solving the problem of optimizing both the latency and the throughput of a
linear pipeline application has been considered in [SV96; BRSR07; BKRSR09]. Bi-
objective optimization problems are usually solved by providing a set of efficient
solutions. This set of solutions is generated by using an algorithm that targets val-
ues of one objective while optimizing the other one. The solution space is explored
by executing this algorithm with different values of the threshold, hence covering
the efficient part of the solution space.

[SV95] addresses the problem of scheduling a chain of tasks on homogeneous
processors to optimize the throughput of the application without computation and
communication overlap. It covers a large range of problems since it addresses
moldable tasks with dedicated communication functions and replicable tasks. The
network is supposed to be homogeneous but the details of the communication model
are abstracted by explicitly giving the communication time in the instance of the
problem. The technique used is based on dynamic programming and leads to an
optimal polynomial algorithm. This result can be extended by adding a latency
dimension in the dynamic program to allow the optimization of the latency under
throughput constraint [SV96].

[BRSR07] proposes heuristics that optimize the throughput and latency when
link bandwidths are identical but processors have different speeds (one-port com-
munications without overlap). Six heuristics are presented, enforcing a constraint
on either the throughput or the latency. All six heuristics are similar to SPL in
that they start by allocating all the tasks to the fastest processor and split the
interval iteratively. The differences are that each interval may be split in two to
use the fastest available processor, or split in three to use the fastest two processors
available. The other differences are about the solution chosen; it could be the one
that maximizes one objective or a ratio of improvement. [BKRSR09] proposes an
integer linear programming formulation to solve the problem optimally (and with
heterogeneous bandwidths). The solving procedure takes a long time even on a sim-
ple instance of 7 tasks and 10 processors (a few hours on a modern computer) but
allows assessment of the absolute performance of the previously proposed heuristics.

ACM Computing Surveys, Vol. V, No. N, January 2014.



28 · Anne Benoit et al.

5.2 Scheduling a Chain of Tasks with General Mappings

Using general mappings instead of restricting to interval mappings leads to bet-
ter throughput. Without replication and without communication costs, the op-
timization of the throughput on homogeneous processors is NP-complete by re-
duction to 3-PARTITION. In fact, the mathematical problem is to partition n
integers p1, . . . , pn into m sets A1, . . . , Am so that the length of the largest set
max1≤j≤m

∑
i∈Aj

pi is minimized. This formulation corresponds exactly to the
problem of scheduling independent tasks on identical processors to minimize the
makespan, that has been studied for a long time [Gra66; Gra69], and considered
theoretically solved since [HS87].

On homogeneous processors, the classical List Scheduling algorithm schedules
tasks greedily on the least loaded processor, and it is a 2-approximation [Gra66],
i.e., the value of the obtained solution is at most twice the optimal value. Sorting
tasks by non increasing processing times leads to the Largest Processing Time
(LPT) algorithm, which is known to be a 4/3-approximation algorithm [Gra69].
An approximation algorithm with arbitrary precision that is polynomial in the size
of the problem but exponential in the inverse of the precision (also known as PTAS)
based on binary search and dynamic programming has been proposed in [HS87].
The question of whether an algorithm with arbitrary precision that is polynomial in
the size of the problem and in the inverse of the precision (also known as FPTAS)
arises. However, the problem is NP-complete in the strong sense and FPTAS do not
exist for this problem unless P=NP (see [Hoc97] for details on complexity classes
based on approximation properties).

With heterogeneous processors, there is still a link with the classical makespan
optimization problem. If processors are heterogeneous related (computing at dif-
ferent speeds), the throughput optimization problem is the same as scheduling
independent tasks on heterogeneous related processors. This problem admits a
2-approximation algorithm similar to LPT [GIS77]. [HS88] provides an elaborate
approximation scheme with very high runtime complexity as well as a simple 3/2-
approximation algorithm. If processors are unrelated (i.e., their speeds depend on
the task they are handling), the throughput optimization problem is the same as
scheduling independent tasks on unrelated processors to minimize the makespan.
It can be shown that there exists no approximation algorithm with a ratio better
than 3/2 [LST90]. Moreover, a 2-approximation algorithm based on binary search
and linear programming has been proposed in [LST90] and recently made simpler
and faster by [GMW05].

The results on classical scheduling problems remain valid even if the graph is
not linear as long as the performance index is the throughput and there are no
communications. However, they still provide an interesting baseline to assess the
impact of communications.

[KN10] considers the problem of scheduling a chain on a grid computer with
routing to optimize the throughput. Processors are heterogeneous (related) and
communications follow the bounded multi-port model with overlapping. It first
considers the case with replication (called multi-path in this terminology). An
optimal general mapping is constructed in polynomial time by LPSAG, a flow-based
linear programming formulation (somehow similar to LPsched [dNFJG05]). Finding

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 29

the optimal general mapping without replication (single-path) is investigated and
shown to be NP-complete. LPSAG is extended into an Integer Linear Program that
finds the optimal general mapping without replication (but possibly in exponential
time). A polynomial heuristic based on Dijkstra’s shortest path algorithm that only
constructs interval mappings is proposed. Experiments show that the heuristic is
within 30% of the Integer Linear Programming solution.
[BRT09] provides a polynomial algorithm to optimize the latency of a pipelined

chain on heterogeneous (related) networks of processors under the one-port model.
The algorithm is based on a dynamic programming formulation.

5.3 Structured Application Graphs

[CNNS94] tackles the problem of scheduling pipelined series-parallel graphs of mold-
able tasks. (This problem has been presented in Section 4.2.4.) A bi-criteria prob-
lem is solved optimally by optimizing the latency under throughput constraint,
under the assumption that a processor executes at most one task. The latency
is optimized by computing, for each node of the binary decomposition tree, the
optimal latency achievable for any number of processors using dynamic program-
ming. The latency of the series node S(l, r) using m processors is obtained by
evaluating L(S(l, r),m) = min1≤j≤m−1(L(l, j) + L(r,m − j)). The latency of the
parallel node P (l, r) on m processors is obtained by evaluating L(P (l, r),m) =
min1≤j≤m−1 max(L(l, j),L(r,m− j)). The leaves of the binary decomposition tree
are the tasks of the application and their latency are given as an input of the prob-
lem. The throughput constraint is ensured by setting the latency of the tasks to
infinity on processor allocations that would not respect the throughput constraint.
Evaluating the latency of a node for a given number of processors requires O(m)
computations and there are 2n − 1 ∈ O(n) nodes to estimate in the tree for m
different values of the number of processors. The overall complexity of the algo-
rithm is O(nm2). Moreover, the authors remark that if both L(l, j) − L(l, j − 1)
and L(r, j)− L(r, j − 1) decrease when j increases, then L(S(l, r), j) has the same
property. Using that property appropriately enables to obtain the optimal latency
for chains (series graph) in O(m log n) by considering the whole chain at once (in-
stead of using the Binary Decomposition Tree form). If a graph is only composed
of parallel tasks, considering the whole graph at once leads to an algorithm of sim-
ilar complexity. Finally, [CNNS94] shows how to efficiently solve the problem of
optimizing the throughput under latency constraint.

[HM94] and its refinement [CHM95] are interested in optimizing the throughput
of pipelined trees for database applications. Homogeneous processors are used, the
communications do not overlap with computations, and the communications follow
the bandwidth bounded multi-port model. Therefore the load of a processor is the
sum of the weights of the nodes executed by this processor plus the weights of the
edges to other processors. Since latency is not a concern here, there is no fine grain
scheduling of tasks and data sets, but only a flow-like solution where each processor
has a large buffer of data sets to execute. This solution is very similar to the notion
of core schedule described in Section 4.2.2. The main contribution of [HM94] is the
definition of a monotone tree, which is a modified version of a tree where two nodes
linked by too high communication edge are merged. This technique is an extension
of the monotonic chains used in [Iqb92]. It is shown that such a modification is

ACM Computing Surveys, Vol. V, No. N, January 2014.



30 · Anne Benoit et al.

optimal.
[CHM95] presents two approximation algorithms for the previous problem. Both

are based on a two-phase decomposition: first the tree is decomposed into a forest
by removing some edges; then the trees are allocated to processors using LPT.
Removing an edge incurs communication costs to both extremities of the edge. It
is shown that if the obtained forest does not have too large trees and the load is kept
reasonable, then LPT will generate an approximation of the optimal solution. Two
tree decomposition algorithms follow. The first one is a simple greedy algorithm
with approximation ratio 3.56, the second one is a more complex greedy algorithm
with approximation ratio 2.87.

5.4 Scheduling with Replication

[SV95] addresses the problem of scheduling a chain of moldable tasks to optimize the
throughput using replicated interval mappings: if a task is replicated, its whole in-
terval is replicated too. The algorithm uses dynamic programming to find the inter-
vals I = {I1, . . . , Ik}, and for interval Ij ∈ I, the number of processors mIj and the

number of replications rIj for this interval, so that the period P = maxIj∈I

p(Ij ,mIj
)

rIj

is minimized. Note that p(Ij ,mIj ) is the period of interval Ij ∈ I executed on
mIj processors. However, the algorithm does not return the periodic schedule that
the system should follow. It just states where the tasks should be executed and
it relies on a Demand Driven middleware to execute them correctly. A periodic
schedule reaching the same throughput can be computed from the intervals, and
the number of times they should be replicated. However, one needs to specify the
execution of a number of data sets equal to the Least Common Multiple of the
number of replication of all the intervals to completely provide the schedule. In-
deed, if one task is replicated two times and another is replicated three times, the
execution of six data sets must be unrolled for the schedule to be periodic.

[SV96] adds the computation of the latency to [SV95]. Since the graph is a
chain and all the intervals are executed independently, it is possible to build a
schedule that reaches the optimal latency for a given processor allocation L =∑

Ij∈I p(Ij ,mIj ). The interval that constrains the throughput must be executed
without idle time, the preceding tasks are scheduled as late as possible and the
following tasks are scheduled as soon as possible. The optimization of the latency
under a throughput constraint is obtained using a dynamic programming algo-
rithm, by forbidding the numbers of processors and numbers of replications for
each interval that violate the throughput constraint.

5.5 General Method to Optimize the Throughput

[BHCF95] deals with executing a signal processing application on heterogeneous
machines, where not all tasks can be executed on all type of processors. They
schedule a precedence task graph of sequential monolithic tasks. Communications
follow the bandwidth bounded multi-port model with latency, and they overlap
with computations. The proposed algorithm relies on the notion of processor or-
dered schedule. (Recall that a schedule is processor ordered if the graph of the
communications between the processors is acyclic). This property helps ensuring
that precedence constraints are respected. The algorithm first builds a schedule by

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 31

clustering some tasks together to reduce the size of the graph. Then, an exponential
algorithm finds the optimal processor ordered schedule of the clustered task graph.
Finally, tasks are greedily moved from one processor to the other. The last two
steps are alternatively executed as long as the throughput improves.
[Bey01] deals with scheduling pipelined task graphs on the grid. The resources

of the grid are exploited using replication. The author proposes the Filter Copy
Pipeline (FCP) algorithm. FCP considers the application graph in a topological
order, and chooses the number of copies for each task, so that it can process the
data it receives without getting a large backlog. In other words, if the predecessor
of a task handles x data sets per time unit, FCP replicates this task to handle x
data sets per time unit. Those replicas are allocated to processors using the earliest
completion time rule. To improve this approach, [SFB+02] proposes Balanced Filter
Copies that allocates a processor to a single task. In order to ensure the balance,
it keeps track of the network bandwidth used while computing the schedule.
[TC99] is concerned with scheduling a pipelined task graph on a heterogeneous

network of heterogeneous (related) processors with computation and communica-
tion overlap. Since the authors are only interested in the throughput, the problem
reduces to a mapping of the tasks to the processors, and the throughput of the so-
lution is given by the most loaded processor or communication link. The algorithm
starts by ordering the tasks in depth-first traversal of a clustering tree. Then tasks
are mapped to the processors using the following algorithm. The processors are, one
after the other, loaded with the first unallocated tasks that minimize the maximum
of three quantities: the current load, the perfectly balanced load of the unallocated
tasks on the unallocated processors, and the communication volume between the
tasks currently allocated to the processor and the unallocated tasks normalized by
the total bandwidth of the processor. Finally, the obtained schedule is iteratively
improved by unscheduling some of the tasks on the most loaded processors and/or
links, and scheduling them again.
[YKS03] deals with scheduling arbitrary precedence task graphs on a Network

of Workstations (NOW). The processors are heterogeneous (related) and allow for
communication and computation overlap. The communications are modeled using
the delay model where the delay is computed using a per link latency and band-
width. Two objectives are optimized: the throughput and number of machines
used from the NOW. The throughput is given by the user and then, the execution
is cut in stages whose lengths are given by the throughput. A processor used in one
stage is not reused in the next one, so that the throughput can be guaranteed. The
tasks are allocated using the earliest task first heuristic. The authors also propose
some techniques to compact the schedule, reducing the number of processors used.

5.6 General Method to Optimize Throughput and Latency

[GRRL05] is interested in scheduling a pipelined precedence task graph on a ho-
mogeneous cluster with communication and computation overlap to optimize both
latency and throughput. The network is assumed to be completely connected and
the delay model is used. The delay between two tasks scheduled on two proces-
sors is computed using a latency plus bandwidth model. The EXPERT algorithm
optimizes the latency under a throughput constraint. Given a throughput goal
T = 1/P, all tasks are partitioned into stages. Each stage is identified by an in-

ACM Computing Surveys, Vol. V, No. N, January 2014.



32 · Anne Benoit et al.

teger. Task t is allocated to the minimum stage k such that topLevel(t) ≤ k × P,
where topLevel(t) is the critical path from the root of the graph to the completion
of t. Then, EXPERT considers all the paths of the graph from root to sink in
decreasing order of length, including communication delays, and for each edge of
each path it applies the following greedy rule: if the two clusters linked by the edge
belong to the same stage, and if the sum of the processing times of the tasks in these
clusters is smaller than P, then the two clusters are merged. Finally, inter-stage
clusters are merged as long as the sum of the processing times of the tasks of the
resulting cluster is less than P. Each cluster is assigned to a different processor
(and the throughput goal is declared infeasible if there are not enough processors).
Communication between the processors are grouped at the end of the execution of
the cluster they are assigned to.

[HO99] deals with arbitrary application graphs and homogeneous processors and
network links. The technique was originally designed for hypercube networks, but
can be adapted to arbitrary networks. It assumes communication and computation
overlap. The authors are interested in optimizing both latency and throughput.
The proposed algorithm only provides a processor allocation, and the periodic
schedule is reconstructed using a technique similar to the one presented in Sec-
tion 4.2.5: within a period, the tasks are ordered in topological order. If a task
precedence constraint is not satisfied inside the current period, it enforces the de-
pendency from the previous period. Given a target period, and therefore through-
put, the proposed method has three phases. The first phase groups the tasks in
as many clusters as there are processors. This phase orders communications in
non-increasing order of their size, and greedily considers grouping the tasks at both
ends of the communication inside the same cluster, unless both tasks are already
assigned to a cluster, or the assignment would make the sum of the processing
times of the tasks in the cluster larger than the period. At the end of this phase,
tasks that are not assigned to a cluster are assigned using a first fit rule. Then, in
the second phase, the clusters are mapped to computation nodes to minimize the
amount of communication. This is done by first mapping the clusters randomly
to the nodes. Then the processor set is cut in two equals parts and clusters are
pair-wise exchanged to decrease communications on the processor cut. The com-
munications in each part of the processor set are optimized by applying the ”cut in
two parts and exchange clusters” procedure recursively. Finally, in the third phase,
the solution is improved iteratively by moving tasks between processors to decrease
the load of the most loaded link.

[VÇK+10] considers optimizing the latency and throughput of arbitrary DAGs
on homogeneous processors linked by a network of different bandwidths, with com-
munication/computation overlap, and using replication and duplication. Commu-
nications are explicitly scheduled according to the k-port model. The algorithm
operates in three phases and takes a throughput constraint as a parameter. The
first phase groups tasks together in as many clusters as necessary to match the
throughput constraint. This is achieved by considering the replication of each task
to deal with computational bottlenecks, and the duplication of each task and merg-
ing the clusters of the tasks at both ends of an edge to decrease communication
bottlenecks. For each alteration of the mapping considered, the throughput is

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 33

evaluated by scheduling the computations and the communications using a greedy
algorithm. In a second phase, the number of clusters is reduced to the number
of processors in the system by merging clusters to minimize processor idle times.
Finally, in the last phase, the latency is minimized by considering for each task of
the critical path its duplication, and merging to its predecessor cluster or successor
cluster.

6. CONCLUSION AND FUTURE WORK

In this survey, we have presented an overview of pipelined workflow scheduling, a
problem that asks for an efficient execution of a streaming application that operates
on a set of consecutive data sets. We described the components of application and
platform models, and how a scheduling problem can be formulated for a given
application. We presented a brief summary of the solution methods for specific
problems, highlighting the frontier between polynomial and NP-hard optimization
problems.
Although there is a significant body of literature for this complex problem, real-

istic application scenarios still call for more work in the area, both theoretical and
practical. When developing solutions for real-life applications, one has to consider
all the ingredients of the schedule as a whole, including detailed communication
models and memory requirements (especially when more than one data set is pro-
cessed in a single period). Such additional constraints make the development of
efficient scheduling methods even more difficult.
As the literature shows, having structure either in the application graph or in

the execution platform graph dramatically helps for deriving effective solutions. We
think that extending this concept to the schedule could be useful too. For example,
for scheduling arbitrary DAGs, developing structured schedules, such as convex
clustered schedules, has a potential for yielding new results in this area.
Finally, as the domain evolves, new optimization criteria must be introduced. In

this paper, we have mainly dealt with throughput and latency. Other performance-
related objectives arise with the advent of very large-scale platforms, such as in-
creasing the reliability of the schedule (e.g., through task duplication). Environ-
mental and economic criteria, such as the energy dissipated throughout the execu-
tion, or the rental cost of the platform, are also likely to play an increasing role.
Altogether, we believe that future research will be devoted to optimizing several
performance-oriented and environmental criteria simultaneously. Achieving a rea-
sonable trade-off between all these multiple and antagonistic objectives will prove
a very interesting algorithmic challenge.

ACKNOWLEDGMENTS

We would like to wholeheartedly thank the three reviewers, whose comments and
suggestions greatly helped us to improve the final version of the paper.
This work was supported in parts by the DOE grant DE-FC02-06ER2775; by

AFRL/DAGSI Ohio Student-Faculty Research Fellowship RY6-OSU-08-3; by the
NSF grants CNS-0643969, OCI-0904809, and OCI-0904802, and by the French ANR
StochaGrid and RESCUE projects. Anne Benoit and Yves Robert are with the
Institut Universitaire de France.

ACM Computing Surveys, Vol. V, No. N, January 2014.



34 · Anne Benoit et al.

REFERENCES

[ABMR10 ] Kunal Agrawal, Anne Benoit, Loic Magnan, and Yves Robert. Scheduling
algorithms for linear workflow optimization. In IPDPS’2010, the 24th IEEE International
Parallel and Distributed Processing Symposium, Atlanta, USA, 2010. IEEE Computer Society
Press.

[ABR08 ] Kunal Agrawal, Anne Benoit, and Yves Robert. Mapping linear workflows with
computation/communication overlap. In ICPADS’2008, the 14th IEEE International Confer-
ence on Parallel and Distributed Systems, Melbourne, Australia, December 2008. IEEE.

[AISS95 ] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman.

LogGP: Incorporating Long Messages into the LogP Model - One step closer towards a realistic
model for parallel computation. In SPAA ’95: Proceedings of the seventh annual symposium

on Parallelism in algorithms and architectures, 1995.

[AJLA95 ] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan. Software

pipelining. ACM Computing Surveys, 27:367–432, 1995.

[AK98 ] Ishfaq Ahmad and Yu-Kwong Kwok. On exploiting task duplication in parallel
program scheduling. IEEE Transactions on Parallel and Distributed Systems, 9(9):872–892,
September 1998.

[Amd67 ] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In AFIPS’1967, the April 18-20, 1967, spring joint computer
conference, pages 483–485, New York, NY, USA, April 1967. ACM.

[AMPP04 ] Alessandro Agnetis, Pitu B. Mirchandani, Dario Pacciarelli, and Andrea Paci-
fici. Scheduling problems with two competing agents. Operations Research, 52(2):229–242,
April 2004.

[BBG+09 ] Xavier Besseron, Slim Bouguerra, Thierry Gautier, Erik Saule, and Denis Trys-
tram. Fault tolerance and availability awareness in computational grids. In F. Magoules, editor,
Fundamentals of Grid Computing, Numerical Analysis and Scientific Computing. Chapman and
Hall/CRC Press, December 2009. ISBN: 978-1439803677.

[BCC+01 ] Francine Berman, Andrew Chien, Keith Cooper, Jack Dongarra, Ian Foster,
Dennis Gannon, Lennart Johnsson, Ken Kennedy, Carl Kesselman, John Mellor-Crumme, Dan

Reed, Linda Torczon, and Rich Wolski. The GrADS Project: Software Support for High-
Level Grid Application Development. International Journal of High Performance Computing
Applications, 15(4):327–344, Winter 2001.

[Ben09 ] Anne Benoit. Scheduling pipelined applications: models, algorithms and complex-

ity, July 2009. Habilitation à diriger des recherches, École normale supérieure de Lyon.

[Bey01 ] Michael D. Beynon. Supporting Data Intensive Applications in a Heterogeneous
Environment. PhD thesis, University of Maryland, 2001.

[BGGR09 ] Anne Benoit, Bruno Gaujal, Matthieu Gallet, and Yves Robert. Computing
the throughput of replicated workflows on heterogeneous platforms. In ICPP’2009, the 38th In-
ternational Conference on Parallel Processing, Vienna, Austria, 2009. IEEE Computer Society
Press.

[BHCF95 ] Sati Banerjee, Takeo Hamada, Paul M. Chau, and Ronald D. Fellman. Macro
pipelining based scheduling on high performance heterogeneous multiprocessor systems. IEEE
Transactions on Signal Processing, 43(6):1468–1484, June 1995.

[BHS+94 ] Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha, and Sid-

dhartha Chatterjee. Implementation of a portable nested data-parallel language. Journal on
Parallel and Distributed Computing, 21:4–14, 1994.

[BKÇ+01 ] Michael D. Beynon, Tahsin Kurc, Ümit V. Çatalyürek, Chialin Chang, Alan
Sussman, and Joel Saltz. Distributed processing of very large datasets with DataCutter. Parallel

Computing, 27(11):1457–1478, October 2001.

[BKP07 ] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy
and temperature. Journal of the ACM, 54(1):1 – 39, 2007.

[BKRSR09 ] Anne Benoit, Harald Kosch, Veronika Rehn-Sonigo, and Yves Robert. Multi-
criteria Scheduling of Pipeline Workflows (and Application to the JPEG Encoder). Interna-
tional Journal of High Performance Computing Applications, 2009.

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 35

[BLMR04 ] Olivier Beaumont, Arnaud Legrand, Loris Marchal, and Yves Robert. Assess-

ing the impact and limits of steady-state scheduling for mixed task and data parallelism on
heterogeneous platforms. In ISPDC’04, the 3rd International Symposium on Parallel and Dis-

tributed Computing/3rd International Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Networks, pages 296–302, Washington, DC, USA, 2004. IEEE
Computer Society.

[BML+06 ] Shawn Bowers, Timothy M. McPhillips, Bertram Ludäscher, Shirley Cohen, and
Susan B. Davidson. A model for user-oriented data provenance in pipelined scientific workflows.
In Provenance and Annotation of Data, International Provenance and Annotation Workshop
(IPAW), pages 133–147, 2006.

[Bok88 ] Shahid H. Bokhari. Partitioning problems in parallel, pipeline, and distributed
computing. IEEE Transactions on Computers, 37(1):48–57, 1988.

[BR08 ] Anne Benoit and Yves Robert. Mapping pipeline skeletons onto heterogeneous
platforms. Journal on Parallel and Distributed Computing, 68(6):790–808, 2008.

[BR09 ] Anne Benoit and Yves Robert. Multi-criteria mapping techniques for pipeline
workflows on heterogeneous platforms. In George A. Gravvanis, John P. Morrison, Hamid R.
Arabnia, and David A. Power, editors, Recent developments in Grid Technology and Applica-
tions, pages 65–99. Nova Science Publishers, 2009.

[BR10 ] Anne Benoit and Yves Robert. Complexity results for throughput and latency

optimization of replicated and data-parallel workflows. Algorithmica, 57(4):689–724, August
2010.

[BRGR10 ] Anne Benoit, Paul Renaud-Goud, and Yves Robert. Performance and energy
optimization of concurrent pipelined applications. In IPDPS’2010, the 24th IEEE International
Parallel and Distributed Processing Symposium, Atlanta, USA, 2010. IEEE Computer Society
Press.

[BRP03 ] Prashanth B. Bhat, C.S. Raghavendra, and Viktor K. Prasanna. Efficient collec-
tive communication in distributed heterogeneous systems. Journal on Parallel and Distributed
Computing, 63(3):251–263, March 2003.

[BRSR07 ] Anne Benoit, Veronika Rehn-Sonigo, and Yves Robert. Multi-criteria scheduling
of pipeline workflows. In HeteroPar’07, the 6th International Workshop on Algorithms, Models

and Tools for Parallel Computing on Heterogeneous Networks, Austin, Texas, USA, June 2007.

[BRSR08 ] Anne Benoit, Veronika Rehn-Sonigo, and Yves Robert. Optimizing latency and
reliability of pipeline workflow applications. In HCW’08, the 17th International Heterogeneity
in Computing Workshop, Miami, USA, April 2008. IEEE.

[BRT09 ] Anne Benoit, Yves Robert, and Eric Thierry. On the complexity of mapping linear
chain applications onto heterogeneous platforms. Parallel Processing Letters, 19(3):383–397,
March 2009.

[Bru07 ] Peter Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, fifth edition, 2007.

[BS05 ] Ragnhild Blikberg and Tor Sørevik. Load balancing and OpenMP implementation
of nested parallelism. Parallel Computing, 31:984–998, 2005.

[CHM95 ] Chandra Chekuri, Waqar Hasan, and Rajeev Motwani. Scheduling problems
in parallel query optimization. In PODS’1995, the 14th ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 255–265, New York, NY, USA, 1995.

ACM Press.

[CKP+93 ] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: towards
a realistic model of parallel computation. In PPOPP’1993, the 4th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming, pages 1–12, New York, NY, USA,
1993. ACM.

[CLW+00 ] Alok Choudhary, Wei-keng Liao, Donald Weiner, Pramod Varshney, Richard
Linderman, Mark Linderman, and Russell Brown. Design, implementation and evaluation of
parallel pipelined STAP on parallel computers. IEEE Transactions on Aerospace and Electronic
Systems, 36(2):655 – 662, April 2000.

ACM Computing Surveys, Vol. V, No. N, January 2014.



36 · Anne Benoit et al.

[CNNS94 ] Alok Choudhary, Bhagirath Narahari, David Nicol, and Rahul Simha. Optimal

processor assignment for a class of pipeline computations. IEEE Transactions on Parallel and
Distributed Systems, 5(4):439–443, April 1994.

[Col04 ] Murray Cole. Bringing skeletons out of the closet: A pragmatic manifesto for
skeletal parallel programming. Parallel Computing, 30(3):389–406, 2004.

[Dav78 ] Alan L. Davis. Data driven nets: A maximally concurrent, procedural, parallel

process representation for distributed control systems. Technical report, Technical Report,
Department of Computer Science, University of Utah, Salt Lake City, Utah, 1978.

[DBGK03 ] Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Grid Resource
Management, chapter Workflow management in GriPhyN. Springer, 2003.

[Den74 ] Jack B. Dennis. First version of a data flow procedure language. In Symposium
on Programming, pages 362–376, 1974.

[Den80 ] Jack B. Dennis. Data flow supercomputers. Computer, 13(11):48–56, 1980.

[Dev09 ] UmaMaheswari C. Devi. Scheduling recurrent precedence-constrained task graphs
on a symmetric shared-memory multiprocessor. In Springer, editor, Euro-Par 2009 Parallel
Processing, pages 265–280, August 2009.

[dNFJG05 ] Luiz Thomaz do Nascimento, Renato A. Ferreira, Wagner Meira Jr., and Dor-
gival Guedes. Scheduling data flow applications using linear programming. In ICPP’2005, the
34th International Conference on Parallel Processing, pages 638–645, Los Alamitos, CA, USA,
2005. IEEE Computer Society.

[DRST09 ] Pierre-Francois Dutot, Krzyztof Rzadca, Erik Saule, and Denis Trystram. Multi-
objective scheduling. In Yves Robert and Frederic Vivien, editors, Introduction to Scheduling.

CRC Press, November 2009.

[DRV00 ] Alain Darte, Yves Robert, and Frederic Vivien. Scheduling and Automatic Par-
allelization. Birkhauser, 2000.

[DShS+05 ] Ewa Deelman, Gurmeet Singh, Mei hui Su, James Blythe, A Gil, Carl Kessel-
man, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anastasia Laity, Joseph C.
Jacob, and Daniel S. Katz. Pegasus: a framework for mapping complex scientific workflows
onto distributed systems. Scientific Programming Journal, 13:219–237, 2005.

[FJP+05 ] Thomas Fahringer, Alexandru Jugravu, Sabri Pllana, Radu Prodan, Clovis Ser-
agiotto, Jr., and Hong-Linh Truong. ASKALON: a tool set for cluster and Grid computing:

Research Articles. Concurrency and Computation: Practice and Experience, 17:143–169, Febru-
ary 2005.

[FKT01 ] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. International Journal of High Performance Computing

Applications, 15(3):200–222, 2001.

[FPT04 ] Thomas Fahringer, Sabri Pllana, and Johannes Testori. Teuta: Tool support for
performance modeling of distributed and parallel applications. In International Conference
on Computational Science, Tools for Program Development and Analysis in Computational
Science, Krakow, Poland, Jun 2004.

[FRS+97 ] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik,
and Parkson Wong. Theory and practice in parallel job scheduling. In Proceedings of the Job
Scheduling Strategies for Parallel Processing, LNCS, pages 1–34. Springer, 1997.

[GIS77 ] Teofilo F. Gonzalez, Oscar H. Ibarra, and Sartaj Sahni. Bounds for LPT schedules
on uniform processors. SIAM Journal on Computing, 6:155–166, 1977.

[GJ79 ] Michael R. Garey and David S. Johnson. Computers and Intractability. Freeman,
San Francisco, 1979.

[GMS04 ] Frederic Guinand, Aziz Moukrim, and Eric Sanlaville. Sensitivity analysis of tree

scheduling on two machines with communication delays. Parallel Computing, 30:103–120, 2004.

[GMW05 ] Martin Gairing, Burkhard Monien, and Andreas Woclaw. Automata, Languages
and Programming, volume 3580, chapter A Faster Combinatorial Approximation Algorithm for
Scheduling Unrelated Parallel Machines, pages 828–839. Springer, aug 2005.

[Gra66 ] Ronald L. Graham. Bounds for certain multiprocessing anomalies. Bell System

Technical Journal, 45:1563–1581, 1966.

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 37

[Gra69 ] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal

on Applied Mathematics, 17(2):416–429, March 1969.

[GRR+06 ] Fernando Guirado, Ana Ripoll, Concepció Roig, Aura Hernandez, and Emilio
Luque. Exploiting throughput for pipeline execution in streaming image processing applications.
In Euro-Par 2006, Parallel Processing, LNCS 4128, pages 1095–1105. Springer, 2006.

[GRRL05 ] Fernando Guirado, Ana Ripoll, Concepcio Roig, and Emilio Luque. Optimizing

latency under throughput requirements for streaming applications on cluster execution. In
Cluster Computing, 2005. IEEE International, pages 1–10, September 2005.

[GST09 ] Alain Girault, Erik Saule, and Denis Trystram. Reliability versus performance

for critical applications. Journal on Parallel and Distributed Computing, 69(3):326–336, 2009.

[HÇ09 ] Timothy D. R. Hartley and Ümit V. Çatalyürek. A Component-Based Frame-
work for the Cell Broadband Engine. In Proceedings of 23rd International. Parallel and Dis-
tributed Processing Symposium, The 18th Heterogeneous Computing Workshop (HCW 2009),
May 2009.

[HÇR+08 ] Timothy D. R. Hartley, Ümit V. Çatalyürek, Antonio Ruiz, Francisco Igual,
Rafael Mayo, and Manuel Ujaldon. Biomedical Image Analysis on a Cooperative Cluster of
GPUs and Multicores. In Proceedings of the 22nd Annual International Conference on Super-
computing, ICS 2008, pages 15–25, 2008.

[HFB+09 ] Timothy D. R. Hartley, Ahmed R. Fasih, Charles A. Berdanier, Fusun Ozguner,

and Ümit V. Çatalyürek. Investigating the Use of GPU-Accelerated Nodes for SAR Image For-
mation. In Proceedings of the IEEE International Conference on Cluster Computing, Workshop

on Parallel Programming on Accelerator Clusters (PPAC), 2009.

[HL97 ] Soonhoi Ha and Edward A. Lee. Compile-time scheduling of dynamic constructs
in dataflow program graphs. IEEE Transactions on Computers, 46:768–778, July 1997.

[HM94 ] Waqar Hasan and Rajeev Motwani. Optimization algorithms for exploiting the
parallelism-communication tradeoff in pipelined parallelism. In VLDB, pages 36–47, 1994.

[HNC92 ] Yijie Han, Bhagirath Narahari, and Hyeong-Ah Choi. Mapping a chain task to
chained processors. Information Processing Letters, 44:141–148, 1992.

[HO99 ] Stephen L. Hary and Fusun Ozguner. Precedence-constrained task allocation onto

point-to-point networks for pipelined execution. IEEE Transactions on Parallel and Distributed
Systems, 10(8):838–851, 1999.

[Hoc97 ] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-hard problems.
PWS publishing company, 1997.

[HP03 ] Bo Hong and Viktor K. Prasanna. Bandwidth-aware resource allocation for het-

erogeneous computing systems to maximize throughput. In ICPP’2003, the 32th International
Conference on Parallel Processing. IEEE Computer Society Press, 2003.

[HS87 ] Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms
for scheduling problems: Practical and theoretical results. Journal of ACM, 34:144–162, 1987.

[HS88 ] Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme
for scheduling on uniform processors: Using the dual approximation approach. SIAM Journal
on Computing, 17(3):539 – 551, 1988.

[IBY+07 ] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.

Dryad: distributed data-parallel programs from sequential building blocks. In EuroSys’2007,
the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 59–

72, New York, NY, USA, 2007. ACM.

[Iqb92 ] Mohammad Ashraf Iqbal. Approximate algorithms for partitioning problems. In-
ternational Journal of Parallel Programming, 20(5):341–361, 1992.

[JPG04 ] Ravindra Jejurikar, Cristiano Pereira, and Rajesh Gupta. Leakage aware dynamic
voltage scaling for real-time embedded systems. In Proceedings of DAC’04, the 41st annual

Design Automation Conferencea, pages 275–280, New York, NY, USA, 2004. ACM.

[JV96 ] Jon Jonsson and Jonas Vasell. Real-time scheduling for pipelined execution of data
flow graphs on a realistic multiprocessor architecture. In ICASSP-96: Proceedings of the 1996
IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 6, pages
3314–3317, 1996.

ACM Computing Surveys, Vol. V, No. N, January 2014.



38 · Anne Benoit et al.

[KA99a ] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of the task

graph scheduling algorithms. Journal of Parallel and Distributed Computing, 59(3):381–422,
December 1999.

[KA99b ] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys, 31(4):406–471, December
1999.

[KA02 ] Ken Kennedy and John R. Allen. Optimizing compilers for modern architectures:
a dependence-based approach. Morgan Kaufmann, 2002.

[Kah74 ] Gilles Kahn. The semantics of simple language for parallel programming. In IFIP
Congress, pages 471–475, 1974.

[KGS04 ] Jihie Kim, Yolanda Gil, and Marc Spraragen. A knowledge-based approach to
interactive workflow composition. In 14th International Conference on Automatic Planning
and Scheduling (ICAPS 04), 2004.

[KN10 ] Ekasit Kijsipongse and Sudsanguan Ngamsuriyaroj. Placing pipeline stages on a
Grid: Single path and multipath pipeline execution. Future Generation Computer Systems,
26(1):50 – 62, 2010.

[KRC+99 ] Kathleen Knobe, James M. Rehg, Arun Chauhan, Rishiyur S. Nikhil, and
Umakishore Ramachandran. Scheduling constrained dynamic applications on clusters. In Su-
percomputing’1999, the 1999 ACM/IEEE conference on Supercomputing, page 46, New York,
NY, USA, 1999. ACM.

[LKdPC10 ] Eugene Levner, Vladimir Kats, David Alcaide Lopez de Pablo, and T.C.E.

Cheng. Complexity of cyclic scheduling problems: A state-of-the-art survey. Computers and
Industrial Engineering, 59:352–361, 2010.

[LLM88 ] Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor-a hunter of idle
workstations. In Proceedings of the 8th International Conference on Distributed Computing

Systems, pages 104 –111, jun 1988.

[LLP98 ] Myungho Lee, Wenheng Liu, and Viktor K. Prasanna. A mapping methodology
for designing software task pipelines for embedded signal processing. In Proceedings of the
Workshop on Embedded HPC Systems and Applications of IPPS/SPDP, pages 937–944, 1998.

[LP95 ] Edward A. Lee, , and Thomas M. Parks. Dataflow process networks. Proceedings

of the IEEE, 83(5):773 –801, may 1995.

[LST90 ] Jan K. Lenstra, David B. Shmoys, and Eva Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.

[LT02 ] Renaud Lepere and Denis Trystram. A new clustering algorithm for large communi-
cation delays. In International Parallel and Distributed Processing Symposium (IPDPS’2002).

IEEE Computer Society Press, 2002.

[MCG+08 ] Andreu Moreno, Eduardo César, Alex Guevara, Joan Sorribes, Tomas Margalef,
and Emilio Luque. Dynamic Pipeline Mapping (DPM). In Springer, editor, Euro-Par 2008
Parallel Processing, pages 295–304, August 2008. It looks like there is a journal vesion of it
now : http://www.sciencedirect.com/science/article/pii/S0167819111001566.

[MGPD+08 ] Allan MacKenzie-Graham, Arash Payan, Ivo D. Dinov, John D. Van Horn,
and Arthur W. Toga. Neuroimaging Data Provenance Using the LONI Pipeline Workflow En-

vironment. In Provenance and Annotation of Data, International Provenance and Annotation
Workshop (IPAW), pages 208–220, 2008.

[Mic09 ] Microsoft. AXUM webpage. http://msdn.microsoft.com/en-
us/devlabs/dd795202.aspx, 2009.

[Mil99 ] Mark P. Mills. The internet begins with coal: A preliminary exploration of the
impact of the Internet on electricity consumption: a green policy paper for the Greening Earth

Society. Mills-McCarthy & Associates, 1999.

[MO95 ] Fredrik Manne and Bjørn Olstad. Efficient partitioning of sequences. IEEE Trans-
actions on Computers, 44(11):1322–1326, 1995.

[Nic94 ] David Nicol. Rectilinear partitioning of irregular data parallel computations. Jour-
nal on Parallel and Distributed Computing, 23:119–134, 1994.

ACM Computing Surveys, Vol. V, No. N, January 2014.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms · 39

[NTS+08 ] Hristo Nikolov, Mark Thompson, Todor Stefanov, Andy D. Pimentel, Simon

Polstra, R. Bose, Claudiu Zissulescu, and Ed F. Deprettere. Daedalus: toward composable
multimedia MP-SoC design. In DAC ’08: Proceedings of the 45th annual Design Automation

Conference, pages 574–579, New York, NY, USA, 2008. ACM.

[OGA+06 ] Thomas Oinn, Mark Greenwood, Matthew Addis, Nedim Alpdemir, Justin Fer-
ris, Kevin Glover, Carole Goble, Antoon Goderis, Duncan Hull, Darren Marvin, Peter Li, Phillip
Lord, Matthew Pocock, Martin Senger, Robert Stevens, Anil Wipat, and Christopher Wroe.
Taverna: lessons in creating a workflow environment for the life sciences. Concurrency and

Computation: Practice and Experience, 18(10):1067–1100, August 2006.

[OYI01 ] Takanori Okuma, Hiroto Yasuura, and Tohru Ishihara. Software energy reduction
techniques for variable-voltage processors. Design Test of Computers, IEEE, 18(2):31 –41,

March 2001.

[PA04 ] Ali Pınar and Cevdet Aykanat. Fast optimal load balancing algorithms for 1D
partitioning. Journal on Parallel and Distributed Computing, 64(8):974–996, 2004.

[Pra04 ] Rajesh B. Prathipati. Energy efficient scheduling techniques for real-time embed-

ded systems. Master’s thesis, Texas A&M University, May 2004.

[PST05 ] Jonathan E. Pecero-Sanchez and Denis Trystram. A new genetic convex clustering
algorithm for parallel time minimization with large communication delays. In Gerhard R.
Joubert, Wolfgang E. Nagel, Frans J. Peters, Oscar G. Plata, P. Tirado, and Emilio L. Zapata,
editors, PARCO, volume 33 of John von Neumann Institute for Computing Series, pages 709–
716. Central Institute for Applied Mathematics, Jülich, Germany, 2005.

[PTA08 ] Ali Pınar, E. Kartal Tabak, and Cevdet Aykanat. One-dimensional partitioning
for heterogeneous systems: Theory and practice. Journal on Parallel and Distributed Comput-

ing, 68:1473–1486, 2008.

[PY00 ] Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability of
trade-offs and optimal access of web sources. In FOCS, editor, 41st Annual Symposium on
Foundations of Computer Science, pages 86–92, 2000.

[RA01 ] Samantha Ranaweera and Dharma P. Agrawal. Scheduling of periodic time critical

applications for pipelined execution on heterogeneous systems. In ICPP ’02: Proceedings of the
2001 International Conference on Parallel Processing, pages 131–140, Washington, DC, USA,
2001. IEEE Computer Society.

[Rei07 ] James Reinders. Intel Threading Building Blocks. O’ Reilly, 2007.

[RKO+03 ] Anthony Rowe, Dimitrios Kalaitzopoulos, Michelle Osmond, Moustafa
Ghanem, and Yike Guo. The discovery net system for high throughput bioinformatics. Bioin-

formatics, 19(Suppl 1):i225–31, 2003.

[RS87 ] Vic J. Rayward-Smith. UET scheduling with interprocessor communication delays.
Discrete Applied Mathematics, 18:55–71, 1987.

[RSBJ95 ] Vic J. Rayward-Smith, F. Warren Burton, and Gareth J. Janacek. Scheduling

parallel program assuming preallocation. In P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra,
and Z. Liu, editors, Scheduling Theory and its Applications, pages 146–165. Wiley, 1995.

[SFB+02 ] Matthew Spencer, Renato Ferreira, Michael D. Beynon, Tahsin Kurc, Ümit V.
Çatalyürek, Alan Sussman, and Joel Saltz. Executing multiple pipelined data analysis opera-
tions in the grid. In Supercomputing’2002, the 2002 ACM/IEEE conference on Supercomputing,
pages 1–18, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[SKS+09 ] Olcay Sertel, Jun Kong, Hiroyuki Shimada, Ümit V. Çatalyürek, Joel H. Saltz,
and Metin N. Gurcan. Computer-aided prognosis of neuroblastoma on whole-slide images:

Classification of stromal development. Pattern Recognition, 42(6):1093–1103, 2009.

[SP04 ] Taher Saif and Manish Parashar. Understanding the behavior and performance
of non-blocking communications in MPI. In Euro-Par 2004 Parallel Processing, LNCS 3149,
pages 173–182. Springer, 2004.

[SRM06 ] Vivy Suhendra, Chandrashekar Raghavan, and Tulika Mitra. Integrated scratch-
pad memory optimization and task scheduling for MPSoC architectures. In CASES ’06:

ACM/IEEE International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, October 2006.

ACM Computing Surveys, Vol. V, No. N, January 2014.



40 · Anne Benoit et al.

[SV95 ] Jaspal Subhlok and Gary Vondran. Optimal mapping of sequences of data parallel

tasks. In PPOPP’1995, the 5th ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 134–143, New York, NY, USA, 1995. ACM.

[SV96 ] Jaspal Subhlok and Gary Vondran. Optimal latency-throughput tradeoffs for data

parallel pipelines. In SPAA’1996, the 8th annual ACM symposium on Parallel algorithms and
architectures, pages 62–71, New York, NY, USA, 1996. ACM.

[TB07 ] Vincent T’kindt and Jean-Charles Billaut. Multicriteria Scheduling. Springer,

2007.

[TBE07 ] Vincent T’kindt, K. Bouibede-Hocine, and Carl Esswein. Counting and enumer-
ation complexity with application to multicriteria scheduling. Annals of Operations Research,
April 2007.

[TC99 ] Kenjiro Taura and Andrew Chien. A heuristic algorithm for mapping communicat-
ing tasks on heterogeneous resources. In HCW’1999, the Heterogeneous Computing Workshop,
pages 102–115. IEEE Computer Society Press, 1999.

[TFG+08 ] George Teodoro, Daniel Fireman, Dorgival Guedes, Wagner Meira Jr., and Re-
nato Ferreira. Achieving multi-level parallelism in filter-labeled stream programming model. In
ICPP’2008, the 37th International Conference on Parallel Processing, 2008.

[TTL02 ] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the Grid.
In Fran Berman, Geoffrey Fox, and Tony Hey, editors, Grid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons Inc., December 2002.

[TWML01 ] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Condor – a
distributed job scheduler. In Thomas Sterling, editor, Beowulf Cluster Computing with Linux.
MIT Press, October 2001.

[TWS03 ] Valerie Taylor, Xingfu Wu, and Rick Stevens. Prophesy: an infrastructure for per-
formance analysis and modeling of parallel and grid applications. SIGMETRICS Performance
Evaluation Review, 30:13–18, March 2003.

[VÇK+07 ] Nagavijayalakshmi Vydyanathan, Ümit V. Çatalyürek, Tahsin M. Kurc, P. Sa-
dayappan, and Joel H. Saltz. Toward optimizing latency under throughput constraints for
application workflows on clusters. In Euro-Par 2007 Parallel Processing, pages 173–183, 2007.

[VÇK+10 ] Nagavijayalakshmi Vydyanathan, Ümit V. Çatalyürek, Tahsin M. Kurc, P. Sa-
dayappan, and Joel H. Saltz. Optimizing latency and throughput of application workflows on
clusters. Parallel Computing, In Press, 2010.

[VTL82 ] Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series
parallel digraphs. SIAM Journal on Computing, 11(2):298–313, 1982.

[Wol89 ] Michael Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cam-

bridge MA, 1989.

[WSH99 ] Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather service: a dis-
tributed resource performance forecasting service for metacomputing. Future Gener. Comput.

Syst., 15:757–768, October 1999.

[WvLDW10 ] Lizhe Wang, G. von Laszewski, J. Dayal, and Fugang Wang. Towards Energy
Aware Scheduling for Precedence Constrained Parallel Tasks in a Cluster with DVFS. In

Proceedings of CCGrid’2010, the 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pages 368 –377, May 2010.

[YB05 ] Jia Yu and Rajkumar Buyya. A Taxonomy of Workflow Management Systems for
Grid Computing. Journal of Grid Computing, 3:171–200, 2005. 10.1007/s10723-005-9010-8.

[YDS95 ] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced
CPU energy. In Proceedings of FOCS ’95, the 36th Annual Symposium on Foundations of
Computer Science, page 374, Washington, DC, USA, 1995. IEEE Computer Society.

[YKS03 ] Mau-Tsuen Yang, Rangachar Kasturi, and Anand Sivasubramaniam. A Pipeline-
Based Approach for Scheduling Video Processing Algorithms on NOW. IEEE Transactions on
Parallel and Distributed Systems, 14(2):119–130, 2003.

ACM Computing Surveys, Vol. V, No. N, January 2014.


